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ABSTRACT

Motivated by small-scale auroral plasma science, ANDESITE, a 6U CubeSat with eight deployable picosatellites, will
fly a network of magnetometers through the Northern Lights. With the spacecraft due to launch on the upcoming
ELaNa XIX mission, this work details its science mission architecture along with the payload design and calibration.
Each three-axis magnetometer instrument is hosted by a deployable picosatellite about the size of a piece of toast.
Calibration of these sensors included a test of the integrated picosatelites in a Helmholz cage that sweeps a wide range
of magnetic environments. Here, we show that even in the small package—operating under a watt with a compact
power system, radio, gyro, and GPS—we were able to sample at greater than 30 Hz with an uncertainty under 20 nT.
We also present analysis for the entire network to understand the spatial frequency response of the kilometer-scale 3D
filter created by the swarm as it flies through various current density structures in the ionospheric plasma.

INTRODUCTION

Spacecraft have been essential to understanding the auro-
ral current system since the early days of spaceflight. The
modern understanding mostly comes from such space-
based sensors and offers a big picture of a closed current
loop that connects the magnetosphere to the ionosphere.
While the main structure was postulated early in the 20th
century1, strong evidence supporting the theory arrived
with the coming of the space race.

Figure 1: Schematic of auroral zone flux tubes, note
the connection to the outer magnetosphere2

The system consists of a few main currents: J‖ flows
that move parallel to the Earths dipolar magnetic field
(Figure 1), and a closure set of currents in the ionosphere
through resistive loading governed by the Pederson con-
ductance. To better understand why the space race in-
fluenced our understanding of these currents, we need
to understand what we can measure. If we assume that
current is not generated in the closed volume around the
auroral region, we can divide the current flows into the

portion that is parallel to B and perpendicular and equal-
ize them as follows

∇ · J = ∇⊥ · J⊥ +
∂J‖

∂s
= 0 (1)

where s is the field aligned coordinate. Assuming that
the current perpendicular is only from the closure over
the ionospheric height, ∆s, we can integrate Eq. 1—
with the Pederson current dominating and E⊥ a dawn to
dusk electric field

J‖ =

∫
∆s

∇⊥ · J⊥ds

=

∫
∆s

∇⊥ · (σpE⊥)ds

= ∇⊥ · (ΣpE⊥) (2)

Now we can use this form to inspect what we could
actually measure in the system.

The right-hand side components of Eq. 2, σpE⊥, can
be estimated with ground-based techniques such as To-
tal Electron Content (TEC) measurements, magnetome-
ter networks and Incoherent Scatter Radar (ISR) probes3,
but the left-hand side requires a space-based sensor since
the current systems do not reach the ground. That mea-
surement usually is taken by sampling the field with a
magnetometer. Through Ampere’s law we can map de-
flections about the Earth’s dipole field B0 to currents and
then any perturbations δB perpendicular to that dipole
could be caused by parallel currents as in Eq. 3.

∇× (B0 + δB) = µ0J

∇× (δB⊥) = µ0J‖ (3)
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Over the years, magnetometer sensitivity and tem-
poral resolution have improved, but decoupling spatial-
temporal ambiguities in the measurements has been pro-
hibited due to the high cost of spacecraft networks. In the
next section, we review past missions for auroral mea-
surements of the nature described above. After that re-
view, we then analyze Boston University’s small satel-
lite mission ANDESITE to better understand its ability
to overcome this instrumentation hurdle.

Figure 2: Summary of TRIAD data for field-aligned
currents, plotted in magnetic latitude and local time

where up is noon4.

PREVIOUS SPACE-BASED MEASUREMENTS

Early in the space age, satellites have hosted plasma sen-
sors for the purpose of teasing out quantities, like this
field-aligned current. One of the first was the TRIAD
mission in the 1970s, which hosted a magnetometer4.
These data from TRIAD were a detailed time samplings,
without good absolute calibration, but with processing
they could show gross auroral topology by using many
orbits of data with assumptions restricting the single
point perpendicular magnetic field measurements along
the satellite trajectory to the local parallel currents (Fig-
ure 2). Often this mapping was made by assuming a
steady in-time-and-space system that behaved like an in-
finite sheet of current density. With those assumptions,
the spatial-temporal ambiguity due to satellite trajectory
and discrete sampling in time is ignored, and you can
recover an estimate of currents by

