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Abstract

NASA’s decadal survey determined that simultaneous measurements from a 3D volume of space are advantageous
for a variety of studies in space physics and Earth science. Therefore, swarm concepts with multiple spacecraft in
close proximity are a growing topic of interest in the small satellite community. Among the capabilities needed for
swarm missions is a means to maintain operator-specified geometry, alignment, or separation. Swarm stationkeeping
poses a planning challenge due to the limited scalability of ground resources. To address scalable control of orbital
dynamics, we introduce SODA – Swarm Orbital Dynamics Advisor – a tool that accepts high-level configuration
commands and provides the orbital maneuvers needed to achieve the desired type of swarm relative motion. Rather
than conventional path planning, SODA’s innovation is the use of artificial potential functions to define boundaries
and keepout regions. The software architecture includes high fidelity propagation, accommodates manual or auto-
mated inputs, displays motion animations, and returns maneuver commands and analytical results. Currently, two
swarm types are enabled: in-train distribution and an ellipsoid volume container. Additional swarm types, simulation
applications, and orbital destinations are in planning stages.

Nomenclature

xi 3 x 1 position vector of satellite i in the inertial ref-
erence frame

xt 3 x 1 position vector of target location in the inertial
reference frame

ri 3 x 1 position vector of satellite i in the LVLH frame

ρ j,i 3 x 1 position vector of satellite j with respect to
satellite i, i.e. x j− xi

φ Potential function, scalar-valued

a, r Subscripts on φ denoting attractive or repulsive po-
tential functions

κ Selectable scaling factor for the magnitude of the
impulsive maneuver

P 3 × 3 positive-definite matrix that describes the
shape of the attractive potential

A, B Scalars that may be tuned to yield desired repulsive
potential functions

APF Artificial potential function

Introduction and Motivation

In 2016, the Space Studies Board of the National
Academies of Sciences, Engineering, and Medicine states
that satellite swarm missions are of high priority for
multiple disciplines and deserve focused investment and
development.1 As defined by the Board, a swarm com-
prises multiple satellites flying in formation near one an-
other in similar orbits. More specifically, we envision
swarms to have capabilities for cross-link communication
and station-keeping. Of particular interest to the scientific
community is the ability of a satellite swarm to achieve
and maintain a specified geometry, alignment, or separa-
tion.

The focus of this paper is how to control inter-satellite
relative motion to achieve the objectives of the swarm as
a whole. We introduce SODA, Swarm Orbital Dynam-
ics Advisor, a tool that provides the orbital maneuvers re-
quired to achieve a desired type of relative swarm motion.
SODA is under development in the Mission Design Divi-
sion at NASA Ames Research Center to enable new sci-
ence return possibilities for future spacecraft swarm mis-
sion architectures.

Swarms of large numbers of cooperating satellites will
introduce new space mission capabilities and complex-
ities. The differences from conventional missions will
be manifold, spanning science goals, instrument design,
concept of operations, spacecraft capabilities, and inter-
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Figure 1: The different functions of SODA are completed via GUI scripts, custom Python functions, and the applica-
tions GMAT and Celestia.

satellite cooperation. From a mission operations perspec-
tive, swarms pose a planning challenge due to the limited
scalability of ground operations. The approach of plan-
ning and commanding individual satellites simply does
not scale for multi-sat swarms of tens or hundreds. If
the current state-of-practice continues to be applied, op-
eration of large swarms (e.g. 100 spacecraft or more) will
become intractable and cost prohibitive.

To avoid this operations bottleneck, a new approach
is required: the swarm must operate as a unit, responding
to high level commands and constraints. SODA enables
high level user inputs in a single planning cycle. From one
high level command, SODA determines all of the required
individual satellite maneuvers over time, relieving ground
personnel of the tasks of designing and commanding the
placement of the swarm members. SODA accomplishes
this by applying the most appropriate algorithm, which
can be a basic Hohmann transfer or a more complex, non-
linear control routine.

Prior formation flying studies used guidance and con-
trol algorithms for very particular mission concepts, such
as assigning individual spacecraft to a target location and
guiding each to its destination via artificial potential func-
tions or explicit solutions to Lambert’s problem.2, 3 While
SODA builds upon these concepts, the goal of the tool
is somewhat more general. We have identified several
swarm types that are particularly interesting in terms of
science data return; subsequent sections provide details.
A user may choose from one of the available types, and
the algorithms in SODA handle how to achieve and main-
tain the chosen configuration. The resulting products in-
clude tabular listings of required ∆v maneuvers, plots, an-

imations, and numerical metrics describing how well the
swarm type was maintained in the simulation.

