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ABSTRACT

Tool sets, algorithms and technologies developed to create value from the availability of big data have potential not
only to justify and reward the collection of sensor data from space but also to improve the quality of sensor data
collection. The 2018 HawkEye360 Pathfinder mission will demonstrate balancing constrained, space-based compute
platforms hosting sensor hardware with an approach to ground-segment data processing typical of cloud-based, Big
Data analysis to maximize the performance of payload hardware on-orbit. We present specific examples related to
the improvement of time- and frequency-of-arrival (TOA and FOA) estimation for AIS transmissions. Using a small
corpus of raw AIS data captured from commodity hardware on planes over the Chesapeake Bay, we investigate
early-prototype machine-learning models and test hypotheses as to on-orbit collection improvements. Providing
a description of the compute resources available as part of the HawkEye Pathfinder payload, we discuss system
design considerations and practical approaches to deploying payload sensor data collection enhancement as part of
an automated system for smallsat data collection, ingestion and enhancement. Typical Big Data business models
involving power-sensitive commodity hardware sensors at the periphery of a system serviced by a backbone of cloud
compute resources have evolved a number of effective open-source and academic software resources amenable to the
smallsat use case. We describe the HawkEye Pathfinder analytic software stack, focusing on how it leverages code
and concepts developed to enable Big Data processing and how those concepts extend to facilitate improved sensor
data collection as part of a mutual feedback system between space and ground processing components. Limitations
facing the application of techniques derived from Big Data analytics to the problem of enhanced payload data
collection via emitter characterization arise as part of the system design discussion. We posit ideas for mitigating
these factors through the application of predictive analytics.

INTRODUCTION

Accurate geolocation by most traditional means comes
down to measuring accurately TOA and FOA for one
or more emissions at one or more receiver locations. In
[17], the author characterizes Cramér-Rao lower bounds
for TOA and FOA measurements in terms of a signal’s
integration time, noise bandwidth, root mean square
(RMS) radian frequency, RMS integration time, and
effective input signal to noise ratio (SNR), γ. Where
TOA and FOA estimates are given by measuring corre-
lation and ambiguity peaks from two separate digitized
representations of the emission with input SNRs γ1 and
γ2, the author offers the equation
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for γ, along with the following two observations. When
γ1 ≈ γ2 and γ1 � 1 dB, we see γ ≈ γ2. On the
other hand, when γ1 � γ2 and γ1 � 1 dB, we see
γ ≈ 2γ2. Striving for as much as possible of that factor

of 2 motivates a great deal of algorithmic and logistical
complexity, especially in the context of estimating TOA
and FOA in the context of a low-powered, low-earth-
orbit (LEO) satellite mission.

Small commercial satellites present a business opportu-
nity because the size, weight and power (SWAP) con-
straints imposed mostly by launch costs correspond to
countervailing trends toward better compute efficiency at
the lesser-capable end of computing market, not the top.
Software Defined Radio (SDR) presents an attractive
mission activity because it allows for operating flexibly
within a wide frequency range. Configured such that a
wide frequency range of operation combines with the
ability to capture radio frequency (RF) emissions from
a broad footprint on the surface of the Earth in an orbit
such that the effective footprint for RF collection revisits
each coordinate frequently, smallsat SDR presents an
effective compliment to imaging platforms featuring
highly directional sensors.
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In Section II, we indicate sources of loss to our link
budget due to design choices concerning a balance of
mission objectives and cost effectiveness.

A degradation in received SNR will irreversibly limit
the theoretical lower bound for standard deviation in
estimating TOAs and FOAs of RF bursts, but equation
1 shows technique can go a long way toward making up
for added white Gaussian noise (AWGN) and the like.
Using a standard additive model for noise, η, combined
with a time series of samples, y, transmitted through a
channel and received as samples, x, we write

x[t] = y[t] + η[t] (2)

for later reference.

We can achieve as much as a 3 dB rise in effective
input SNR to TOA and FOA measurement if, rather
than correlating digitized signals x1[t] and x2[t] received
by similarly situated receivers to find TOA estimates
for the same burst, we leverage an understanding of
the signal to produce a digital copy, ŷ to approximate
the original signal y and apply correlation-based tech-
niques using ŷ and xi for i ∈ 1, 2. We would hope
SNR (ŷ) � SNR (xi) and SNR (ŷ) � 1, satisfying
the desired condition. For our exemplar signal, AIS,
a public specification makes estimating y to a first-
order approximation tractable. We know, for instance,
AIS uses GMSK which specifies a modulation index
h of .5 ([11]), and time-bandwidth product BT should
be between .3 and .5 ([15], Section 3). Like any AIS
receiver, we should have the ability to process an
AIS message and derive the underlying bits. Following
the specification for a transmitter should allow us to
generate an ideal digital copy of the original sampled
burst, stripped of noise, η, injected by the channel.
If in Section II we draw an admittedly arbitrary line
between exquisite and non-exquisite systems, we draw
another line here between exquisite and non-exquisite
software processing techniques. Specifications for real-
world communications systems include tolerances to
account for imperfections in analog hardware such
as amplifiers and filters. Commodity AIS transceiver
providers build systems to meet a price point, and the
resulting parts list can make for real-world communica-
tions, indeed. The AIS specification provides guidelines
as to ramp up and ramp down times for the amplifier,
and defining GMSK features such as BT and h need
only remain true to the specification inasmuch as a
general-purpose GMSK receiver must successfully pro-
cess the output. In Section III, we investigate attempts
to move beyond the AIS specification in composing ŷ
by attempting to estimate variation from the specified
ideal value for h and to apply that estimate to our

model for AIS transmission. Additionally, we measure
improvements to realized standard deviation in TOA
for both lab generated data and live captures, and we
estimate the complexity our processing chain accrues in
implementing estimation techniques for h.

While Section III demonstrates we can, to some extent,
overcome hardware limitations through the surgical use
of software, it does not address any of the logistics
behind accomplishing the surgery itself. If we could take
for granted an unlimited downlink channel, disinterest in
latency, unlimited compute power on the space platform,
or a rational market for data, no matter how raw, based
on the potential for value from that data, then there
might be no need to continue. Of course, none of
these assumptions holds. Operating small satellites is
an exercise in resource management and triage, and our
case study on accuracy in AIS burst arrival statistics
shows these problems need not cease once the data
hits the ground. In Section IV, we situate AIS TOA
and FOA processing within the definition of Big Data
processing. RF processing from satellite predates Big
Data by decades, but the problems Big Data imposes
on data scientists motivate solutions entirely relevant to
the problem at hand. We analyze a full-system imple-
mentation for processing AIS metadata using a stream-
processing software architecture, mapping features de-
signed for Big Data processing onto the problem of
resource-constrained AIS arrival estimation.