∂

∂x
δBy = µ0Jz (4)

where the x-coordinate is aligned with the satellites tra-
jectory, z is along B0, and y completes the right-handed
system. With the satellite velocity dx

dt = vs you can
rewrite a manipulation of time series data as

1

vs

d

dt
δBy(t) = µ0Jz (5)

This represents about the best that can be done when
attempting to map between quantities using single sen-
sor measurements. It inherently includes an ambiguity
as to whether a measured deflection is a temporal vari-
ation or spatial. As measurements were collected with
single sensors such as this5,6 the signal processing tech-
niques evolved, increasing the sensitivity and resolution
of the time series, but were ultimately limited by these
assumptions. It became clear that spacecraft were mea-
suring phenomena on scales where this spatial smearing
was affecting the results.

Figure 3: Current density estimate from early in the
AMPERE project shown in the same coordinates as

the TRIAD data. Red coloring indicates currents
away from the ionosphere7.

Several missions were designed with multiple space-
craft on slightly different orbits to tease out the space-
time ambiguity. One of the early missions of this na-
ture used engineering magnetometers already on the Irid-
ium satellite constellation in what is known as the AM-
PERE project7. Data collected from 66+ satellites over
six polar orbital planes is mapped to a vector potential
estimate of the global magnetic disturbance. This distur-
bance is then used directly with Ampere’s law to calcu-
late a coarse map of the dynamic global current system,
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as seen in Figure 3. The underlying mathematics relied
on representing field-aligned currents to a poloidal vector
potential that represented the deflections of the magnetic
field. That representation simplified to a direct relation
between a fit of magnetometer data δBk at each satellite
point k, Eq. 6, to a global scalar potential Ψ(r, θ, φ) rep-
resented by spherical harmonics and a Poisson equation
for current density, Eq. 7.

min
Ψ
|δBk − µ0r̂ ×∇Ψ|2k, ∀k (6)

J = ∇ · ∇Ψ = ∇2Ψ (7)

While these data were reasonable for a global view,
it did not have the resolution to show the small-scale
phenomena that was postulated from early measure-
ments. Around the same time as the beginning of the
AMPERE project, Stasiewicz summarized evidence that
high-frequency disturbances that were seen in scientific
magnetometers were related to local Alfvén waves8. An
early test of this involved comparing the ratio of the mag-
netic field to the electric field perturbations. Taking Eq.
3, and assuming that the perpendicular E⊥ and a Peder-
son conductivity are directly balanced by the current re-
lated to the measured deflections by the satellites in the
sheet we see the following.

B⊥ = J⊥ = µ0ΣpE⊥

E⊥
B⊥

=
1

µ0Σp
∝ vA (8)

Figure 4: FAST measured E⊥
B⊥

compared to a local
Alfvén speed calculated from particle

measurements5.

If the perturbations are related to the Alfvén wave-
mode, then this ratio should be correlated with the Alfvén

speed, vA = B/
√
µ0ρ where ρ is the mass density.

NASA’s FAST spacecraft flew in a polar low earth orbit
and saw many cases where this correlation was observed
(Figure 4). But without a way to conduct the same spa-
tial analysis as AMPERE on small scales, it remained
difficult to accumulate more evidence.

Figure 5: Local SWARM orbital configuration. SwA
and SwB fly next to each other, and by using

measurements from two time points a loop is created
that can be used to estimate current density through

the enclosed area9

Since those first analyses, several missions were de-
veloped including ESA’s SWARM (two spacecraft)9 and
NASA’s ST510 (three spacecraft) flying in tight forma-
tion, as an attempt to resolve first-order spatial variations
as they flew through the aurora. The three ST5 satel-
lites fly in the same orbit, one after the other, to correct
for variability lost with a single satellite. A snapshot
in time across the same orbital track allows for analy-
sis of the spatial variability decoupled from the satellites
velocity, removing that ambiguity introduced in Eq. 5.
The SWARM mission, however, flies two spacecraft side
by side to capture a spatial variability perpendicular to
the orbital velocity. Their mission directly estimates the
currents by assuming a relatively (when compared to the
time scale of the orbital velocity) time-steady aurora, and
creating a geometrical loop that can be used to evaluate
a discrete approximation to the integral form of Amperes
law, as seen in Eq. 9 and Figure 5.

