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ABSTRACT 

As the complexity of embedded computing platforms continues to grow, small satellites are increasingly deployed 

with operating systems having known cybersecurity vulnerabilities. Using common exploit techniques, potential 

intruders may compromise the capabilities and the integrity of the space mission.  Moreover, the prominent use of 

commercial off-the-shelf (COTS) products in small satellites also increases the probability of attack via widely 

known vulnerabilities associated with commercially manufactured parts.  System developers frequently assume that 

software and hardware components communicate through specified interfaces and primary data paths, but these 

assumptions cannot be fully guaranteed.  By architecting secure space vehicle and ground control systems with 

functionally correct software components, mission critical vulnerabilities may be reduced.   

INTRODUCTION 

Cybersecurity threats present a systemic challenge to 

modern space missions.  Networked embedded systems 

are highly susceptible to cyber attacks.  Researchers 

and hackers have shown that embedded systems, such 

as those deployed in small satellite architectures, are 

vulnerable to remote attacks that can cause physical 

damage to the system and ultimately compromise 

mission integrity [1].   

The High-Assurance Cyber Space Systems (HACSS) 

approach utilizes a secure framework to ensure mission 

critical functionality of space vehicle (SV) and ground 

station operations.    

High Assurance Cyber Military Systems 

In order to provide a higher level of trust between 

components and achieve greater assurance of mission 

integrity for small satellite systems, we apply the 

methodologies and tools developed under the DARPA 

High-Assurance Cyber Military Systems (HACMS) 

program to HACSS.  HACMS technologies are directly 

applicable to autonomous vehicles [1, 2] including 

small satellites and larger space platforms.   

HACMS technologies enable the synthesis of 

functionally correct software components in order to 

ensure the integrity of unmanned cyber physical 

systems.   We utilize the HACMS tools to abstractly 

define the small satellite system architecture and 

generate a functionally correct set of software 

components. The architecture is built upon a proven-

correct microkernel to ensure the integrity of the 

system.  This approach ensures a secure space platform, 

with a verified system architecture and proper isolation 

between respective software components.  By 

implementing a formal methods based approach, where 

high assurance is defined as functionally correct [1], 

mission critical and security properties are satisfied.     

Our analysis of the HACMS toolset includes 

investigation or applicability to space vehicles and 

satellite ground stations. We have identified exploit 

mechanisms for which satellites and ground stations 

may be compromised, and provide solutions using 

integrated HACMS methodologies and enhanced 

network cyber security protocols.  By securing 

operations on both ground and flight end-points, we 

expect to radically improve the end-to-end security and 

integrity for small satellite space operations. 

CYBER VULNERABILITIES 

Our discussion of potential cyber vulnerabilities 

examines a modular, open architecture satellite system 

and considers two vulnerability categories: hardware 

and software.  

Hardware Vulnerabilities 

For small satellite systems, many of the components are 

externally sourced, including the electrical power 

system, attitude control, command and data handling, 

antennas, and even mission payload. During fabrication 

these COTS components can be maliciously modified 
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[3]. A hardware component infected with malicious 

software could spread to other components or modify 

the intended behavior of the system.  

Physical sensors and ports are other potential hardware 

vulnerabilities. False-data-injection (FDI) attacks, either 

by hacking the physical sensor device or tampering 

with sensor data, can trigger incorrect control actions 

[4]. Furthermore, an adversary can hijack command and 

control by injecting a Trojan or malware via an open 

physical port or interface.  

Software Vulnerabilities 

Unsecure code, lack of authentication, unencrypted 

traffic, and poor protocol implementation are a few 

examples of potential software vulnerabilities. Human 

coding errors from poor coding practices, insufficient 

unit test coverage, legacy code, or code that originates 

from an untrusted source, may contain bugs or 

undefined behavior that could be exploited resulting in 

code injection, remote code execution, or denial of 

service (DoS).   

Ground stations are often networked to accommodate a 

variety of missions and users, making them more prone 

to network-based attacks such as replay, packet 

injection, session hijacking or eavesdropping. An 

adversary may also be able to exploit software 

vulnerabilities in poor network stack implementations 

and weak cryptography. Small satellite subsystems are 

often built to operate over UDP/IP. Such 

implementations are designed to work with specific 

inputs but should be robust enough to gracefully handle 

malformed data. Faults that can be triggered by input 

sent by a user will correspond to a bug in the 

implementation of the application. Ultimately this bug 

may result in an exploitable feature within the software 

code. 

HIGH ASSURANCE SPACE VEHICLE 

The space vehicle contains most of the critical 

functionality of the system and is a prime location for 

many of these cyber threats to occur. The SV is 

composed of various subsystems and interfaces, and the 

interactions with these subsystems must properly 

conform to the given requirements. This becomes more 

difficult as the size and complexity of the interactions 

grows. Thus, the need arises for a method to prove the 

correctness of the vehicles subsystem interactions in 

order to guarantee adherence to system requirements 

[5]. 

By modeling our system with architecture verification 

tools such as the Architecture Analysis and Design 

Language (AADL), we abstractly define the system 

architecture, interfaces, and their interactions. By 

asserting certain conditions for our subsystem input, we 

may attempt to verify if the defined architecture can 

guarantee adherence to the requirements [6]. 

