UWE-4: Integration State of the First Electrically Propelled 1U CubeSat

Small Satellite Conference 2017

Philip Bangert
A. Kramer, K. Schilling
University Würzburg
University Würzburg Experimental Satellites | NetSat

2018 NetSat-1 to NetSat-4
Formation Flying Mission
- Distributed Computing Capabilities
- Formation Control
- DTNs, MANets

2018 UWE-4
- Orbit Control

2013 UWE-3
- Attitude Control

2009 UWE-2
- Attitude- and Orbit Determination

2005 UWE-1
- Telecommunication “Internet in Space”
Mission Objectives

• Technical objectives
 – Demonstration of electric propulsion on 1U CubeSat
 – Characterization of the electric propulsion system NanoFEEP
 – Attitude and Orbit control preparations for formation control

• Educational program
 – Hands-on interdisciplinary training of students
Satellite Architecture

- Backplane architecture according to UNISEC Europe Standard
- Subsystems:
 - UHF Communication
 - On-Board Computer
 - AOCS
 - Electrical Power System
 - Power Processing Units
 - Front Access Board
- Multifunctional Side Panels
- NanoFEEP Thruster heads integrated into CubeSat bars
On-Board Computer

• Based on heritage from UWE-3
• Redundant set of low power micro-controllers
 – <15 mW
 – Full JTAG interconnection for repair and restore
 –Latchup-protection and backup power conditioning
• Full debug access to all subsytems
 – JTAG, SBW, SWD
• Improved memory storage (optional)
 – 2x 20Mbit FRAM
 – 2x 4Gbit NAND Flash memory
 – 2x microSD card slots
Attitude and Orbit Control System

- Standard interface
 - Latchup-protection
 - Power monitoring
 - Debug interface: Spy-Bi-Wire
- Isotropic Kalman Filter for attitude determination
 - Gyroscope bias determination
 - Residual magnetic moment estimation
- Low power 9-axis IMUs
 - Primary on AOCS, secondary on panels
- High precision sun-sensors on panels
 - Estimation accuracy approx. 0.1 deg
- Magnetorquers on each panel
 - Magnetic moment: 0.1 Am² per axis
- Hybrid control with torquers and thrusters
Sun-Sensors

• Miniature CMOS camera
 – FOV 130 degree
 – 4.2 mW nominal power
 – Footprint 1.0 x 1.0 x 1.7 mm
 – Accuracy better than 0.1 deg (0.01 deg feasible)

• Embedded on outside panels of CubeSat

• Calibration/identification of lens model ongoing
Electric Propulsion System: NanoFEEP

Development by TU Dresden, each thruster head:

- **Propellent:** 0.25g Gallium
- **ISP:** 1000 – 8000 sec
- **Total Impuls:** ca. 15 Ns
- **Thrust:** 0 – 22 µN
 - **Nominal:** 2 – 3 µN
- **Standby Power:** 50 – 90 mW (for heating)
- **Current:** 0 – 250 µA
- **Voltage:** 3 – 12 kV
- **Δv:** up to 60 m/s (4 thrusters)
Thruster Heads Integration

• Integration into CubeSat rails
 – Enables attitude control with thrusters (thrust vector pointing)
 – Saves valuable space inside and on the faces of the CubeSat
 – High voltage cables connect PPU and thruster heads

• Each PPU connects to two Thruster heads and one Neutralizer
Thrust Estimation and Attitude Control

- Very low thrust levels of 0.1 – 20 µN make it difficult to detect orbit changes (only long term)
- Procedure based on residual magnetic dipole estimation of UWE-3
- Measure the torque created by thrusters
 \[M_{th} = r \times F = I\dot{\omega} + \omega \times (I\omega) - \mu \times B \]
- Global optimization algorithm searches for \(F \) and \(\mu \)

- Attitude control for thrust vector pointing
Current Integration State

- AOCS, EPS, OBC prototypes produced and currently being tested
- NanoFEEP
 - assembly completed, fitting test successful
 - testing ongoing, long term tests pending
 - PPU produced and under test
- Launch 2018
- Visit us at booth 167!
Thank you for your attention!