
McComas 1 31st Annual AIAA/USU 

  Conference on Small Satellites 

SSC17-II-1 

OpenSatKit Enables Quick Startup for CubeSat Missions 
 

David McComas 

NASA Goddard Space Flight Center 

8800 Greenbelt Road Greenbelt, MD 20771 

301-286-9038 

david.c.mccomas@nasa.gov 

 

Ryan Melton 

Ball Aerospace & Technologies Corp. 

1600 Commerce St., Boulder, CO 80301; 303-939-6771 

rmelton@ball.com 

 

 

ABSTRACT 

The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether it’s a large 

or small satellite.  Even getting started can be a monumental task.  Every satellite mission requires three primary 

categories of software to function.  The first is Flight Software (FSW) which provides the onboard control of the 

satellites and its payload(s). Second, while developing a satellite on earth, it is necessary to simulate the satellite’s 

orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real 

environment.  Finally, the ground has to be able to communicate with the satellite, monitor its performance and 

health, and display its data.   

OpenSatKit provides these three software components in an open source software package. It combines NASA’s 

Core Flight System (cFS)1,2, NASA’s 423 spacecraft dynamics simulator, and Ball Aerospace’s COSMOS4 ground 

system into a system that can be deployed and operational within hours. OpenSatKit is designed to simplify the task 

of integrating new FSW applications and an example Raspberry Pi target is included so users can gain experience 

working with a low-cost embedded hardware target.  All users can benefit from OpenSatKit but the greatest impact 

and benefits will be to SmallSat missions with constrained budgets and small software teams. 

OPENSATKIT OVERVIEW 

The Core Flight System (cFS) is a flight software 

(FSW) architecture that provides a portable and 

extendable platform with a product line deployment 

model1,2.  As an open architecture, the cFS can be 

challenging for new users to configure and deploy.  The 

OpenSatKit addresses these issues by providing a fully 

functioning flight-ground system that runs on a desktop 

computer. The starter kit components are shown in 

Figure 1.  Ball Aerospace’s COSMOS, a user interface 

for command and control of embedded systems, is used 

as the ground system.  The cFS running on Linux 

provides a desktop FSW component.  The 42 Simulator 

provides a simulation of spacecraft attitude and orbit 

dynamics and control.  All of these components are 

freely available as open source software. 

 

 

 

Figure 1 – Starter Kit Block Diagram 

Starting with an operational flight-ground system 

makes the FSW developer’s job much easier.  

Developer’s can focus on tailoring the kit’s cFS 

components to their needs, adding new mission-specific 

applications, and porting the cFS to their target 

platform.  

mailto:david.c.mccomas@nasa.gov


McComas 2 31st Annual AIAA/USU 

  Conference on Small Satellites 

The cFS provides a significant portion of a mission’s 

FSW. On recent National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center 

(GSFC) missions using source lines of code (SLOC) as 

a metric and excluding the operating system, the cFS 

has provided about a third of the FSW. Much of the 

functionality provided by the cFS is based on decades 

of FSW experience.  This functionality can be very 

beneficial to inexperienced teams because they may not 

even recognize that they may need some of the 

functionality provided by the cFS, especially the 

inflight diagnostic and maintenance features. 

The starter kit can also serve as a cFS training platform. 

It provides demonstrations to highlight common cFS 

features and it contains a tool for automatically creating 

a “Hello World” application.  Since it is freely available 

and easy to install, it can be used as a platform for 

academic projects. 

CORE FLIGHT SYSTEM  

Figure 2 shows the cFS architecture. Two prominent 

features are the Application Program Interface (API)-

based layers and the definition of an application as a 

distinct well-defined architectural component.   

 

Figure 2 – cFS Layered Architecture 

The cFS defines 3 layers with an API between each 

layer.  Layer 1 supports portability by decoupling the 

higher levels from hardware and operating system 

implementation details. All access to the platform is 

controlled through two APIs: the Operating System 

Abstraction Layer (OSAL) and the Platform Support 

Package (PSP).     

Layer 2 contains the core Flight Executive (cFE) that 

provides five services that were determined to be 

common across most GSFC FSW projects.  The core 

services include a Software Bus (inter-app messaging), 

Time Management, Event Messages (Alerts), Table 

Management (runtime parameters), and Executive 

Services (startup and runtime resource management).   

The Software Bus provides a publish-and-subscribe 

Consultative Committee for Space Data Systems 

(CCSDS) 6 standards-based inter application messaging 

system that supports single and multi-processor 

configurations. Time Management provides time 

services for applications. The Event Message service 

allows applications to send time-stamped parameterized 

text messages. Four message classes based on severity 

are defined and filtering can be applied on a per-class 

basis. Tables are binary files containing groups of 

application defined parameters that can be changed 

during runtime. The table service provides a ground 

interface for loading and dumping an application’s 

tables. Executive Services provides the runtime 

environment that allows applications to be managed as 

an architectural component. All of the services contain 

tunable compile-time parameters allowing developers 

to scale the cFE to their needs. 