∫ ∫
J · dA =

1

µ0

∮
B · dl (9)

Boston University’s ANDESITE mission aims to con-
nect these two methodologies to allow for better space-
time decoupling. By using several small sensor nodes
deployed from a main bus, higher data-sampling density
can be achieved while allowing for fewer assumptions
on the geometry of the current sheet present. In the next
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sections we will cover a description of the methodology
and projected capability of the system.

METHODOLOGY

ANDESITE
ANDESITE leverages many capabilities that have come
about from commercial and academic interest in small
satellite technology while ultimately remaining a very
simple scientific approach—networked magnetometers.
It is designed within the CubeSat standard, fitting in the
“6U” form factor (20 cm × 30 cm × 10 cm) for a Plan-
etary Systems Corporation Canisterized Satellite Dis-
penser (CSD), relying on many commercially available
subsystems for it’s operation, and therefore has proven
to be inexpensive when compared to larger multipoint
sampling missions. The mission is currently slated for
launch in 2017 through NASA’s Educational Launch of
Nano-satellites (ELaNa) program.

(a) 6U CubeSat Mule (b) Sensor Node

Figure 6: Engineering models of satellite system

Figure 7: ANDESITE deployment configuration
(separation distances not to scale)

Once deployed from the launch vehicle, every few or-
bits the main 6U spacecraft bus or “Mule” (Figure 6a) de-
ploys pairs of smaller Sensor Nodes (Figure 6b). These
nodes each contain a three-axis magnetometer and relay
their measurements back to the Mule which communi-
cates the data to ground through the GlobalStar commu-
nication network via a NearSpace Launch EyeStar Du-

plex radio.

Figure 8: A numerical model of single Node-pair
deployment shows the drift of the Nodes as they are

referenced to the Mule’s body-fixed coordinates. The
red dashed lines show the total drift after a few

orbits and the right plot helps visualize the trajectory
by changing the scale of the cross-track axes.

Due to differential drag between the Mule and Nodes
slowly drift apart and create a spatial grid that samples
in- and cross-orbital track. This is shown in Figure 7
which was created using the NRLMSISE-00 atmosphere
and a 70 x 70 degree/order gravity model to propagate the
spacecraft. The resulting formation effectively combines
the geometric concepts of SWARM and ST5.

In-track separation can be controlled by time of the
Node releases, which is adjustable on-orbit, and a de-
signed cross-track separation of 5 km is set by the spring
constant of the ejection mechanism (seen in Figure 8),
but for this analysis we will vary it to understand the lim-
itations of the design choice. Our ultimate goal is to pa-
rameterize the sensor network’s geometry and attempt to
understand the limits of it’s resolution, thereby assessing
it’s relevance to scientific measurement.

Science Instrument
I Design

Since the mission payload is to take magnetic field mea-
surements, certain design considerations were included
in the final sensor node design to ensure the cleanest sig-
nal in compact size constraint. The magnetometers cho-
sen on board the sensor node boards are the HMC1001
and HMC1002, 1-axis and 2-axis magnetic sensors, re-
spectively. They provide the full-scale range of± 2 gauss
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(± 200,000 nT) and have a resolution of 85 µgauss (8.5
nT). The supporting circuitry includes a deguassing cir-
cuit that sends a 5V set and reset circuit through the mag-
netometers for 2 microseconds.The offset straps are ig-
nored and corrections will be done after the data is trans-
ferred back.

The differential outputs of the magnetometers are con-
nected to an analog low-pass filter and the resistors are
metal film to minimize noise. The differential outputs
are fed into an ADS1248, a 24-bit delta-sigma analog-
to-Digital converter with a programmable gain amplifier.
The programmable amplifier was set to 64 times to ac-
count for the full-scale range of the magnetometers. For
the voltage reference into the ADC, the ADR441 was se-
lected for its low-noise and low-temperature coefficient
of 3 ppm/◦C.

Since the sensor node board includes many noisy dig-
ital components, a separate power supply was dedicated
to the magnetometers, analog to digital converter, and
voltage reference. The LM2731 boost converter brings
the battery voltage up to 8.5 V and then the ADP3333
provides the 5.0 V power line for the science instrument.

To minimize the effect of ground loops, all ground
planes are removed in the area around the magnetome-
ters. All the power supply integrated circuits (IC)
are placed as far away from the magnetic sensors and
shielded with RF shields. Due to the constraint of
space, the magnetometers are still in close proximity
with shielded inductors from the solar panels. Ground-
based calibration will include characterization of the
temperature drift and any induced currents through the
solar panels caused by the nodes rotation.

