
 1 31
st
 Annual AIAA/USU

 Conference on Small Satellites

SSC17-V-01

High-Assurance Cyber Space Systems for Small Satellite Mission Integrity

Daria C. Lane, Enrique S. Leon, Francisco C. Tacliad, Dexter H. Solio, Dmitriy I. Obukhov, Daniel E. Cunningham

Space and Naval Warfare Systems Center Pacific

53560 Hull Street, San Diego, CA 92152

dlane@spawar.navy.mil

ABSTRACT

As the complexity of embedded computing platforms continues to grow, small satellites are increasingly deployed

with operating systems having known cybersecurity vulnerabilities. Using common exploit techniques, potential

intruders may compromise the capabilities and the integrity of the space mission. Moreover, the prominent use of

commercial off-the-shelf (COTS) products in small satellites also increases the probability of attack via widely

known vulnerabilities associated with commercially manufactured parts. System developers frequently assume that

software and hardware components communicate through specified interfaces and primary data paths, but these

assumptions cannot be fully guaranteed. By architecting secure space vehicle and ground control systems with

functionally correct software components, mission critical vulnerabilities may be reduced.

INTRODUCTION

Cybersecurity threats present a systemic challenge to

modern space missions. Networked embedded systems

are highly susceptible to cyber attacks. Researchers

and hackers have shown that embedded systems, such

as those deployed in small satellite architectures, are

vulnerable to remote attacks that can cause physical

damage to the system and ultimately compromise

mission integrity [1].

The High-Assurance Cyber Space Systems (HACSS)

approach utilizes a secure framework to ensure mission

critical functionality of space vehicle (SV) and ground

station operations.

High Assurance Cyber Military Systems

In order to provide a higher level of trust between

components and achieve greater assurance of mission

integrity for small satellite systems, we apply the

methodologies and tools developed under the DARPA

High-Assurance Cyber Military Systems (HACMS)

program to HACSS. HACMS technologies are directly

applicable to autonomous vehicles [1, 2] including

small satellites and larger space platforms.

HACMS technologies enable the synthesis of

functionally correct software components in order to

ensure the integrity of unmanned cyber physical

systems. We utilize the HACMS tools to abstractly

define the small satellite system architecture and

generate a functionally correct set of software

components. The architecture is built upon a proven-

correct microkernel to ensure the integrity of the

system. This approach ensures a secure space platform,

with a verified system architecture and proper isolation

between respective software components. By

implementing a formal methods based approach, where

high assurance is defined as functionally correct [1],

mission critical and security properties are satisfied.

Our analysis of the HACMS toolset includes

investigation or applicability to space vehicles and

satellite ground stations. We have identified exploit

mechanisms for which satellites and ground stations

may be compromised, and provide solutions using

integrated HACMS methodologies and enhanced

network cyber security protocols. By securing

operations on both ground and flight end-points, we

expect to radically improve the end-to-end security and

integrity for small satellite space operations.

CYBER VULNERABILITIES

Our discussion of potential cyber vulnerabilities

examines a modular, open architecture satellite system

and considers two vulnerability categories: hardware

and software.

Hardware Vulnerabilities

For small satellite systems, many of the components are

externally sourced, including the electrical power

system, attitude control, command and data handling,

antennas, and even mission payload. During fabrication

these COTS components can be maliciously modified

mailto:dlane@spawar.navy.mil

 2 31
st
 Annual AIAA/USU

 Conference on Small Satellites

[3]. A hardware component infected with malicious

software could spread to other components or modify

the intended behavior of the system.

Physical sensors and ports are other potential hardware

vulnerabilities. False-data-injection (FDI) attacks, either

by hacking the physical sensor device or tampering

with sensor data, can trigger incorrect control actions

[4]. Furthermore, an adversary can hijack command and

control by injecting a Trojan or malware via an open

physical port or interface.

Software Vulnerabilities

Unsecure code, lack of authentication, unencrypted

traffic, and poor protocol implementation are a few

examples of potential software vulnerabilities. Human

coding errors from poor coding practices, insufficient

unit test coverage, legacy code, or code that originates

from an untrusted source, may contain bugs or

undefined behavior that could be exploited resulting in

code injection, remote code execution, or denial of

service (DoS).