The APIs in Layers 1 and 2 have been instrumental in 

the cFS’ success across multiple platforms and the cFE 

API has remained unchanged since the launch of the 

Lunar Reconnaissance Orbiter in 2009.   The APIs, 

their underlying services, and the cFS build tool chain 

provide the architectural infrastructure that make 

applications an explicit architectural component. A cFS 

compliant application will run unchanged regardless of 

the host platform. The application layer contains thread-

based applications as well as libraries (e.g. linear 

algebra math library) which can be shared among 

multiple applications. New applications can easily be 

integrated into the build system and even dynamically 

added/removed during runtime. 

As shown in Figure 2 all of the source code has been 

released as open source. The code is managed by a 

multi-NASA Center configuration control board (CCB) 

that ensures that the application context will evolved in 

a controlled manner. 

cFS Application Context 

The application layer is where the bulk of the cFS 

scalability and extendibility occurs. Users create new 

missions using a combination of existing cFS compliant 

apps (partial or complete reuse) and new mission-

specific apps.  Just as the cFE provides common FSW 

services there is a set of apps that provide common 

higher level functional services. Figure 3 shows the 

minimal context for a user app on a single processor 

system. Three ‘kit’ apps provide the higher level 

services. 



McComas 3 31st Annual AIAA/USU 

  Conference on Small Satellites 

 

Figure 3 – User Application Context 

 

Apps must have the ability to receive commands from 

and send telemetry to the ground system. The 

Command Ingest app receives commands from the 

ground and sends them on the software bus. The 

software bus uses the command message identifier to 

route the command to the app that has subscribed to the 

message id.  An app also generates one or more 

telemetry packets and sends them on the software bus. 

The Telemetry Output app uses a table to determine 

which message ids to subscribe to and how often to 

forward them to the ground system. 

Users have multiple mechanisms for how to control the 

execution of an application.  The scheduler app 

provides a time synchronized mechanism for 

scheduling application activities.  The Scheduler app 

uses a table to define time slots for when to send a 

message that users can use to initiate an activity.  

Activities can be scheduled to occur faster or slower 

than 1 second. Even if an app’s execution is data driven 

(.i.e. pends for one or more data packets to start its 

execution) it is often convenient to use the scheduler as 

control mechanism for when to send time-based 

housekeeping telemetry. 

42 SIMULATOR 

42 is an open source software package that simulates 

spacecraft attitude and orbital dynamics and control. 42 

is design to be both powerful and easy to configure and 

run. It supports multiple spacecraft anywhere in the 

solar system and each spacecraft is a multi-body model 

that can be a combination of rigid and flexible bodies.   

42 consists of a dynamics engine and a visualization 

front end.  The two components can run on the same 

processor, different processors, or just the dynamics can 

be run without visualization. 

 

Figure 4 shows the processing flow of the 42 simulation 

models.  The Ephemeris Models determine object 

(spacecraft, sun, earth, etc.) positions and velocities in a 

particular reference frame. This information is input to 

the Environmental Models that computes the forces and 

torques exerted on each object. The ephemeris and 

environmental data is read by the Sensor Models. The 

FSW algorithms read the sensor data, estimate states, 

run control laws, and output actuator commands.  The 

Actuator Models compute control forces and torques. 

The forces and torques from Environmental Models and 

Actuator Models are input the Dynamics Model that 

integrates the dynamic equations of motion over a time 

step. The new states are fed back to the Ephemeris 

Models and the simulation process is repeated.  

  

 

 

 

Figure 4 – 42 Simulator 

The dashed Socket Interface box in Figure 5 has been 

added to the 42 simulator for the OpenSatKit and 

replaces the FSW Algorithm box.   The FSW Algorithm 

App running on the cFS implements the 42 FSW 

algorithms. The I/O App communicates with the new 

42 Socket Interface to transfer sensor and actuator data 

between 42 and the cFS platform.  42 is command line 

driven which allows it to be controlled by and external 

program such as COSMOS.  This control is not shown 

in Figure 4. 

COSMOS 

Ball Aerospace COSMOS is an open source command 

and control system that can be used to test and operate 

any embedded system, from a single board to a 

complete satellite.   COSMOS is made up of a 

collection of 15 tools that provide functionality such as 

automated procedures, real-time and offline telemetry 

display and graphing, logged data analysis and comma 

separated variables (CSV) extraction, limits monitoring, 

command and telemetry handbook creation, and binary 

file editing. 



McComas 4 31st Annual AIAA/USU 

  Conference on Small Satellites 

 

The following diagram shows how the COSMOS 

system is organized.   At the heart of the real-time 

system is the Command and Telemetry Server.  All 

commands and telemetry packets flow through the 

server to/from the other modularly designed tools that 

make up COSMOS.  This ensures that all interaction 

with the targets (typically a satellite and a set of GSE 

hardware), is logged.    