To ensure the orthogonality of the sensors after intense
vibrational forces, ceramic blocks were machined and
epoxied to the sensors.

Figure 9: Sensor Node in the calibration Helmholtz
cage test setup

Calibration Sampling in Cartesian Coordiantes
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Figure 10: Commanded directions for magnetic field
during calibration of magnetometer misalignment

II Calibration

Proper understanding of our on-orbit measurements is
only achieved by thorough calibration of each node as
it is built. From previous work with magnetometers
we realized the importance of understanding the mis-
alignment of three sampled axes and the performance of
the sensors over the entire dynamic range expected. This
section details our efforts to take enough data on each
node to ensure we can properly understand our capabili-
ties before ANDESITE is shipped.

To characterize the payload magnetometers we use
a precision controlled 1.2 meter Helmholtz cage devel-
oped by Billingsley Aerospace and Defense as seen in
Figure 9. Within the cage a non-magnetic test stand
keeps the Sensor Node in alignment as various exter-
nal fields are commanded. To coarsely characterize each
axis, we command the coils along the three body axes
of the spacecraft sweeping from -60,000 nT to + 60,000
nT in evenly space incremental steps. Holding each step
for three seconds while sampling at a rate of 30 Hz we
collect data continuously. Between each step we zero the
cage and let it settle for three seconds and check for hys-
teresis of the measurements.

The standard deviation of each sampled step gives a
useful metric to perform a weighted least squares fit of
a calibration curve for the measurements mapped to the
spacecraft body frame—positive x-axis along the long
axis of the Sensor Node and positive z-axis towards the
floor in Figure 9. The results of these fits and the associ-
ated uncertainties calculated for each axis at each com-
manded external field are shown in Figure 11. Note each
axis is able to sample with a precision less than 10 nT.

To store more data for an effort at determining the
corrections for non-orthogonality, the calibration script
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Figure 11: Magnetometer calibration for each principle coordinate of the Sensor Node body axes (top plots)
and associated instrument uncertainty converted from the analog-to-digital-converter outputs in mV to nT as

a function of commanded test field strength (bottom plot). For all figures, the x-axis is the Helmholz cage’s
commanded field strength.

then commands the coil to sweep through various mea-
surement angles that sample uniformly about a geodesic
sphere with 12 points, seen in Figure 10. The magnitudes
of each vector use the same sweep as the coarse calibra-
tion resulting in 48 data points for each axis in spherical
coordinates r, φ and θ, where r is the axis measurement
magnitude and the unit vector is determined by the coarse
calibration curves. Each axis can be fit to a spherical har-
monic expansion of degree and order 4, against the com-
manded vector from the Helmholtz cage. This allows a
mapping from the measured mis-aligned raw measure-
ments to a corrected vector measurement.

Mathematical Framework for Current Estimates
Let’s start with a very simple model for field aligned cur-
rents on a dipole directly from Ampere’s law in a mag-
netically aligned spherical coordinate system

∇× (δB) = µ0J‖ = µ0J‖B̂0

= µ0J‖(r, θ, φ)
(2 cosφ)r̂ + (sinφ)φ̂√

3 cos2 φ+ 1

The relevant parts of the curl operator in spherical co-
ordinates become (for simplicity δB = [Br, Bθ, Bφ])

∇× (δB) =
1

r sinφ

[
∂

∂φ
(sinφBθ)−

∂Bφ
∂θ

]
r̂+

1

r

[
1

sinφ

∂Br
∂θ
− ∂

∂r
(rBθ)

]
φ̂

and rewriting in matrix form

 1
r sinφ

(
∂
∂φ (sinφBθ)− ∂Bφ

∂θ

)
1
r

(
1

sinφ
∂Br
∂θ −

∂
∂r (rBθ)

)  =

µ0J‖(r, θ, φ)√
3 cos2 φ+ 1

[
2 cosφ
sinφ

]
(10)

We can then try to simplify and solve each component
individually, the components follow as

∂

∂φ
(sinφBθ)−

∂Bφ
∂θ

= µ0J‖(r, θ, φ)
r sin(2φ)√
3 cos2 φ+ 1

1

sinφ

∂Br
∂θ
− ∂

∂r
(rBθ) = µ0J‖(r, θ, φ)

r sinφ√
3 cos2 φ+ 1

Assuming only variations of any parameter in the lati-
tude angle (φ)
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∂

