Terrestrial RaYs Analysis and Detection (TRYAD) Cubesat Mission

Mike Fogle, *Auburn Univ.*
JM Wersinger, *Auburn Univ.*
Michael Briggs, *Univ. of Alabama - Huntsville*
Pete Jenke, *Univ. of Alabama - Huntsville*
Georgia De Nolfo, *NASA Goddard Space Flight Center*
TRYAD Science Overview

Primary Science Goal:
Multi-point Observations of Terrestrial Gamma-ray Flashes (TGFs) to test TGF Beam Models

- What are TGFs?
- History of detecting TGFs
- What is unique about the TRYAD mission?

Short History of TGF Detection
1994 – Burst and Transient Source Experiment (BATSE) on Compton Gamma-Ray Observatory
2005 – RHESSI satellite detected higher energy TGFs
2009 – Gamma-Ray Burst Monitor on Fermi Gamma-Ray Space Telescope first detects TGFs and positrons
Present – thousands of TGFs are detected routinely

- up to 10’s MeV Gamma Rays
- μs to ms timescale pulses
- Production models unverified
TRYAD uses two 6U CubeSats to make coincident measurements of TGFs and correlates to ground-based lightning detection data.
Lightning Density

http://wwlln.net/new/map/lightning_map.html
TGFs observed by Gamma Burst Monitor on Fermi

Typical TRYAD CubeSat Orbit

Orbit Inclination: 50°
Attitude: 500 km
Orbit velocity: 7.6 km/s
Orbit Period: 94.5 mins

http://wwlln.net/new/map/lightning_map.html
Command and Data Handling System (C&DHS)
- Embedded Linux
- Beagelbone w/PRUs

Attitude Determination and Control System (ADACS)
- Magnetometers, rate gyros, sun angle sensors, orbit propagator
- Novatel GPS
- 3-axis Magnetorquers
- 3-axis Reaction wheels

Electrical Power System (EPS)
- 60 solar cells (29% eff.)
- MPPTs
- 10 Li-ion batteries
- Sensing/ Fault detect

Communications
- Globalstar
- Duplex - 256 kbps over 45% of orbit
- Simplex - beacons over 90% of orbit

Mechanical Systems
- Monolithic Al structure panels
- Driven deployable solar panels
- Passive thermal design

Station Keeping
- Deployable “Dart” configuration for passive orientation augmentation
- Station keeping and satellite separation control via aerodynamic differential drag

Science Payload
- Plastic Scintillation gamma-ray detector w/ next generation Si photomultipliers (SiPMs)
- >1 M sample/sec event time tagging to 1 µs accuracy in real time (slaved to GPS clock)
- ROI’s commanded based on weather and lightning data
Science Payload

- **203 x 184 x 71mm**

- **5x6 6-mm SiPM array**
- - Hamamatsu Si Photomultiplier (SiPM) Array
- - Eight arrays per CubeSat (240 SiPMs)

- **Prototype Scintillator**
- - 5% Lead-doped Plastic
 - (40 x 51 x 166mm)
- - Four per CubeSat

Science Interface Board

- Pulse height analysis
- Gain control

Beaglebone

- **PRU**
 - Event time tag
 - (>1 Msp) (≥1 Msp)
- **x2**

GPS

- DAQ start and stop
- Absolute timestamps
- Start/stop positions

Timing Accuracy Goals:
- 2 µs relative event time tag
- 20 µs between CubeSats
- 200 µs w.r.t. ground-based VLF detection
Communications

Globalstar Duplex Coverage

- **Duplex Radio**
 - 256 kbps, full duplex
 - 40-50% orbital coverage
 - Science Data / Telemetry
 - Command & Control
 - Requires +/- 30° zenith antenna pointing

- **Simplex Radio**
 - Beacon for post-launch phase
 - 80-90% orbital coverage
 - Abridged telemetry
 - Broadcast mode (quasi-roll resistant)

Radios provided by sci_Zone, Inc
Attitude Determination and Control System (ADACS)

Reaction Unit:
- Magnetorquer
 - 180 x 60 x 5 mm
 - $\mu = 0.91 \text{ Am}^2$
- Reaction Wheel
 - 45mm brushless DC
 - 8,000 rpm

Hamamatsu PSD

Sun Angle Sensor

InvenSense ITG-3050

Rate gyro

Magnetometer

Reaction Unit: Magnetorquer + Reaction Wheel
Station Keeping via Differential Drag

Min Drag

Max Drag
Thank You!

Funded by
Division of Atmospheric and Geospace Sciences (AGS)