A Novel Approach to Space Systems Engineering Education Through the Construction of High Altitude Balloons

Adam Herrmann, Alex McGlasson, Amanda Moores, Evan Burwinkel, Evan Smith, Henry Voss, Jacob Kennedy, Jessica Kropveld, Michael Gyurgyak
Who are We?

The UC CubeCats is a student organization from the University of Cincinnati dedicated to the education of its members through the development and launch of CubeSats. While we are predominately an undergraduate organization, we accept university students of every level and major.
Universal Challenges?

• Funding

• Administrative Barriers

• New Member Retention and Education
New Member Recruitment and Retention

• Pulling mostly from first year engineering and science students

• Issues with recruiting first year students
 – Intimidation of knowledge
 – Lack of knowledge

• These two issues make retention of new members especially difficult

• Trouble retaining students who leave for internships
CATiSE Program

• CubeCats Applied Training in Space Exploration (CATiSE) Program
• Gives incoming members a chance to better learn and understand the systems engineering process through the construction of High Altitude Balloons (HABs)

• Advantages
 – Low cost
 – Faster turnover time
 – Engineering a system in a near space environment
 – Team based learning
Program Structure

Establish Goals and Mission Requirements
 • Mission Concept Review

Design
 • Technical Design Review

Integration
 • Flight Readiness Review

Launch
Project TOYGER
Project Goals

• Take 360 degree photos at a determined frequency and create a time-lapse video of at least 1 minute in length at 30fps
• Take spectrometer light readings through the whole flight
• Take radiation measurements with a Geiger counter throughout the whole flight
Design

![Diagram of payload system components]

![Graph showing temperature inside payload boxes during flight]

<table>
<thead>
<tr>
<th>Type of Risk</th>
<th>Component Failure</th>
<th>GPS loses connection with Payload</th>
<th>Unable to Locate Payload</th>
<th>Loss of Power</th>
<th>Payload Damaged on Launch/Landing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe (depends on damage done)</td>
</tr>
<tr>
<td>Chance of Occurring</td>
<td>Possible</td>
<td>Possible</td>
<td>Possible</td>
<td>Unlikely</td>
<td>Unlikely</td>
</tr>
<tr>
<td>Risk</td>
<td>Medium High</td>
<td>Medium High</td>
<td>Medium High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Integration
Launch
Results and Final Conclusions
Lessons Learned

• Ordering parts in advance in order to make sure we can get all the parts we need in on time in order to meet all mission goals

• Edit the packet based off of feedback from the students this year to optimize its use

• Have a more formal documentation process for documentation and record keeping
Questions?