Recalling design choices from Section II, HawkEye360
has skewed physical properties of its satellite sensors
such that it can succeed in bringing data to bear on
the problem of focusing more highly directional sensors
such as imaging satellites. In Section V, we outline
plans to develop predictive analytics for normative ship
statistics. Furthering the theme of the paper, we show
inference need not go exclusively in one direction:
predictive models designed as input to products capa-
ble of tipping location-specific processes for partners,
customers, and other stakeholders can just as easily tip
HawkEye360 assets, making those same products more
robust. Deep insight into AIS signal externals beyond
that available through analyzing message content can
serve as a basis for rich situational awareness and
increasingly meaningful anomaly detection.

SPACE SYSTEMS

Development of space-based systems, which are inher-
ently resource-constrained and remote, invariably re-
sults in compromise between the ideal system and the
practicable one. Smallsats necessarily cope with smaller
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SWAP allowance than space-based systems generally,
and this allowance limits performance to even greater
degree. HawkEye’s Pathfinder cluster of 3 micro satel-
lites is no different. While we can certainly imagine the
perfect RF geolocation satellite cluster, we recognize
that such an ideal is not practical within the size and
budget constraints allotted to a small startup company.
Moreover, our mission forces us to make trade-offs
between global coverage and antenna directionality.

The HE360 Pathfinder cluster has an ambitious mission.
If HE360 had as its mission simply to approximate
TOA and FOA for AIS collection, then the design might
have looked starkly different. A focused mission might
require less power or enable heavier processing since our
engineers could optimize performance for one or a small
number of algorithms, perhaps going as far as to design
a custom ASIC for high-performing, high-cost routines.
We could budget for one or more frequency-specific
antennas or antennas with more directionality and gain.
As it stands, The Pathfinder mission must support many
diverse algorithms to address numerous signals ranging
from AIS to radar. This mission set requires a flexible
software framework. The SDR payload has a tunable
frequency range of approximately 100 MHz to 15 GHz.
The extremely wide frequency range necessitates a suite
of RF front ends specialized for frequency subranges
and an antenna farm including dipoles, patches, a horn
and more. We build all this into a spacecraft not much
larger than a microwave oven. Pathfinder antennas are,
generally, not very directional. This ensures that they
will see as much of the Earth as possible but comes at a
cost: more susceptibility to co-channel interference and
less gain. Similarly, the satellites’ limited power budget
bounds the processing capability that can be brought
to bear in orbit. The spacecraft are not designed to
be exquisite platforms. However, concessions made to
accommodate such flexibility are offset by processing
on-board in software and FPGA, ground processing,
and a system tying both processing segments together.
The ground segment ingests data processed on-orbit,
and feeds conclusions back to the spacecraft to form
a virtuous cycle.

CORRELATION AND AMBIGUITY PROCESS-
ING: REDUCING VARIANCE IN PEAK ESTIMA-
TION

Due to its varied mission, the HawkEye Pathfinder RF
front end will provide less than optimal frequency and
spatial selectivity for AIS processing, resulting in de-
creased SNR for RF presented to the payload processor.
This decrease in SNR is cause for concern in geolocation

processing. As given in [17], the best possible standard
deviation for TOA estimation is

σTOA =
1

β

1√
γBτ

, (3)

where, for AIS, β ≈ 12500Hz, B is the channel
bandwidth of the signal, τ is the integration time, and
γ is the effective SNR.

In addition to SNR attenuation, modulator parameter
mismatch can contribute to further losses in TOA es-
timation. In particular, when the modulation index h
used to generate the digital copy ŷ is incorrect, the
correlation result can easily take a 10 dB penalty. The
AIS standard, [3], specifies h = 0.5, nominally, but
allows for deviation from this number, so h-mismatch
is an especially important concern manifesting as a
significant implementation loss term in TOA estimator
performance.

Due to decreased link margin resulting from RF system
compromises, it is imperative for HawkEye to mitigate
any losses caused by modulation parameter mismatch in
order to live up to the promise of exquisite collection.

Motivation: Quantifying Implementation Loss

Among modulation parameters we have considered and
at ranges of deviation from specification we have ob-
served, cross-correlation performance is most sensitive
to the modulation index, h. While the very definition
of GMSK stipulates h = 0.5, in practice we see AIS
transmissions with h ranging from about 0.45 to 0.55.
Given the sensitivity of our processing to this single
parameter, we choose to process AIS as if it were a
GFSK signal.

Figure 1 shows the performance of TOA estimation for
simulated data when the TOA estimator uses ŷ generated
with a matching modulation index h; SNR is measured
as Eb

N0
.

On the other hand, Figure 2 shows the performance of
the same TOA estimator where we generate ŷ with h =
0.5. When h is mismatched, the estimator loses two to
three orders of magnitude in efficiency. The main reason
for this loss in estimator efficiency is the introduction of
accumulated phase error terms in the generated digital
copy ŷ.

Solution Approach and Simulation

Figures 1 and 2 suggest improved TOA processing can
be had by estimating h independently for each burst.
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Fig. 1. TOA Estimation Performance (Matched Modulation Index).
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Fig. 2. TOA Estimation Performance (Mismatched Modulation In-
dex).

We apply a joint-estimation approach. The prototype
algorithm is a numerical optimizer on h, TOA, and FOA
seeking to maximize the cross-correlation score.

AIS simulation blocks were written within the GNU
Radio framework. Random bits were loaded into the
payload of AIS messages, and a GFSK modulator with
BT = 0.5 and a uniform random h ∼ U(0.45, 0.55)
were used to modulate the messages. A random amount
of AWGN was added to the messages so that the SNR
varied between 10 and 40 dB, in 5 dB increments.

Figure 3 shows MAD values for the TOA estimator
described. MAD is a scaling of the median absolute de-
viation of a set meant to approximate standard deviation
for the (presumably Gaussian) distribution underlying
that set with robustness to outliers; see [14], [12]. If
we define E := {ei|ei = ti − τi} where ti ranges
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Fig. 3. TOA Estimation Performance (Estimated Modulation Index).
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Fig. 4. Modulation Index Estimation Performance.

over a set of TOA estimates and τi is the known TOA
corresponding to measurement ti, then

MAD(E) = 1.4826 median {∀i |ei|} . (4)

We choose this robust metric to tolerate occasional
numerical instabilities in the joint estimator resulting
in outlier measurements. Operationalizing this approach
will require improvements to algorithmic stability.

