Next on the Pad – “RadSat”
A Radiation Tolerant Computer System

Authors
Montana State University
Brock J. LaMeres, Colin Delaney, Matt Johnson, Connor Julien, Kevin Zack, Ben Cunningham, Todd Kaiser, Larry Springer, David Klumpar
Objective of the RadSat Mission

Demonstrate a Single Event Effect (SEE) Mitigation Strategy

- The computer delivers radiation tolerance through a reconfigurable/redundant architecture.
- The computer delivers low cost using COTS parts.
- The computer delivers higher performance (computation & power efficiency) by exploiting modern process nodes (Artix-7).
Why Does the SmallSat Community Care?

Computation

• SmallSats are doing more and more on-board data processing (e.g., images, sensor data, communications).

Radiation Tolerance

• Cutting edge process nodes (28nm) provide increased computation but are becoming more susceptible to radiation induced faults (SEEs).
• As SmallSat missions achieve longer duration and move into deep space, radiation becomes more and more of a concern (both TID & SEE).

Cost

• Any SmallSat computing solution must be cost effective to align with SmallSat theme.

(i.e., “launch more, inexpensive, satellites”)
Single Event Effects (SEE)

- Electron/hole pairs created by a single particle passing through semiconductor.
- Primarily due to heavy ions and high energy protons.
- Excess charge carriers cause current pulses.
- Creates a variety of destructive and non-destructive damage.

“Critical Charge” = the amount of charge deposited to change the state of a gate

![Diagram showing heavy ion particle track, proton nuclear reactions, and short-range recoil produces ionization.]
How We Currently Deal with Radiation

Dealing with Single Event Effects

- **Architecture: Triple Module Redundancy**
 - Triplicate each circuit
 - Use a majority voter to produce output

- **Background Memory Checking: Scrubbing**
 - Compare contents of a memory device to a “Golden Copy”
 - Golden Copy is contained in a radiation immune technology (fuse-based memory, MROM, etc…)

Note: TMR+Scrubbing is the recommended mitigation approach for FPGA-based aerospace computers
Our Approach

Fault Tolerance Through Abundant Spares

1. TMR + Spares
 • 3 Tiles run in TMR with the rest reserved as spares

2. Spatial Avoidance and Background Repair
 • If TMR detects a fault, the damaged tile is replaced with a spare and foreground operation continues
 • The tile is “repaired” in the background via partial reconfiguration (PR).

3. Scrubbing
 • Blind scrubbing continually runs through tiles (fast)
 • Readback scrubbing periodically runs through rest of fabric (slower)

Precedent: Shuttle Flight Computer (TMR + Spare)

9 MicroBlaze Processors on Artix-7
Our Approach

Why do it this way?

With Spares, it basically becomes a flow-problem:

- TMR produces the right output, but repair is inevitable.
- Partial Reconfiguration is faster than Full Reconfiguration.
- Bringing on a spare is faster than Partial Reconfiguration.
- If the repair rate is faster than the incoming fault rate, you’re safe.
- If the repair rate is slightly slower than the incoming fault rate, spares give you additional time.
- The additional time can accommodate varying flux rates.
- Abundant resources on an FPGA enable dynamic scaling of the number of spares.
Our Approach

Modeling: Is this an improvement to TMR+Scrubbing?

- We use a Markov Model to predict *Mean-Time-Before-Failure*.
- We want to see if it improves MTBF over non-redundant & TMR+scrubbing.
- The fault rate was extracted from CREME96 for 4 different orbits for Virtex-6 FPGA.
- The repair rate was found empirically.
History of Technology Maturation

10 years…

TRL 3 – Proof of Concept
2008-2009: Prototype demonstration at MSFC.

TRL 4 – Subsystem Validation in Laboratory

TRL 5 – Subsystem Validation in Relevant Environment

TRL 6 – Subsystem Demonstration in Relevant End-to-End Environment

TRL 7 – System Demonstration in an Operational Environment
2014-16: Internal ISS Demonstration using NanoRacks CubeLab Experiment Locker (HTV6 Launch).
The Design

FPGA Experiment Stack

9-Tile MicroBlaze System
(TMR + 6 Spares)
The Design

Integrated with Avionics into 3U Satellite
Mission Concept

Use ISS-based, NanoRacks CubeSat Deployer

- Manifested on ELaNa-23, OA-9 CRS Mission.
- Cygnus/Antares II flight out of Wallops Flight Facility.
- March 14, 2017.
- Operated from SSEL Ground Station in Bozeman, MT.
Questions

nemo damnum of functionality

RadSat