Initial Results from ACCESS: an Autonomous CubeSat Constellation Scheduling System for Earth Observation

Andrew “Kit” Kennedy, Prof. Kerri Cahoy
akennedy@mit.edu
August 8, 2017

SmallSat Session V - Ground Systems
Outline

• Motivation
• Approach
 – EO Constellation Scheduling
 – ACCESS architecture
 – Data Routing
 – Simulation cases
• Results
 – Data Routing latency
 – Urgent Data Routing latency
 – Execution Time
• Conclusion
Outline

• Motivation
• Approach
 – EO Constellation Scheduling
 – ACCESS architecture
 – Data Routing
 – Simulation cases
• Results
 – Data Routing latency
 – Urgent Data Routing latency
 – Execution Time
• Conclusion
EO Constellation Scheduling

• Existing tools: observation and downlink scheduling
 – Planet Inc. algorithms
 – Multi-Sat Multi-GS scheduling
 – STK Scheduler

• Crosslink usage with tight-knit satellite clusters
 – Task allocation (e.g. market based)
 – Local or mesh networks
1. Simulate a “spread-out” satellite constellation
2. Schedule with a centralized ground planning system
 – Key: utilize long-distance crosslinks for low-latency bulk data routing
3. Distribute plans to sats via ground and crosslink network
4. Reactive observation replanning onboard sats
 – Key: distribute updates through network
Data Routing Approach

- Optimize metric: observation latency to downlink
- Implemented a greedy algorithm
 - Downlink observations in temporal order
 - Use earliest downlink possible each time
Data Routing Approach

- Optimize metric: observation latency to downlink
- Implemented a greedy algorithm
 - Downlink observations in temporal order
 - Use earliest downlink possible each time

- Downlink up to X Mbit of Obs1
- Add Obs1 back to queue
- Go to next observation
Payload and Link Models

- **High data rate EO payload**
 - 5 spectral bands, optical and NIR
 - 127.5 Mbps compressed data
 - 60 s average flyover

- **X-band Downlink**
 - 1 W Tx
 - 0.25U
 - 5.5 m Rx diam.
 - Adaptive data rate
 - 25-45 Mbps

- **Optical Crosslink**
 - 1 W Tx
 - 1U
 - 8.5 cm Rx diam.
 - Adaptive data rate
 - 10 Mbps @ 4,300km range
Simulation Cases

- 24h window for routing
- Set of 33 obs. targets
- 3 orbital geometries
- 3 GS networks
Outline

- Motivation
- Approach
 - EO Constellation Scheduling
 - ACCESS architecture
 - Data Routing
 - Simulation cases
- Results
 - Data Routing latency
 - Urgent Data Routing latency
 - Execution Time
- Conclusion
Routing Latency

- Routing Latency results
 - For first 1 Gbit of data from each observation
 - Average of latencies for all observed data packets
- Do not yet consider satellite energy constraints

Example

Downlink only: Blue

Downlink + Crosslinks: Red

150.0
145.0
9 GS
Routing Latency: 10 Sat SSO

- 10 satellites in single 10:30 LTAN SSO

Latency improves with more GS

Average Route Latency (minutes)

- 1 GS: 121.1 minutes
- 9 GS: 52.5 minutes
- 17 GS: 37.9 minutes

Xlnks reduce latency 50% or more. Latency < 1h: “desirable”
Better Latency: 30 Sat Walker

- 30 satellites in a 3 plane Walker Delta pattern, 60° inc.

Xlnks reduce latency ~80% or more. Latency < 0.5h: closing in on instantaneous

See a large latency increase in downlink-only case (121 min for 10 sats SSO)
Urgent Data Routing

- Same 33 targets
- Subset of targets designated “urgent” for ~2 h durations
 - Downlinked before all other obs
 - Simulates changing observation priorities
Urgent Latency, Downlink Only

- Plot with downlinks only, 9 GS

Urgent latency slowly degrades as more marked urgent

Latency reduced more than half when marked urgent
Xlinks Reduce Urgent Latency

- Plot with downlinks and crosslinks, 9 GS

With xlnks, latency driven even lower for urgent obs
23.3 mins to 15.9 mins
Data Routing Execution Time

- Measured algorithm execution time
 - Scheduling of obs, dlinks, xlinks; data packet routing
 - Custom Python code
- For increasing constellation size
- For two planning window durations: 12 hours and 24 hours
- Run on a 2013 Macbook Pro laptop (2 GHz, 8 GB RAM)