∂φ
(sinφBθ) = µ0J‖(φ)

r sin(2φ)√
3 cos2 φ+ 1

Bθ =
µ0

sinφ

∫ (
J‖(φ)

r sin(2φ)√
3 cos2 φ+ 1

)
dφ

Initial inspection shows that we should only expect a
magnetic deflection in the longitudinal angle (θ) as the
spacecraft flies through a current sheet that only varies
through latitude. For sanity sake, check this equation
near the pole to see a geometry where the magnetic direc-
tion is directly down—using a small angle approximation
φ→ 0 and constant current.

Bθ =
µ0

φ

∫
J‖rφdφ = µ0J‖

rφ

2
(11)

This is analogous to the solution for an infinite current
sheet in Cartesian coordinates, where rφ is the distance
in the direction perpendicular to the sheet. The variation
of the magnetic measurement mostly occurs in the lati-
tudinal direction, which informs a design choice to have
more sampling in that direction. ANDESITE therefore
was designed with that in mind and the following section
will lay out a framework for spacing the measurements
to best capture the variation.

For an arbitrary satellite-based sensor arrangement,
like ANDESITE, it is difficult to work with Ampere’s
law in the differential form consistently—similar to dif-
ficulties unstructured grids in computational physics. To
help with that lack of order, we return to the integral form
in Eq. 9. From here on we will drop the δ and assume all
measurements are the perturbations due to currents. To
make a closed loop, all that is needed is a set of three axis
magnetometer measurements Bi and the positions of the
satellites. With that, a triangle can be constructed as in
Figure 12, where rij = rj − ri is the vector difference
between satellite positions.

B3

B2

B1

r31
r12

r23

J̃

Figure 12: Arrangement for simplest application
discrete Ampere’s law

We can then write a discrete form of the integrals in
Eq. 9 in a way analogous to a finite volume numerical
scheme representation.

(
B1 + B2

2

)
· r12+

(
B2 + B3

2

)
· r23+(

B3 + B1

2

)
· r31 = −µ0J̃

|r12× r13|
2

(12)

If we have an arbitrary collection of satellites, we
can then form a collection of triangles using a Delaunay
mesh. From that mesh then calculate a set of currents
passing through the centroid of each triangle.

To interpolate, fit a Fourier series representation of
current density to the mesh. As an example, the follow-
ing assumes a 2D sampling, which is a good assumption
for a small spacecraft formation flying at the same alti-
tude.

In this scenario all currents estimated are radial and
we can fit for just a scalar representation in two local
dimensions x and y that are perpendicular to the radial
vector—where j =

√
−1, and km,n are wavenumbers

dictated by the measurement capability of the sampling
geometry.

Jmodel = 〈J〉+
∑
m,n

cmne
(jkmx+jkny) (13)

〈J〉 =
1

N

N∑
i=1

J̃i

Finally minimize the error between a model of the
current field and the measurements J̃i from Eq. 12,
where each location is defined as the centroid of the i-
th triangle that was used to calculate it: [xi, yi]

T =
(r1,i + r2,i + r3,i)/3. A cost function could be of the
form below, with additional physical constraints (such as
a divergence free current constraint shown notionally be-
low if we can construct a modeled vector field, J).

min
cnm

(
|J̃i − Jmodel(xi, yi)|2 + α|∇ · J(xi, yi)|2

)
(14)

For the rest of this paper we will just estimate the con-
vergence of J̃i into the true field as we change the ge-
ometry for a parameterized ANDESITE swarm configu-
ration.

RESULTS

To test the recovery of current density, we first set up a
simple model for spatial variations of current. Assuming
multiple wave-numbers in each direction we can use

J(x, y) = J0

∑
m,n

smne
(jkmx+jkny) (15)
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where J0 is a maximum current amplitude, here cho-
sen to be 0.2 µA/m2 and the coefficients are smn = 1
representing a white noise power spectrum where all fre-
quencies have equal contribution to field. To solve for
deflections, we need to map to a scalar potential as fol-
lows

∇2Ψ = J (16)
B = µ0r̂ ×∇Ψ (17)

Resulting in an analytical expression for B(x, y)
based on our definition of current, J(x, y). As a Fourier
series it is expressed as Eq. 18.