After outlier rejection, the joint estimator has reduced
the TOA estimator variance to roughly the same levels
as the estimator using the correct modulation index,
showing that modulation parameter estimation success-
fully mitigates the implementation loss associated with
parameter mismatch. Figure 4 shows the MAD error in
the modulation index estimates.
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Fig. 6. SNR Improvement By h.

Real Data Results

In 2016, HE360 performed airborne collection of AIS
transmitters in the Chesapeake Bay. Replaying these
recordings through an AIS processing chain, we are able
to compare TOA correlation scores using the nominal
value for h against those from the joint estimation
algorithm.

Figure 5 shows the estimated modulation index for all
AIS packets with SNR of at least 10 dB. While most
of the processed packets have h ≈ 0.5, a significant
number of packets do not.

Since SNR values can be mapped uniquely to expected
correlation peak values, the inverse of this function
can be used to estimate the recovered SNR of the
signal. The correlation values (with and without the joint

estimator) were converted to equivalent SNR values.
SNR improvements, grouped by h, are shown in Figure
6. The boxes with their horizontal lines in the plot show
the 25th, 50th, and 75th percentiles, while the whiskers
show thresholds for outliers. Outliers are shown as
blue crosses. Since the joint estimator optimizes against
correlation peak value, correlation peak value (and hence
the derived SNR measurement) will always improve as
a result of the process.

For h ≈ 0.5, the recovered SNR for a majority of
packets does not improve, but recovered SNR for a
non-trivial number of packets improves significantly (as
much as 20 dB). Optimizing over h, TOA, and FOA
jointly might allow for more precise FOA and TOA
measurements even where resulting estimates for h are
identical to the nominal value. As h deviates from 0.5,
the median SNR improvements generally increase.

These results indicate that jointly estimating h with TOA
and FOA significantly increases correlation scores and
mitigates implementation loss.

Computational Considerations

Adding another dimension to a numerical optimization
routine does not come without added computational
burden. In particular, the cross-correlation surface is not
as well-behaved across the h-dimension as it is in the
TOA and FOA dimensions. In order to cope with this,
multiple initial estimates need to be explored before
using gradient-based methods to maximize the corre-
lation score. Exploring the parameter space in this way
requires extra computation, resulting in an estimated 5-
10x increase in computation versus using the nominal
value for h.

As we will discuss in Section IV, the added computation
is too much to handle for the embedded payload com-
puter on HawkEye Pathfinder satellites. This motivates
us to explore different strategies to distribute computa-
tion between the space payloads and ground process-
ing infrastructure with a limited downlink bandwidth
between the two.

In particular, utilizing prior information about modu-
lation indices corresponding to AIS transmitters could
limit parameter estimation overhead on-orbit. Addition-
ally, the algorithm developed here has room for careful
computational improvement; further research and better
understanding of the correlation surface could lead to
some shortcuts and increase what is possible on-orbit.

McCarthy 5 31st Annual AIAA/USU
Conference on Small Satellites



BIG DATA PROCESSING FOR AIS VALIDATION

Contextualizing HawkEye Data within Big Data

The most widely accepted definition for Big Data cen-
ters on the three V’s as described by Doug Laney
in 2001 and revisited in 2012: velocity, variety, and
volume. ([4]) Roughly speaking, a Big Data problem
presents substantial challenges because of the the sheer
volume of data required as input to the solution, because
of the variety in data needed (often referring to grappling
with unstructured or variously structured data, but also
having to do with fusing differently-natured data), and
because of demands for processing data for use in real-
time. We consider enhanced AIS arrival processing from
the standpoint of this definition.

From Section III, we see enhanced AIS arrival process-
ing requires as input raw in-phase and quadrature (I/Q)
time series data sampled at above the critical rate for
the AIS signal. AIS signals have a symbol period T of
1/9600 seconds. We assume the ability to account for
Doppler on-orbit so that we can digitally downconvert
each AIS message to DC. Given the spectral efficiency
of GMSK (we estimate excess bandwidth to be .4), cap-
turing the signal at a rate of 19.2 kilo samples per second
will provide data sampled well above Nyquist. Although
12-bit in-phase and quadrature (I/Q) samples generally
provide sufficient dynamic range for RF captures, we
use 16-bit ints to correspond to existing instruction set
types for ARM and x86 processors and then rely on data
compression to make amends. Assuming every satellite
can see at least one AIS message at any given time (our
link margin for non-directional AIS collection allows
for a viable footprint of radius about 2500km), we can
set a reasonable daily estimate for data volume given
continuous full-take I/Q collection per satellite:

(19200 ∗ (2 ∗ 16)) bits/sec/channel ∗ 2 channels
∗ (3600 ∗ 24) sec/day
∗ (1/8) bytes/bit ∗ (1/2) compressed bits/bit
= 6.636 GB/day.

AIS signals are on the lower end in terms of bandwidth
among signals of interest for HawkEye360, but physical
and cost limitations at the downlink receiver put both
absolute and practical limits on the extent to which our
initial satellites can produce volumes of data. Using
the following assumptions, we derive an anticipated
budget for downlink capacity using a commercial x-band
downlink transmitter offering 3 and 25 Mbps modes of

operation.

((3 Mbps ∗ 6 passes/day) + (25 Mbps ∗ 4 passes/day))

∗ 6 mins/pass ∗ 60 s/min ∗ 1/8 bytes/bit
∗ (1− .05 overhead) = 5.04 GB/day.

Already, downlink capacity serves as a bottleneck for the
processing pipeline, and the analysis completely ignores
a host of other products HawkEye hopes to provide, be
it RF survey, raw RF capture, or processing and analysis
for a number of different specific RF emissions. As
a point of comparison, [4] suggests Twitter facilitates
sending 300,000 tweets per day, or 62.2 GB, and that
number forms an extreme lower bound for Big Data
volume: the same site suggests self-driving cars will
generate 2 petabytes per year.

Downlink rates determine an upper bound for Hawk-
Eye’s total self-generated data volume, and that upper
bound does not meet the standard for Big Data. As
regards the second V, our own data is structured: we
define for ourselves our own formats. Of the three
V’s, only velocity stands out for this case study as an
unadulterated Big Data challenge. Since base station
downlink events occur irregularly, data ingestion pat-
terns necessarily resemble a batch processing regime,
but the most valuable data comes with an incredibly
short shelf life. In some sense, HawkEye strips data of
its original momentum between collection and downlink
and has a responsibility to impart downlinked data with
velocity it originally possessed.