Ground stations are often networked to accommodate a

variety of missions and users, making them more prone

to network-based attacks such as replay, packet

injection, session hijacking or eavesdropping. An

adversary may also be able to exploit software

vulnerabilities in poor network stack implementations

and weak cryptography. Small satellite subsystems are

often built to operate over UDP/IP. Such

implementations are designed to work with specific

inputs but should be robust enough to gracefully handle

malformed data. Faults that can be triggered by input

sent by a user will correspond to a bug in the

implementation of the application. Ultimately this bug

may result in an exploitable feature within the software

code.

HIGH ASSURANCE SPACE VEHICLE

The space vehicle contains most of the critical

functionality of the system and is a prime location for

many of these cyber threats to occur. The SV is

composed of various subsystems and interfaces, and the

interactions with these subsystems must properly

conform to the given requirements. This becomes more

difficult as the size and complexity of the interactions

grows. Thus, the need arises for a method to prove the

correctness of the vehicles subsystem interactions in

order to guarantee adherence to system requirements

[5].

By modeling our system with architecture verification

tools such as the Architecture Analysis and Design

Language (AADL), we abstractly define the system

architecture, interfaces, and their interactions. By

asserting certain conditions for our subsystem input, we

may attempt to verify if the defined architecture can

guarantee adherence to the requirements [6].

Once the architecture can be verified to adhere to the

requirements, the subsystem implementations must then

be able to correctly execute the subsystems

functionality and correctly communicate to other

subsystems. With proper engineering practices,

standard software implementations can avoid most of

the common errors which can lead to critical system

failure or exploitation. Implementing the software

subsystems with type and memory safe languages may

aid in completely removing these types of errors. A

Meta programming language that employs these

features could also be used to generate safe code if the

proper backend exists. Code synthesis tools for the

generation of serializing and parsing components may

also be utilized instead of manually produced code. In

the context of a small satellite, these languages should

best be employed in the development of satellite

subsystem components and messaging layers [7].

Even when the architecture is verified and the

implementation was written with a safe language, we

cannot assume that the system is invulnerable. The

system should have some form of guaranteed isolation

between software components. If the isolation is strong

enough, the software system should be able to contain

faults or intrusions into a single running process. There

are many isolation kernels available with varying

degrees of formal verification which can provide such a

type of process isolation. In some configurations for

these environments, it is possible to restart an

anomalous process and leave the rest of the system

unharmed.

One possible implementation includes a type of

common interface gateway that is able to route traffic to

and from the software control system and the various

types of physical interfaces. These interfaces should be

separate and only terminate at the gateway. The

gateway should then be able to only allow traffic

according to a statically defined set of rules. The data

flow could then be directed to a form of stateful

firewall, or contact based command arbitrator, that

validates the contents of the message according to the

source and destination. A set of guardian rules on the

gateway can also be used to prevent access to the

interface gateway from unauthorized processes.

Control arbitration methodologies should be

implemented associated with the current state of the

space vehicle. Message forwarding from the control

software is checked against the satellite’s state. The

state of the satellite can be continuously verified by a

 3 31
st
 Annual AIAA/USU

 Conference on Small Satellites

form of safety monitor that can place the satellite into a

minimal safe mode until recovery is possible. The

legacy control software can be initially implemented in

an unsecure, isolated environment until it can be re-

implemented in a verified manner and integrated into

the isolation kernel, as shown in Figure 1 [8].

Figure 1: High Assurance Architecture for Space

Vehicle

By combining the tools listed above, one should have

the ability to design software for small satellites that is

verified to adhere to the requirements, diminish

instances of implementation errors, and have each

process executed in an isolated environment to reduce

the vulnerability attack surface. The satellite should

then be resistant to attacks that exploit faults in the

architecture or implementation. By modularizing the

system, one can begin to secure the system by

implementing each component with safe-generated

code, running the module in an isolation kernel, and

verifying its adherence to system requirements. Once

complete, the satellite software system should now be

composed of verified functionally correct components

that adhere to a strict contract of execution and

communication.

HIGH ASSURANCE GROUND STATION

Implementing a high-assurance ground station requires

a life-cycle design approach that focuses on securing

communication gateways. In small satellite systems, the

primary function of the ground station is Telemetry,

Tracking, and Control (TT&C). Commands are sent

and received through the protocol gateway. Ground

station software can be designed to formally guarantee

that only legitimate traffic flows to and from the system

[9]. Additionally, integrating formal methods and

secure coding requirements into the ground station

software design can assure that the code satisfies its

safety requirements and is free of undefined behavior.