Once the architecture can be verified to adhere to the 

requirements, the subsystem implementations must then 

be able to correctly execute the subsystems 

functionality and correctly communicate to other 

subsystems. With proper engineering practices, 

standard software implementations can avoid most of 

the common errors which can lead to critical system 

failure or exploitation. Implementing the software 

subsystems with type and memory safe languages may 

aid in completely removing these types of errors. A 

Meta programming language that employs these 

features could also be used to generate safe code if the 

proper backend exists.  Code synthesis tools for the 

generation of serializing and parsing components may 

also be utilized instead of manually produced code.  In 

the context of a small satellite, these languages should 

best be employed in the development of satellite 

subsystem components and messaging layers [7]. 

Even when the architecture is verified and the 

implementation was written with a safe language, we 

cannot assume that the system is invulnerable. The 

system should have some form of guaranteed isolation 

between software components. If the isolation is strong 

enough, the software system should be able to contain 

faults or intrusions into a single running process.  There 

are many isolation kernels available with varying 

degrees of formal verification which can provide such a 

type of process isolation. In some configurations for 

these environments, it is possible to restart an 

anomalous process and leave the rest of the system 

unharmed. 

One possible implementation includes a type of 

common interface gateway that is able to route traffic to 

and from the software control system and the various 

types of physical interfaces. These interfaces should be 

separate and only terminate at the gateway. The 

gateway should then be able to only allow traffic 

according to a statically defined set of rules. The data 

flow could then be directed to a form of stateful 

firewall, or contact based command arbitrator, that 

validates the contents of the message according to the 

source and destination. A set of guardian rules on the 

gateway can also be used to prevent access to the 

interface gateway from unauthorized processes.  

Control arbitration methodologies should be 

implemented associated with the current state of the 

space vehicle.  Message forwarding from the control 

software is checked against the satellite’s state. The 

state of the satellite can be continuously verified by a 
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form of safety monitor that can place the satellite into a 

minimal safe mode until recovery is possible.  The 

legacy control software can be initially implemented in 

an unsecure, isolated environment until it can be re-

implemented in a verified manner and integrated into 

the isolation kernel, as shown in Figure 1 [8].   

 

Figure 1: High Assurance Architecture for Space 

Vehicle 

By combining the tools listed above, one should have 

the ability to design software for small satellites that is 

verified to adhere to the requirements, diminish 

instances of implementation errors, and have each 

process executed in an isolated environment to reduce 

the vulnerability attack surface. The satellite should 

then be resistant to attacks that exploit faults in the 

architecture or implementation. By modularizing the 

system, one can begin to secure the system by 

implementing each component with safe-generated 

code, running the module in an isolation kernel, and 

verifying its adherence to system requirements. Once 

complete, the satellite software system should now be 

composed of verified functionally correct components 

that adhere to a strict contract of execution and 

communication. 

HIGH ASSURANCE GROUND STATION  

Implementing a high-assurance ground station requires 

a life-cycle design approach that focuses on securing 

communication gateways. In small satellite systems, the 

primary function of the ground station is Telemetry, 

Tracking, and Control (TT&C). Commands are sent 

and received through the protocol gateway. Ground 

station software can be designed to formally guarantee 

that only legitimate traffic flows to and from the system 

[9]. Additionally, integrating formal methods and 

secure coding requirements into the ground station 

software design can assure that the code satisfies its 

safety requirements and is free of undefined behavior. 

HACMS NANOSATELLITE APPLICATION  

A compromised ground station is used by an adversary 

to send commands to the space vehicle, preventing the 

SV from executing its mission(s). In this sample 

scenario, our goal is two-fold. First, prevent ground 

station compromise. Second, prevent a compromised 

ground station from significantly impacting the SV’s 

mission(s). 

To prevent ground station compromise, we plan to 

instill good physical security to minimize unauthorized 

physical access to the ground station, and to utilize the 

HACMS tools to develop functionally correct code to 

prevent software exploits. Developing functionally 

correct code is not enough to prevent intrusions. We 

also plan to develop software that would detect 

intrusions, and respond accordingly to regain control of 

the compromised system. 

To ensure SV mission integrity, we aim to limit the 

impact of a compromised ground station. We assume 

that an adversary has somehow physically obtained a 

ground station through various means. The SV receives 

commands from a ground station and needs to 

determine whether that specific ground station is 

compromised. Our HACSS solution is to develop an 

attestation protocol that validates ground station 

messages as they are received. Untrusted messages are 

simply ignored and not executed by the flight software. 

Once the high-assurance system architecture for the 

ground and space platform has been fully integrated, we 

anticipate on-orbit survivability and resilience to attack.  

Penetration testing and analysis shall be conducted at 

the bus and ground station level to verify the 

effectiveness of the HACSS implementation.  

CONCLUSIONS  

The research presented in this paper is a critical step 

towards establishing a baseline for high assurance space 

system architectures to ensure space mission integrity.  
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By integrating formally verifiable, functionally correct 

software tools within the space vehicle and securing the 

ground station segment, mission critical functionality 

may be preserved during cyber attack.     
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