Strictly speaking, then, processing HawkEye-only data
does not constitute a Big Data challenge. Nonetheless,
software and stratagems related to handling Big Data
impact this use case in more ways than are related to
latency constraints. In the case at hand, two factors force
us to deal with AIS captures and associated data via a
process of down-selection. At issue is cost per bit to
downlink data, value per bit processed, and a distribution
of computational resources making it impossible in most
cases to consider doing the later without doing the
former. Software running on the edge of the HawkEye
system, at the point of RF reception, can access orders
of magnitude more data than the downlink budget for
the satellite hosting the sensor, but systems at the edge
are incompletely connected to other sensors and under-
provisioned in terms of computational resources. This
situation has echoes in writing parallelized, distributed
database lookups and in managing the flow of sensor
data from cell phones in toward service providers and
Big Data companies. Ultimately, any volumetric data
problem reduces to successful data down-selection. Even
if the Big Data landscape features ramping up data
storage and search capabilities such that hard decisions

McCarthy 6 31st Annual AIAA/USU
Conference on Small Satellites



need not be made at the point of collection, manipulating
the resulting data stores in a productive way involves
reducing the data to contextually relevant, digestible
products. For HawkEye, the forcing function putting a
premium on analysis to determine how to down-select
data is not the sheer number of records in a growing
database or the sheer number of sensors in the network,
but the limited number of bits we can bring down from
space. Deriving a mechanism to determine comparative
value among the bits available to download reveals itself
to be crucial to the value the entire system can provide.
To bound this problem, we notionally construct each
system component required for enhanced AIS collection
encompassing the entire system, space and ground.
The system turns out fundamentally to rely on context
derived from data external to HawkEye, putting the
system in contact with data sets of diverse structure
and character and forcing us to contend with Big Data
variety.

System Component Descriptions and the Payload Pro-
cessor

In constructing our system for enhanced AIS burst
collection, we begin by analyzing the value of the final
product, deducing the function and placement of the
components necessary to obtain that value in the face of
unavoidable engineering constraints. We consider how
the enhanced look at AIS processing in Section III adds
value to the data produced by a system as a whole. After
all, AIS messages nearly always include a self reported
location accurate to within GPS tolerances. A service
purporting to provide locational information orders of
magnitude worse than information already contained in
the message provides very little value. In reality, the
value proposition for processing based on AIS signal
externals rests on the potential for corruption in the AIS
message internals. Summarizing [8], AIS is designed to
be open, not secure, in order to facilitate ease of use
for collision avoidance. For a brief introduction to some
of the many AIS spoofing scenarios available to the
enterprising seafarer, we refer the reader to [6] (empha-
sizing the category of threats described by the author as
protocol-specific). In particular, even if we can trust the
entire receive chain used to process an AIS message, any
aspect of the message including position, cargo, flagged
country, destination, port of origin, heading, Mobile
Maritime Service Identity (MMSI), and weight is subject
to both intentional and unintentional falsification. Nor
does this 2014 report constitute idle speculation. In
the context of detecting illegal fishing, [9] introduces a
reality immediately evident upon examining AIS data
sets of sufficient size. Instances of MMSI numbers
used simultaneously by multiple transmitters abound.

AIS transmitters use operator input to determine MMSI
broadcast values, and evident operator error (or operator
indifference) shows up as repeated detection of MMSI
numbers such as 888888888 or 000000000. “Certainly
not all spoofing represents illegal or undesirable activity,
but it is unquestionably one method illegal fishers use to
conceal their identity and their behavior,” determines the
author in [9]. According to [10], Global Fishing Watch
collects more than 20 million AIS messages per day,
amounting to the following volume of data:

20000000 messages/day ∗ 256 bits/message
∗ 1/8 bytes/bit = 640 MB/day.

so revealing AIS spoofing fails to pose a volumetric
challenge by any reasonable standard. Still, the author
in [9] approximates .25% of AIS messages are spoofed,
and common sense suggests intentional spoofing must
infect a much lower percentage. We appeal here to
common sense because we know of no authoritative
source for statistics: catching AIS spoofers in the act is
hard. The ease with which unintentional AIS spoofing
can occur presents a layer of indirection obscuring
intentional spoofers and further rewarding their efforts.
Nor does the seemingly small quantity of intentional
AIS spoofers serve to distract attention from spoofed
AIS as a valuable source of information. It may be
that only a small percentage of all maritime behavior is
illegal, but stopping that illegal behavior in such cases
as piracy, over-fishing, human trafficking, and other
offenses presents an incredible upside. AIS provides
essentially no means of authentication in any sense, and
increasing reliance by analytics platforms on AIS as a
means of identification and situational awareness make
it all the more attractive a target for spoofing and other
attacks. For the purposes of this study, value in enhanced
AIS arrival processing stems from an ability, ultimately,
to gain insight quickly into AIS spoofing.

With respect to AIS spoofing, we begin to shape the
fundamental components of the system from the ground
up, starting with a description of the services providing
most potential value. HawkEye requires its processing
system to detect and correct for AIS spoofing such that
the resulting data may be used as though AIS provided
a trusted means for authenticating the message contents.
In extreme cases, such as during the commission of
a criminal act, the ability to discover spoofed AIS
and to report it can provide immense value, as can
improved geolocation accuracy derived from enhanced
TOA and FOA arrival processing, where that value
decays rapidly on the order of minutes following data
capture on-orbit. In such instances, forwarding data to
parties such as law enforcement or imaging satellite
services with enough accuracy and in a timely enough
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manner can mean the difference between halting a crime
in progress and letting it go unpunished. Given the
capabilities described in Section III, HawkEye has two
interconnected means to furnish the needed data at low
latency. Whether through enhanced or ordinary TOA and
FOA arrival processing, HawkEye can, for every AIS
message collected, perform an independent geolocation
of the transmitter. In so doing, HawkEye can both vali-
date the content of the message referring to transmitter
position and provide geolocation accurate enough to
track potential spoofers. The second means depends on
enhanced processing involving the modulation index, h,
and has as a byproduct of better geolocation results the
potential to detect anomalies in AIS broadcasts going
beyond transmitted location. Section I touches on BT
as well as amplifier ramp-up and ramp-down, additional
signal externals which combined with h can help to
distinguish one transmitter from another. Put another
way, in the process of sharpening geolocation results
for AIS bursts, HawkEye gains a basic emitter iden-
tification capability. If HawkEye downlinks enhanced
TOA and FOA arrival processing results along with the
I/Q collection needed to determine signal characteristics,
then HawkEye can perform an independent validation
for the reported MMSI. This conclusion presupposes
HawkEye has collected enough historical I/Q AIS burst
data to provide a statistically accurate description of
signal characteristics per transmitter. Starting from a for-
mulation of the highest-value data we wish to produce,
we have determined at least in part what data we need
from the payload processor as well as a need for an
accurate assessment of AIS transmitter characteristics
on a per-emitter basis and a requirement for detecting
and reporting AIS spoofing with low latency.