HACMS NANOSATELLITE APPLICATION

A compromised ground station is used by an adversary

to send commands to the space vehicle, preventing the

SV from executing its mission(s). In this sample

scenario, our goal is two-fold. First, prevent ground

station compromise. Second, prevent a compromised

ground station from significantly impacting the SV’s

mission(s).

To prevent ground station compromise, we plan to

instill good physical security to minimize unauthorized

physical access to the ground station, and to utilize the

HACMS tools to develop functionally correct code to

prevent software exploits. Developing functionally

correct code is not enough to prevent intrusions. We

also plan to develop software that would detect

intrusions, and respond accordingly to regain control of

the compromised system.

To ensure SV mission integrity, we aim to limit the

impact of a compromised ground station. We assume

that an adversary has somehow physically obtained a

ground station through various means. The SV receives

commands from a ground station and needs to

determine whether that specific ground station is

compromised. Our HACSS solution is to develop an

attestation protocol that validates ground station

messages as they are received. Untrusted messages are

simply ignored and not executed by the flight software.

Once the high-assurance system architecture for the

ground and space platform has been fully integrated, we

anticipate on-orbit survivability and resilience to attack.

Penetration testing and analysis shall be conducted at

the bus and ground station level to verify the

effectiveness of the HACSS implementation.

CONCLUSIONS

The research presented in this paper is a critical step

towards establishing a baseline for high assurance space

system architectures to ensure space mission integrity.

 4 31
st
 Annual AIAA/USU

 Conference on Small Satellites

By integrating formally verifiable, functionally correct

software tools within the space vehicle and securing the

ground station segment, mission critical functionality

may be preserved during cyber attack.

Acknowledgments

This work was supported by the Defense Advanced

Research Projects Agency (DARPA) Information

Innovation Office (I2O) High Assurance Cyber Military

Systems project.

References

1. Fisher, K. “Using formal methods to enable more

secure vehicles: DARPA's HACMS

program.” Proceedings of the 19
th

 ACM

SIGPLAN International Conference on

Functional Programming, Gothenburg, Sweden,

September 2014.

2. M. W. Whalen, D. Cofer, and A. Gacek,

“Requirements and architectures for secure

vehicles,” IEEE Software, vol. 33, no. 4, 22–25,

2016.

3. Tehranipoor, M. and Koushanfar, F. "A survey of

hardware trojan taxonomy and detection." IEEE

Design & Test of Computers, 27.1, 2010.

4. Franchetti, F., Low, T. M., Mitsch, S., Mendoza,

J. P., Gui, L., Phaosawasdi, A., Padua, D., Kar,

S., Moura, J., Franusich, M., Johnson, J., Platzer,

A., Veloso, M. M., “High-Assurance SPIRAL:

End-to-End Guarantees for Robot and Car

Control.” IEEE Control Systems, 37(2), 82-103,

2017.

5. Murugesan, A., Whalen, M.W., Rayadurgam, S.,

and Heimdahl, M., “Compositional Verification

of a Medical Device System,” Proceedings of the

2013 ACM SIGAda Annual Conference on High

Integrity Language Technology, Pittsburgh, PA,

November 2013.

6. Backes J., Cofer, D., Miller, S., Whalen, M.W.,

“Requirements Analysis of a Quad-Redundant

Flight Control System” Proceedings of the 2015

NASA Formal Methods International Symposium,

Pasadena, CA, April 2015.

7. Trevor, E., Pike, L., Winwood, S., Hickey, P.,

Bielman, J., Sharp, J., Launchbury, J., “Guilt

Free Ivory,” Proceedings of the 2015 ACM

SIGPLAN Symposium on Haskell, September

2015.

8. Nogin, A., “High Assurance Cyber Military

Systems (HACMS) Program Update: Ground

Systems,” HRL Laboratories, October 2016.

9. Ellison, R., Householder, A., Hudak, J., Kazman,

R., and Woody, C., “Extending AADL for

Security Design Assurance of Cyber-Physical

Systems,” CMU/SEI Report 2015-TR-014,

Software Engineering Institute, December 2015.