<table>
<thead>
<tr>
<th>Number of Satellites</th>
<th>Execution Time (mins)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 Hour Window</td>
<td>24 Hour Window</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.18</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.94</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.57</td>
<td>13.23</td>
<td></td>
</tr>
</tbody>
</table>

Planning execution time appears tractable for scalability.
Outline

• Motivation
• Approach
 – EO Constellation Scheduling
 – ACCESS architecture
 – Data Routing
 – Simulation cases
• Results
 – Data Routing latency
 – Urgent Data Routing latency
 – Execution Time
• Conclusion
Conclusion

• Summary of results
 – Regular latency, Walker Delta with xlnks: **23 and 17 mins**
 – Urgent latency, Walker Delta with xlnks: **16 mins**
 – **Execution time of 13 mins** for 24 h window with 100 sats

• Long range crosslinks promising for low latency bulk data delivery

• Future work
 – **Algorithm improvements**: energy-aware planning, data routing optimization (utilizing e.g. MILP), onboard replanning.
 – **Additional metrics, sensitivity studies** (particularly: crosslink range and data rate, simplex vs duplex)
 – **Incorporation in operations SW stack**
 – Open-sourcing
References

• **Slide 5**

 10. https://www.nasa.gov/directorates/spacetech/small_spacecraft/edsn.html

• **Slide 9**

Backup
The Problem: EO Data Delivery

• To effectively monitor events on Earth, we need “almost instantaneous data availability” \(^3,4\)
 – 0.5 to 1 hour \(^5\)
 – Benchmark: 90min latency, Disaster Monitoring Constellation \(^3\)

Floods

Eruptions, Fires

Earthquakes

Zhang et al. \(^6\)

Pergola et al. \(^7\)

Liu et al. \(^8\)

and more…
• Inter-satellite crosslinks
 – TLM and CMD
 – Bulk data routing
• Crosslinks stress operations
 – Energy usage
 – Satellite scheduling complexity
 – Constellation scheduling complexity
Imaging Payload Details

• From commercial 6U CubeSat design by Tsitas and Kingston [x21]
 – Designed to be competitive with DMC and RapidEye EO satellites
 – 600 km SSO, GSD of 6.5m and swath width of 26km

• Imager
 – Questar 3.5 telescope (89mm aperture, 20.3cm length, 1.4 kg)
 – Fairchild imaging CCD5061 (4000 pixels, 12 bit digitization)

• 5 spectral bands, 255 Mbps uncompressed
 – 2:1 lossless compression -> 127.5 Mbps
Example Plot of Battery Level
Payload/Comm Energy Usage

Clements et al, 2016

Chart showing orbital energy usage for various payloads and communication methods, with capacities and power consumption listed for different data transfer rates.
Motivation

• What if there were a **low cost** way for a CubeSat to downlink 100 Gb/day?
 – Most CubeSats downlink $<< 10$ Gb/day (UHF or S-band systems) \(^{[1]}\)

• Radio frequency (RF) downlinks challenged by resource constraints
 – E.g., ground station size, transmitter power, or spectrum

• **Lasercom is less resource constrained and could scale to Gbps** \(^{[3]}\)
 – More power-efficient for given size, weight, and power (SWaP)
 – More bandwidth available
 – Many groups working on it: MIT, Aerospace Corporation, Sinclair, UF, DLR, JAXA, …

![Wallop's CubeSat Comm. Antennas\(^{[2]}\)](UHF, 18.3 m S band, 11 m)

!MIT Lasercom Ground Station
NODE Space Terminal Overview

<table>
<thead>
<tr>
<th>Scope</th>
<th>CubeSat Low-Cost Payload (<$15k parts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Direct detection MOPA</td>
</tr>
<tr>
<td></td>
<td>COTS telecom parts (1550 nm)</td>
</tr>
<tr>
<td>Downlink data rates</td>
<td>10 Mbps (30 cm amateur telescope)</td>
</tr>
<tr>
<td></td>
<td>100 Mbps (1 m OCTL)</td>
</tr>
<tr>
<td>Power</td>
<td>0.2 W (transmit power), 15 W (consumed power)</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>1.3 mrad half power (initial demo)</td>
</tr>
<tr>
<td>Modulation</td>
<td>PPM</td>
</tr>
<tr>
<td>Coding</td>
<td>RS(255,239)</td>
</tr>
<tr>
<td>Mass, Vol.</td>
<td>1.0 kg, 1 U</td>
</tr>
</tbody>
</table>