Without a means to share TOA and FOA between
receivers in a cost-effective way, the payload processors
cannot use the arrival information as input to calculating
geolocation independent of AIS signal internals, and
Section III shows analysis needed to determine bench-
mark values for such signal externals as h imposes too
great a strain on the power and computing budget to
perform routinely on-orbit. In whatever way we might
expect to use AIS processing to shed light on spoofing,
the payload processor alone cannot plausibly detect and
downlink only the relevant AIS bursts without tying into
a larger system involving processing on the ground.

What can we afford to downlink? If we derive a nominal
TOA and FOA for each AIS burst via DSP performed on
the payload computer, save only the cyclic redundancy
check value, an estimate for the burst’s SNR and the
demodulated message using an ordinary serialization
protocol (for this example, we use Protocol Buffers),

then we can downlink metadata associated with a single
message using (on average) 60.42 bytes. According to
[11], AIS divides each minute into 2250 slots of duration
26.7ms. Our estimate for a day’s metadata collection
follows, assuming we can process one and only one
message per slot.

60.42 bytes/message/channel
∗ 2250 messages/min/channel ∗ 2 channels
∗ (60 ∗ 24) mins/day = 391.52 MB/day.

Provided we can build and maintain a database of
AIS signal externals mapped to emitter MMSI (where
the mapping is not necessarily unique), we propose
taking the following course. We maintain a copy of
the resulting table on each payload processor, uplinking
deltas to the table during base station passes. During AIS
burst processing, but prior to TOA and FOA estimation,
we read the entries, indexed {1, 2, . . . , n}, in the table
corresponding to the processed MMSI. We derive arrival
estimates TOA (hi) and FOA (hi) separately for each
hi, i ∈ I := {1, 2, . . . , n}

⋃
{s}, where hs = .5 as

prescribed by the specification. For each index i in
I, we derive a confidence indicator ci by measuring
the correlation peak of the received signal against the
matched filter generated assuming hi. Along with the
metadata associated with normal processing (including
TOA (hj) and FOA (hj) for j = arg maxi∈I(ci),
we downlink j and cj , providing not only a guess
discriminating among emitters with the same MMSI
but a probability associated with that guess as well.
For very common MMSI values such as 000000000,
we forgo enhancements, settling for hs. The payload
processor may encounter a message from an emitter
as yet unprocessed by the ground segment and for
which, even if the table has an entry mapped to the
message’s MMSI, that value is not derived from the
emitter in question. In such a case, the processor will
estimate FOA and TOA using a non-causal value hj
for some j ∈ I, but the resulting estimates TOA (hj)
and FOA (hj) should prove at least as good as for hs
the majority of the time. (It is, to be precise, possible
TOA (hj) is less accurate TOA (hs), but the expected
value for the accuracy of TOA (hj) is better than the
expected value for the accuracy of TOA (hs) because
cj ≥ cs.) In such cases, we expect the value cj to
reflect the fact hj did not result from analysis performed
by RF data emitted by the emitter in question, and
weakness in a downlinked cj can serve as justification
either to prioritize future RF capture for the MMSI in
question (to better constitute the table) or as evidence
(perhaps not strong evidence) the emitter in question
is currently using a spoofed MMSI. In corner cases,
different receivers processing the same burst may select
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TABLE 1
PROCESSOR LOAD BY BURST PROCESSOR COMPONENT.

demodulation 100%
AIS burst detection 37%
TOA/FOA estimation 22.5%
resampling 22%
matched filter generation 4 %
total compute resources occupied 66.4%

different values for j. Again, TOA and FOA should not
suffer, on average, versus using the process for normal
metadata processing since the matched filter used to
generate TOA and FOA correlates at least as strongly
with the received burst as does the matched filter derived
from hs.

To determine the the feasibility of such a mechanism,
we start with the total number of emitters possible.
According to [5] there existed in 2012 a total of 104,304
propelled merchant ships weighing 100 gross tons or
more, whereas [1] cites the existence of more than
650,000 total AIS emitters (including fixed position
emitters such as light houses and port entries). Settling
on an estimated number of 500,000 total RF emitting
vessels, the cost in memory allocation to store a unique
putative float value for h corresponding to each emitter
is only 2 MB. Doubling that number to account for
MMSI multiplicity, the entire table should fit easily into
the 1 GB of RAM available to the payload processor
(a Zynq-7000 series SoC) alongside all other memory
requirements. Nor do repeated lookups into a 500,000-
size table pose any real challenge, even to an aging dual-
core ARM clocked at under 1GHz. The downlink budget
expands to 423.92 MB/day assuming we represent each
cj as a float and each j as an unsigned char. The
processing overhead for AIS messages increases on-
orbit.

Demodulation occupies the largest share of CPU re-
sources, and we express all components as a percentage
of demodulation resource occupation in Table 1. (Note:
total compute resources occupied assumes processing
for both AIS channels under a projected model for
reception of AIS messages on-orbit in Table 1.) In order
to operate in enhanced metadata processing mode, we
repeat matched filter generation and TOA/FOA estima-
tion |I| times for each detected burst. Carrying forward
our assumption as to the multiplicity of MMSIs, |I| = 3,
so we see an increase in compute resources of 28.6%
versus the normal metadata processing mode. Budgeting
for the increased computational load for enhanced pro-
cessing, we would anticipate 85% occupation. We caveat
this number with several observations. Our estimates
for overall performance rely on several implementation

details for which a handful of candidate solutions exist.
The most conservative implementation brings the CPU
resource occupation for AIS burst detection relative to
demodulation up to 75%, and operating in normal pro-
cessing mode occupies 80% of total compute resources.
Operating in enhanced processing mode would demand
99.0%. The payload processor requires some overhead
in order to remain responsive to incoming commands
and to allow for variation in computational load without
risk of dropping data at the point of ingest. In flight, the
payload processor will accommodate a number of low-
level processes not reflected in these CPU occupation
estimates. Whereas initial estimates on the order of
85% CPU occupation suggest we could operate full-
time in the proposed manner, the thin margin for error
evident in our estimates leads us to consider a further
wrinkle. If we have underestimated |I| or overestimated
our eventual algorithmic performance, our processing
will prove unsustainable. As such, we consider a hy-
brid approach. Enhanced metadata processing would be
standard operating procedure, but background processes
would monitor compute overhead. Above a threshold
percentage, the process would revert to normal metadata
processing. Accepting this modification, building and
maintaining a database for AIS externals appears to
present the greatest barrier to bootstrapping from a
mode allowing collection using only normal metadata
processing to a mode combining normal and enhanced
metadata processing, harnessing gains in TOA and FOA
estimation described by Section III.