 

 

 

Figure 5 – COSMOS Architecture 

 

 

 

For OpenSatKit, COSMOS has been preconfigured to 

communicate with the cFS and the 42 Simulator over 

TCP/IP.  Out of the box, you have a set of COSMOS 

test procedures ready to execute, telemetry screens to 

display data from both systems, and the ability to 

monitor and analyze all the telemetry in the system.  

The full COSMOS functionality is ready to go and 

you’ll immediately have a working user interface for 

the system you are designing.  

 

 

Figure 6 – COSMOS Tools 

 

For more information, please see http://cosmosrb.com. 

OPENSATKIT FEATURES 

The OpenSatKit is distributed with instructions for 

creating a Linux virtual machine1. OpenSatKit is started 

by launching COSMOS from the cfs-kit/cosmos 

directory.  A customized COSMOS Launcher GUI 

appears that is the standard COSMOS Launcher with 

the addition of a cFS Starter Kit button as shown in 

Figure 7.  When you click the cFS Starter Kit icon 

COSMOS’ Command and Telemetry Server and 

Telemetry Viewer tools are launched since they are 

required by the kit.  The OpenSatKit main page shown 

in Figure 8 is also opened. 

 

http://cosmosrb.com/


McComas 5 31st Annual AIAA/USU 

  Conference on Small Satellites 

 

 

Figure 7 – Custom COSMOS Launcher 

 

 

 

 

Figure 8– Starter Kit Main Page 

 

The main page layout reflects the primary goals of the 

kit: provide a complete cFS system to simplify cFS’ 

learning curve, simplify application development and 

integration into a cFS system, and assist in porting the 

cFS to a new platform.  The main page has two tabs: 

Home and Demo.  The Home tab provides buttons to 

perform all of the kit’s functions.  The Demo tab 

provides pre-configured demonstrations for most of the 

Home tab’s functions. 

The Home tab is divided into four sections: System, 

cFS-Functions, Kit-Tools, and Event Messages. The 

System section allows the user to start the cFS and 

perform some simple system level operations to ensure 

that the system is functioning properly.  Each button in 

the cFS-Function section opens a command and 

telemetry page that allows the user to focus on a 

particular cFS functional activity that requires one or 

more apps.  For example, the File Management page 

(see Figure 9) is used to manage onboard 

directories/files using the File Manager (FM) app and 

transfer files between COSMOS and the cFS using the 

Trivial File Transfer Protocol (TFTP) app.  The Demo 

tab contains a demo for each of these functional areas.  

The cFS-Function pages and corresponding demos help 

user’s conquer the cFS learning curve. In addition the 

page definitions and underlying Ruby scripts provide 

examples that users can build upon for their mission-

specific applications.  

 



McComas 6 31st Annual AIAA/USU 

  Conference on Small Satellites 

 

Figure 9– File Management Page 

The Kit-Tools section provides tools that assist the user 

with verifying a platform, evaluation a platform’s 

performance, integrating additional applications to the 

kit, and porting the cFS to a new target.  The current kit 

includes a Raspberry Pi target. 

Summary 

OpenSatKit is a freely available open source toolkit that 

provides users with a complete cFS hosted on a Linux 

platform.  The cFS is a very mature and highly reliable 

FSW system that has been used on several NASA Class 

B missions5.  We hope that this kit will greatly benefit 

SmallSat missions that often have constrained budgets 

and small software teams.  In additional we’d like to 

continue to grow the cFS community in an open 

manner allowing additional assets to be developed and 

shared  among cFS-based missions. 

Acknowledgments 

The authors would like to acknowledge and thank the 

cFS community for all the hard work and dedication in 

maturing the cFS and contributing ideas, applications 

and tools. 

References  

1. “Core Flight System”  Retrieved from 

http://coreflightsystem.org June 12th 2017.  

2. “National Aeronautics and Space Administration, 

Flight Software Systems Branch, cFS Overview” 

Retrieved from 

http://cfs.gsfc.nasa.gov/Introduction.html. June 

12th 2017. 

3. Stoneking, Eric, “42 Simulator” Retrieved from 

https://sourceforge.net/projects/fortytwospacecra

ftsimulation/ June 12th 2017. 

4. Melton, Ryan, “Ball Aerospace COSMOS”  

Retrieved from http://cosmosrb.com/ June 12th 

2017. 

5. National Aeronautics and Space Administration, 

Online Directives Information System, Software 

Engineering Requirements NPR-7150.2B, 

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NP

R&c=7150&s=2 

6. “The Consultative Committee for Space Data 

Systems” Retrieved from  

https://public.ccsds.org/default.aspx June 12th 

2017  

 

http://coreflightsystem.org/
http://cfs.gsfc.nasa.gov/Introduction.html
https://sourceforge.net/projects/fortytwospacecraftsimulation/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
http://cosmosrb.com/
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
https://public.ccsds.org/default.aspx