B = µ0J0

∑
m,n

[
jkn
−jkm

]
smn

k2
m + k2

n

e(jkmx+jkny) (18)

This deflection map, that satisfies Amperes law, is fed
through the scheme. Through use of an analytical truth,
we can gauge the effectiveness of the satellite swarm
sampling method directly before flight. An example of
a postulated swarm geometry on top of this analytical set
of fields is shown in Figure 13. The nodes of the swarm
form triangles and the current estimates are assumed to
be at the center of the triangles points T1-T7. To esti-
mate error we use a normalized difference between the
actual field and the estimated field. Then a single num-
ber for the error of the estimate is calculated by averaging
across all the points, represented by Eq. 19.

〈∣∣∣∣∣ J̃i − J(xi, yi)

J(xi, yi)

∣∣∣∣∣
〉

=
1

7

7∑
i=1

∣∣∣∣∣ J̃i − J(xi, yi)

J(xi, yi)

∣∣∣∣∣ (19)

Numerical Parameterization
We can think of the satellite swarm as a 2D linear spa-
tial filter of the current. With that in mind, it is appar-
ent to approach performance in therms of a frequency
response. By sweeping across spatial frequencies, each
axis independently, we can fully characterize the perfor-
mance. Figure 14, shows an example sweep in terms of
a spatial wavelength for the nominal formation shown in
Figure 13.

Note that ANDESITE should have better performance
in the y-direction, which intuitively makes sense because
of the higher spatial sampling density. We can also gain
insight from thinking the of the system as a high-pass
filter, where we can sample anything that has frequencies
above the characteristic lengths of the satellite spacings.
In turn, those spacings determine the bands that we can
reliably reconstruct from the measurements.

Key to this analysis is our reliance on a normalized
error. All the plots represent performance loss that oc-
curs solely due to an effective discretization error and is

Figure 13: ANDESITE formation and Delaunay
triangulation created by satellite nodes, the arrows

represent the magnetic deflection due to radial
currents represented by the color map. Positive

currents are toward the reader.

5 10 15 20

Wavelength (km)

0
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Both Directions

X Response
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Figure 14: Frequency response for the spatial filter
defined by the swarm gemoetry of Figure 13. Note

the y-axis performs better than the x-axis in
recovering the current.

agnostic of sensor sensitivity or field magnitudes. We
can therefore apply the generalized method to any spa-
tial sampling method regardless of strength or shape of
the perturbations. To inform a magnetometer design we
would need to know absolute shape, size and current den-
sity of structures we would want to find.

Taking the numerical experiment a step further, we
can tweak the in-track separation which can be deter-
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mined by our sensor node deployment times—a pa-
rameter that can be changed on orbit. Over this de-
sign space—characteristic wavelengths and separation
distance—Figure 15 shows contours of constant error.
This plot can be used to explore the design space. For
instance if a error is desired to be below 20% for 10 km
waves, then the node in-track separation should be about
2 km.

Physical Relevance
Figure 16 shows a time and length scales for various dy-
namic processes that propagate along field lines in the
local plasma. These curves come from the dispersion
relations derived using the atmospheric conditions on a
typical night side at 70◦ latitude and 500 km altitude.
ANDESITE can collect data at a rate of 30 Hz—the re-
gion of the graph not grayed out. This region in the 10-
100 km length scale includes local Alfvén waves which
encompasses the design space of the formation spacing
explored in the previous section.

CONCLUSION

Within this paper we explored the previous work towards
understanding the auroral current systems. Following the
progression to ever high resolutions from the initial data
from TRIAD to AMPERE and FAST we can see that as
the data becomes more detailed we are driven to need
measurements at smaller scales. ANDESITE was de-
signed to push the limits of spatial resolution and here
we developed a rigorous methodology to examine the
performance of satellite swarms like it. In doing so we
proved the capability of the system to resolve kilome-
ter scale phenomena that include the domain of in situ
Alfvén waves. Future work along this direction will be
to better understand the role of measurement uncertainty
in the metric defined herein. Through understanding the

uncertainty we can then better inform the magnetometer
design for future mission and rigorously examine the one
chosen for ANDESITE.
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Figure 15: Contours of constant error while varying the frequency of perturbations and the in-track
separation (y-axis spacing) of the formation.

Figure 16: Time and length scales for various dynamic wave phenomena that propagate along the field lines.
They grayed area is faster than the data rate of ANDESITE.
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