Already, we have estimated the downlink cost associ-
ated with full-take I/Q AIS burst capture versus meta-
data collection, just as we have described our primary
motivation to incur the added cost. Namely, full-take
I/Q collection allows us to estimate AIS modulation
parameters specific to the emitter of each burst serving
a dual purpose: parameters found to be incongruous
with parameters associated to the reported identity of
the emitter provide evidence of AIS spoofing, and all
collected estimated parameters help to establish a base-
line against which we can compare future collections
for incongruity. As our downlink budget does not allow
for sustained full-take RF collection, emphasis falls on
targeted RF collection: down-selecting from among all
bursts which to downlink as full-take RF. We focus here
on down-selecting based on MMSI and statistics related
to modulation index h. Targeted collection within the
HawkEye system presupposes a ground-based target-
ing algorithm, but selection occurs on orbit such that
limitations pertaining to the payload processor apply
generally to the process of deriving selection criteria.
Presented with an AIS burst, the payload processor
must extract features from the data using processes from
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among those fitting within the budget for the processor’s
computational load. We recycle numbers corresponding
to the processing subcomponents in Table 1, as the
results of those processes can be used as features for
burst selection.

At a computational expense over and above AIS burst
detection, the processor can determine the MMSI asso-
ciated with a burst via demodulation, and our discussion
of enhanced metadata processing shows TOA and FOA
estimation can provide statistics reflecting transmitter-
specific characteristics such as h. We assume the pro-
cessing load associated with deriving features related
to h it is exactly the load associated with enhanced
processing. Referring again to Table 1, if we can get
away with extracting the MMSI only, we project having
to occupy 56.91% of compute resources in order to
perform targeted RF collection. Nor does this processing
go to waste for deselected bursts. While performing
targeted RF collection, the processor can and should
perform TOA and FOA estimation as per our combina-
tion of normal and enhanced metadata processing. The
payload processor need not repeat execution of burst
processing components needed for TOA and FOA esti-
mation already performed as part of feature extraction.

In terms of the value proposition outlined above, op-
erating via targeted RF collection succeeds or fails
based on the algorithm used to target certain bursts
among all of those detected. Aligning the workings
of the targeting algorithm with the dual goals of full
RF collection, we begin to define how the algorithm
must operate. First and foremost, the targeting algorithm
should attempt never to omit collection for a burst
likely to have resulted from spoofing. Second, burst
downlink should take place in such a way that prioritizes
bursts most likely to strengthen the algorithm used to
achieve the first and cardinal goal. To remain sensitive
to payload processing constraints, we design a system
with two layers, one corresponding exclusively to MMSI
such that burst selection may take place subject to
MMSI fitness alone. At this juncture, historical AIS data
comes fully into play, as do data and analysis from a
number of sources with various interests in the shipping
industry and other aspects of maritime behavior. To
every MMSI m ∈ M := {0, 1, . . . , 999999999}, we
assign a conditional P (S|m) in the following (simple)
manner, where P (S) is the prior probability for any
burst that the transmission is spoofed. First, a number
of organizations maintain watch lists associating certain
vessels (easily associated with MMSIs via sites such
as MarineTraffic) with having demonstrated prior bad
behavior. Trygg Matt tracking ([2]), a searchable site
dedicated to tracking illegal fishing behavior is one

example. This site provides context for each listing in-
cluding organizations responsible for flagging the vessel
and historical listing and de-listing status such that a data
ingestion tool could easily instrument a mechanism for
varying priority among MMSIs on the list. We combine
externally-sourced information with observations such
as the fact that certain MMSIs, simply because of their
structure, indicate spoofing (often of an unintentional
nature). Essentially, we build a black list for in-depth
RF collection, assigning probabilities to each entry using
domain knowledge. Casting the black list in terms of
probabilities serves to limit collection based on reason
rather than random deselection in cases where downlink
or computational processing resources cannot keep up
with demand.

Bringing historical AIS data to bear on MMSI pri-
oritization requires more sophistication. A recent ar-
ticle, [16], captures basic principles by which histor-
ical (and constantly updating) AIS data provided by
a number of terrestrial and satellite processors can
serve to prioritize full RF collection through pattern
recognition and anomaly detection. In [16], the author
references a search for gaps in vessel movement records
indicating with some likelihood a period of “going
dark,” or disabling AIS transmission, and combining this
behavior with evidence of another established fishing
vessel pausing in the area for long periods of time.
Global Fishing Watch engineers posit such behavior
can indicate a likelihood (not a certainty) of transship-
ping occurring. Again, behavior recognition techniques
depend to large extent on domain knowledge. Orga-
nizations have succeeded in identifying illegal fishing
and other bad behavior as documented in [16], and
industry insiders can describe identifiable behavior, but
deep learning and other methods leveraging automated
feature extraction remain out of reach owing to a
paucity of training data. Anomaly detection, used in
conjunction with pattern recognition or independently,
provides still more input to the burst targeting algo-
rithm. Most behavior patterns indicate bad behavior
only in certain contexts. Within the context of the
success story in [16], ships may go dark regularly
to avoid detection by pirates. Anomaly detection can
provide powerful leverage to discern between contexts
for a single recognized pattern without appeal to expert
knowledge (assuming the targeted behavior pattern lies
outside the normal range of all behavior). Applying
regression analysis to behavior pattern detection using
samples of geospatially similar historical data can help
to determine outlier status. If ships commonly go dark in
waters typically plagued by pirate activity, then behavior
pattern detection within that geospatial context should
happen regularly. Extending this line of reasoning, any
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anomalous behavior might warrant further investigation
via full-take RF analysis. Moving in this direction,
HawkEye has experimented with historically anomalous
vessel-type reporting in AIS messages. A near-limitless
supply of labeled data exists for this problem, making it
possible to deploy machine learning and even machine
learning with automated feature selection. Essentially,
these methods train a model to recognize vessel type
independent of the reported vessel type value using
time-contiguous collections of AIS position data as
input. The resulting model, a classifier, can come to
a probabilistically weighted assessment of vessel type
and provide a posteriori evidence of vessel-type spoofing
conditioned on the reported type. Each behavior pattern
recognition and anomaly detection scheme runs within
the ground architecture using a continuously updated
feed of AIS data, periodically finding events based on
messages from one or a handful of MMSIs m, and
updating P (S|m) accordingly. Finally, we take into
account the health of our own data archive. For any m
for which we lack any or recent RF data, we prioritize
collection for that MMSI by manipulating a second
probability P (F |m) conditioned on m. Here P (F ) is
the prior probability associated to HawkEye providing
a false identification for any burst given the basic emit-
ter identification capability described above. Weighting
P (S|m) and P (F |m) according to relative values wS

and wF associated with detecting AIS spoofing and
HawkEye database enrichment respectively, we derive
a priority Pri (m) := wS ∗ P (S|m) + wF ∗ P (F |m).