Control architecture
- Bus coarse pointing (<0.5°)
- FSM fine steering (+/- 2.5°)
- Beacon receiver (976 nm) for pointing knowledge (20 arcsec)

Current Status
- Pointing control testing
- Component-level environmental tests
- Functional testing
- End-to-end over the air demo
Future Work

- Deployment of global planner algorithm on ground software stack (e.g. Ball Aerospace’s COSMOS)
- Deployment local (satellite) planner algorithm on flight software stack (e.g. NASA Goddard’s cFS)
- Incorporate more versatile observation payload and satellite operations modeling
- Open source release of ACCESS software for use by the wider small sat community.
Earth Observing Constellations

• Advantages
 – Higher temporal resolution
 – Multi-point instrument coordination
 – Low-latency data availability

TROPICS Mission, MIT LL
Ground Stations

- Expensive to deploy
- Lots of organizational/legal overhead
- Very hard to deploy across oceans
- For lasercomm, clouds can hinder downlink
- For commercial networks
 - Still have to pay for usage
 - Have to worry about schedule access
Latency: Both Geometries

- Combined latency plot of 10 sat SSO, 30 sat Walker

Dlnk latency increased for larger constellation! Due to skew in downlink latency.

Xlnk latency significantly lower with a larger constellation.

<table>
<thead>
<tr>
<th>Average Route Latency (minutes)</th>
<th>10s: No Xlnks</th>
<th>10s: Xlnks</th>
<th>30s: No Xlnks</th>
<th>30s: Xlnks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wallops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BridgeSat</td>
<td>52.5</td>
<td>23.3</td>
<td>121.1</td>
<td></td>
</tr>
<tr>
<td>SFN</td>
<td>37.9</td>
<td>17.2</td>
<td>79.9</td>
<td>78.8</td>
</tr>
</tbody>
</table>
More revisits, lower latency

• What we need:
 - Lower inter-revisit times to targets
 - Less time from data collection to delivery

• How we get there
 - Larger constellations
 - More ground stations
 - Inter-satellite crosslinks
 - More frequent flyovers of targets
 - Lower wait time for downlink
 - More total volume to ground
 - Route data to downlinks
 - Distribute bandwidth over ground stations
Scaling Operations

Need an automated operations approach that:

- Scales to many satellites (tens to hundreds)
- Efficiently balances data collection and routing
- Handles unique constraints of CubeSat platform

- Human-in-the-loop planning scales linearly with number of satellites [x3]
- EO Data rates of 100 MB to TB per orbit [x2,x4,x5]
- Often impossible to fully downlink all data
- Limited comm. availability
- Low energy generation, storage
- Multi-modal measurements
ACCESS Design Goals

• Efficiently manage data collection and routing to ground
 – Schedule observations, downlinks, and crosslink to balance fast
downlink of key data with bulk data delivery
 – “efficient” – not optimal scheduling, but close enough
 – Key advantage: crosslink routing built directly into algorithms

• Allow scalability to 100s of satellites
 – Scheduling divided based on constellation-level and satellite-level
constraints
 – Sacrifices some degree of optimality in scheduling for better
tractability

• Enable reactive and federated constellation operations
 – Satellites have some freedom to replan activities
 – Allows reactivity for disaster monitoring, multi-constellation
cooperation
 – Key advantage: loose coupling of planning responsibility
between ground and satellites
ACCESS CubeSat Ops Model

- 3 activities
 - Observation
 - Crosslink
 - Downlink

- Power usage for activities added on base-level (“idle”)
ACCESS Architecture

L1 Global Planner

Activity timings

L2 Local Planner

Flight Software

Satellite 1

Satellite 2

Satellite n

Ground. Considers:
- Data collection
- Data routing through xlink, dlink

Activity timings, weightings

Detailed Dynamics Simulator

Satellite. Considers:
- Current sat state
- New observation opportunities

Orbit and Communications Forecaster

Telemetry and Command Manager

CMD

TLM

state data
Background: Scheduling

- Algorithms and software exist for small satellite scheduling
 - Manage activity timing and limited onboard resources
 - e.g. Planet Inc. [x8], Multi-Sat Multi-GS scheduling [x9], ASPEN/CASPER [x10], STK Scheduler [x6,x7]
- EO constellation management adds difficult logistics
 - Tasking satellites with observation targets [x8]
 - De-conflicting downlinks between satellites [x8,x9]
 - Maintaining schedule synchronization across constellation [x11,x12,x13,x14,x15]
- Using crosslinks as data routes add more complexity
 - At first glance, number of connections between satellites grows as N^2