The second layer for targeting burst collection requires
on-orbit enhanced metadata processing. Recalling nota-
tion from Equation 2, we have already outlined much
of the basic premise: for each burst y, we demodulate
to find MMSI m and estimate SNR (y) by finding

Cm(y) = max{h,BT,ru,rd}
(
ŷ{h,BT,ru,rd} ? y

)
. (5)

Here ru is a single real variable parameterizing AIS
burst ramp-up, rd is a single real variable parameterizing
AIS burst ramp-down, ŷ{h,BT,ru,rd} is the matched filter
generated from y using the stated signal parameters,
and ? denotes cross-correlation. Theoretically, SNR is a
function of E (x ? y), so we apply that function to derive
our estimate Γ̂(y). We assume each physical transmitter
with MMSI m produces a distinct distribution, and we
analyze the resulting mixed Gaussian distribution by
sampling:

Hm(y) = (6)

arg maxh

(
max{h,BT,ru,rd}

(
ŷ{h,BT,ru,rd} ? y

))
.

Using standard statistical methods, we estimate for each
m the expected value and variance for each component

of the mixture. For any m, it is possible the correspond-
ing mixture is unimodal or has fewer modes than the
cardinality of the mixture. In [9], the author gestures
towards methods making it possible to determine from
historical AIS data the cardinality of the mixture model,
and these same techniques combined with RF burst
collection can help to indicate precisely which sub-
mixtures contribute to single modes in the resulting
distribution. Appealing to Figure 5, we project it may be
difficult to separate many of the underlying distributions,
but we see plenty of outliers such that for some values
of m the distribution here described may provide quite
a lot of leverage. The resulting expected values become
{hi|i ∈ I\s}. For each y, we then determine i(y) ∈ I\s
such that y is most likely to have come from the
distribution with expected value hi(y). We can then
determine

Cm(y, i(y)) = (7)

max{BT,ru,rd}

(
ŷ{hi(y),BT,ru,rd} ? y

)
.

Finally, we normalize this value to some reference
SNR to obtain Cm(y, i(y)), exploiting the relationship
between E (x ? y) and SNR (y). For each i ∈ I \ s, we
calculate var

(
Cm,i

)
where

Cm,i :=
{
Cm(y, i(y))|i(y) = i

}
, (8)

and send these values to the spacecraft.

On orbit, for each burst y, we calculate an new estimate
Γ(y) for SNR (y) by analyzing cluster variance during
the demodulation stage. To review, SNR (y) is the SNR
of received signal y, and Γ̂(y) is the estimate for
SNR (y) derived from the correlation value between
y and a matched filter for y. The estimate Γ(y) is
distinct from Γ̂(y) and is independent of matched-filter
correlation. Given Γ(y), we can determine a normalized
expected value for correlation: C(y) Using enhanced
metadata processing, we calculate ci for each i ∈ I \ s,
and we normalize that value with respect to Γ(y) to
derive ci. We then find the deviation: di(y) = C(y)−ci.
Since Γ(y) is independent of matched-filter correla-
tion, we may use di(y) for hypothesis-testing against
the distributions described by measurements var

(
Cm,i

)
.

Setting a threshold in terms of variance, we trigger if
di(y) is above the threshold for each i ∈ I \ s.

Of course, compute overhead for the second layer of
targeted burst collection is essentially identical to en-
hanced metadata processing. In order to guard against
insufficient processing overhead, we change the position
of the process monitoring compute overhead within
our system: rather than serving as an arbiter between
normal and enhanced metadata processing, we position
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Fig. 7. Payload Processor Logical Flow

it to serve as an arbiter between the second layer of
targeting for processing between targeted RF collection
and normal metadata processing. In final summation,
logical flow for operation on the payload processor
should follow the logic in Figure 7.

Ground Software Deployment

The system described in Subsection IV-B places three
general demands on the ground processing segment.
First, it must use data downlinked from the payload
processor to detect AIS spoofing with as little latency as
possible. Improved geolocation accuracy resulting from
estimating TOA and FOA with tighter than ordinary
variance makes it possible to determine a spoofer’s loca-
tion of origin and to project with higher likelihood future
locations, but advantages gained through painstaking
effort throughout the processing chain perish quickly.
Those same projections grow increasingly less accurate
with the passage of time. Second, the system must host
a variety of persistent processes requiring differently
sourced and differently structured data. We refer here
to externally sourced data feeding MMSI blacklisting,
behavior recognition, and anomaly detection processes
running to support a first layer of targeting for burst
RF collection. These same processes or analogous ones
help to provide context and amplify value for AIS
spoofing detection on the ground. Some processes re-
lated to training for machine learning and DSP demand
appreciable, sometimes distributed and heterogeneous
compute resources, and managing those resources in
production becomes a serious issue. Third, we expect to
have to ingest some of these data sources in real time,
continuously.

To meet these demands, HawkEye searches for value
in software built or supported by organizations facing

Fig. 8. Stream Processing Versus Data Lake Processing. ([13])

challenges of a similar nature, often at scales many
orders of magnitude greater than those we anticipate
HawkEye to face. This strategy depends in large part
on those organizations releasing their products to open
source communities as part of a larger strategy to share
the costs of development and maintenance, and the
past decade has seen a trend among high-valuation
companies, employing vast numbers of capable develop-
ers, providing business- and Big-Data-oriented software
under the Apache License, the GNU Public License, the
MIT License, and other, similar terms. We highlight a
handful of these packages indicating their applicability
to our processing situation.

In order to support low-latency analysis of our own data
at the point of ingestion, we use a stream processing
approach built from the MongoDB and the Apache
projects Kafka and Storm. In Figure 8, we reproduce a
graphic from [13] to summarize the role of stream pro-
cessing within the larger context of data analysis, focus-
ing on expectations in terms of latency. Kafka manages
data movement using a publish/subscribe model opti-
mized for throughput and inherently capable of distribu-
tion, fault tolerance and parallelism. Each data ingestor
in the HawkEye architecture, including lightweight pro-
cesses to handle data downlinked in batches from base
station passes, inherits from a Kafka producer class
and publishes to a topic, making its data stream gen-
erally available to any other networked process in the
HawkEye architecture. Every networked process may
subscribe to one or many Kafka topics for real-time data
input or perform lookups in MongoDB for access to
static data. Storm serves as the platform for stream pro-
cessing, coordinating compute resources across servers
to exploit parallelism in the set of processing we know
we must perform on every atom of data collected. Storm
spouts source data by inheriting from a Kafka consumer
class and subscribing to the topic(s) providing data to
processing units (bolts) acting downstream of the spout.
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Spouts and bolts have parallelism such that a parallelized
spout can become part of a consumer group working
in unison to consume data from partitions maintained
for a single topic in the Kafka broker, enabling faster
data ingestion. MongoDB is a NoSQL store capable
of grouping dissimilarly structured data representable
as JSON objects into searchable collections. Thus far,
data in the HawkEye universe usually is structured, but
similar data from different sources may adhere to dif-
ferent structures. MongoDB sacrifices some structured
efficiency of SQL databases for geospatial search such
as PostGIS but relaxes some of the difficulty associated
with data normalization.

In terms of latency demands, the software pipeline ad-
dresses needs in terms of data movement (both between
the data ingestors and the Storm spouts through Kafka
and then within Storm itself) and scalable compute
resources delivered to meet that data. Downlinked data,
in this case data related to individual AIS bursts, breaks
apart easily into individually digestible units. For the
most part, even expensive DSP and geolocation pro-
cesses can happen in parallel such as to take advantage
of easy-to-parameterize parallelism in a Storm topology.
Time to process an entire downlink batch becomes a
simple function of the number of actors we choose to
deploy within Storm and (in extreme cases) the number
of Kafka partitions used for the topic. Whether within
Storm or not, the assortment of processes running on the
ground have persistent, centralized access both to real-
time ingested data and to the output of other processes
through Kafka, so what might otherwise become a fully-
connected web of directed network connections between
the deployed processes, each one requiring care and
feeding, reduces to thoughtful deployment of a single
communications hub with bidirectional spokes reach-
ing out to services as necessary. NoSQL data storage
smooths wrinkles caused by differently structured data
or data that changes structure over time such as by
updates to REST APIs from which we stream data such
as MMSI watch lists. Finally, fault tolerance among
distributed deployments for each of Kafka, Storm and
MongoDB allow for guaranteed persistence and reliable
real-time streaming. It’s important to note infrastructure
does not, in and of itself, provide data analytics. On
the other hand, among the problems we face doing data
analytics (and evidently among the problems large Big
Data companies face), infrastructure and deployment
make up enough of the practical challenges to warrant
care and scrutiny in the process of tool selection and
integration.

FUTURE DIRECTIONS: PREDICTIVE ANALYT-
ICS AND RF DATA PROCESSING

At a shallow level, we discuss three directions for
processing downlinked data likely to change the ef-
fectiveness of the system discussed within this paper
and other aspects of engineering at HawkEye. With our
discussion of h, we broach the topic of emitter identi-
fication for AIS collection, but even for AIS processing
in isolation, the problem can become more complicated,
interesting and rewarding with the addition of more data
and more computation. Here we bring to light some
of these complications. As a separate topic, we largely
ignore in previous sections the plasticity of identifying
parameters such as h. It may be true that the statistical
distribution for h estimated from a single transmitter
has everything to do with details of production runs for
physical components used to build that transmitter, or it
may be that the parameters also depend on the situation.
What is the temperature at the time of transmission?
What is the humidity? Finally, we have largely avoided
a topic of obvious interest to us, maritime positional
predictive analytics, in part to better focus on the more
scoped topic of TOA and FOA estimation. We mention
the problem here through the lens of the paper’s more
specific areas of interest.

In Subsection III, we describe estimating h from I/Q
data as a joint estimation process involving the variables
h, TOA, and FOA, and we mention the addition of the
parameter h influences the solution space in ill-behaved
ways. In Equation 5, we cheat a bit further toward the
same destination: here we see a joint estimation process
involving h, BT , ru, rd, TOA, and FOA. Generally,
we would expect the addition of more variables to the
estimation to require increasingly informed approaches
to maximizations and other optimizations related to
those variables, and we would expect the compute
requirements to rise sharply. We face these problems as
we push our emitter identification capabilities to be more
and more reliable. We posit differentiating transmitters
by h will separate transmitters statistically, and Figure 5
suggests we are both correct and incorrect. The param-
eter h provides valuable information, but a richer space
of higher dimensions may provide greater desirable sep-
arability. Although the eyes water somewhat at the data
requirements, it is possible to imagine building an RF
database complete enough to investigate unsupervised
learning techniques such that we relieve ourselves of
having to select features providing maximal separability
among transmitters and rely instead on neural nets and
clustering algorithms to process raw RF bursts and learn
better sets of features than the ones we propose.
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We should have the capability to investigate emitter
identification parameter plasticity much sooner. Once
on-orbit, a relatively modest RF database in combination
with live geospatial weather feeds will allow us to
examine situational signal parameter estimation with
some precision. With this information, we could produce
feedback to on-orbit collection making TOA and FOA
estimation still more accurate. The table of descriptors
for the mixture of distributions of values for h among
different MMSIs could grow to include functions mak-
ing those descriptors a function of predictable weather
phenomena. By providing weather projections to the
satellite during base station passes, we would provide
the payload processor with tools to leverage weather-
specific values for putative signal parameters as input
to the matched-filter generation process. At the risk of
wild speculation, there is room for feedback to flow
in the other direction. If we can positively identify an
emitter and estimate signal parameters such as h, then
we can match our estimates with expectations given
certain weather conditions, essentially reading subtle
deviations in h from expectations like a thermometer.

Like the rest of the world, HawkEye sits at the receiving-
end of nearly-live-updating information about vessel
locations derived from both satellite and terrestrial col-
lectors. Unlike the rest of the world, once in orbit,
HawkEye will have access to shared views of RF
emissions captured from vessels at multiple receivers
in space with different ephemera. With this exposure
to data, HawkEye should have a good vantage point
on predicting near-term vessel movements in consid-
erable detail. Leveraging such a capability to perform
anomaly detection stands out as an obvious application,
but we can use the same capability to inform payload
processing as it undertakes to target RF burst collection
and expensive on-orbit estimation processes. At the very
least, ground processing could provide time-windowed
white lists of MMSIs expected in the RF footprint for
AIS collection between base station passes providing
statistically-backed evidence to targeting mechanisms in
space concerned with, say, avoidance of collection for
vessels behaving ordinarily.

Creating a high-quality data feed of unique informa-
tion given a program of smallsat engineering can be
rewarding and even game-changing, though rarely is it
easy. It’s much easier to take such a data feed and apply
analysis before passing the results to the next processor
down the line, never having to consider the data’s final
destination. Focusing on instances where HawkEye is its
own data analytics customer forces a kind of economy
in considering how derived data may be used to make
processes better and serves as a healthy reminder to

employ empathy when delivering data to others.
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