SODA is early in its development and its current state
emphasizes interactive use. Subsequent sections describe
each of the components of SODA in detail; the high level
design of SODA is as follows. First, the tool prompts the
user to specify initial and final conditions via a GUI inter-
face. Initial state vectors (Keplerian or Cartesian) may be
provided as a model of estimations for spacecraft already
in orbit, or the user may elect for SODA to simulate a
swarm deployment from a specified orbit. Depending on
the swarm type selected, the user will be prompted for the
specific parameters that define that swarm type. Alterna-
tively, the user may bypass the GUI altogether and provide
inputs via text files. From the user’s inputs, SODA gener-
ates a custom script to produce a high-fidelity simulation
to be performed by the General Mission Analysis Tool
(GMAT).4 During the simulation, GMAT links to Python
scripts that have been specifically written for SODA to en-
able the desired swarm types. After the simulation com-
pletes, the user receives results in the form of animation,
plots, and statistics. Figure 1 illustrates SODA’s over-
all structure. Note that SODA’s dependencies are com-
pletely free and open-source, with the exception of the
Windows operating system itself. These dependencies in-
clude: Python (with numpy, tkinter, and matplotlib

libraries), GMAT, and Celestia. Our long-term goal is to
implement several more swarm types in SODA and, ulti-
mately, to make the tool available open-source.

Conn 2 31st Annual AIAA/USU
Conference on Small Satellites



SSC17-V-06

Specifying the Swarm Mission

SODA’s architecture design accommodates several op-
tions for the source of inputs: graphical user inter-
face (GUI) for small analyses or developing stakeholder
awareness, text files for “hands-off” applications such as
Monte Carlo analyses, and a defined software interface for
future integration with higher- and lower-level controllers.

Mission descriptions include initial and target condi-
tions, the mission orbit, number of spacecraft and their
characteristics, and simulation parameters. This section
summarizes the mission design inputs and implementa-
tion details appear in following sections.

When a swarm mission begins, the member spacecraft
will have initial orbital conditions, either from ground es-
timates of existing on-orbit assets, or from a dedicated de-
ployment phase of mission ops. SODA’s core algorithms
receive state vectors for the swarm members uniformly
for all input sources and a powerful feature for users is
the ability to simulate initial states resulting from the de-
ployment impulse.

The target conditions for the swarm entail descriptions
of the desired orbit and the desired swarm configuration.
While SODA’s planned development encompasses mul-
tiple orbital and non-Keplerian regimes, Low Earth Or-
bit (LEO) serves as a valuable, stressing case for the tool
and is commonly used for small sat missions. Early test
cases have revealed an important subtlety in specifying
the target orbit in LEO: the use of orbital elements ex-
cludes perturbation effects. Orbit maintenance and swarm
maintenance may be combined as drivers on SODA’s con-
trol algorithms, however to isolate the swarm maintenance
approach under study, it is necessary to identify target or-
bital motion that includes gravitational perturbations and
atmospheric decay. One approach for accommodating re-
alistic target motion is to define a pseudo-satellite whose
trajectory will be a reference point for the swarm.

SODA categorizes swarms by type, with “In Train”
and “Ellipsoid Container” discussed below. Examples of
additional planned types include “Ellipsoid with Distribu-
tion,” and some commonly referenced formations. Users
choose the target swarm type, orientation, and dimen-
sions. Maneuvers are constrained to allowable magnitude
and frequency.

The spacecraft participating in the SODA swarm are
currently all identical. Specialized swarm elements will
be part of future implementations. Specifications of most
relevance to orbital motion are propulsion subsystem ca-
pabilities and ballistic coefficient. SODA currently of-
fers users several CubeSat options, from 1U to 6U. Atti-
tude control capabilities are very important for mitigating
differential drag among swarm members in LEO. While
SODA is not a mission simulator with high fidelity atti-
tude models, it does offer a useful approximation of differ-

ential drag effects with an option to apply random drag ar-
eas from Gaussian distribution with user settings for mean
and standard deviation.

SODA’s calculations rely on accurate knowledge of
swarm member positions and velocities. For the first re-
lease, the model excludes issues of real-world communi-
cation and navigation. Future versions will allow users to
input restrictions on state knowledge.

Using the SODA GUI

Figure 3: The first SODA GUI window is shown here.
Subsequent windows contain inputs for the high level pa-
rameters required to simulate a spacecraft swarm.

Unless it is bypassed via the command line, the SODA
GUI is the first part of SODA application. The GUI
prompts the user for inputs required for SODA’s use cases
and dynamically generates files needed for subsequent
modules of the program. Each window contains a cate-
gory of inputs, with buttons and tabs to provide naviga-
tion through the screens (Figure 3). As a user progresses
through the GUI, logical checks ensure valid inputs, such
as realistic orbital elements. GUI functionality concludes
with the creation of prerequisite files needed for other pro-
grams in the SODA application.

Because of a Python version dependency in GMAT,
SODA’s GUI is written in Python version 3.4.3. We
use the tkinter module that comes prepackaged with
Python. The GUI consists of classes, including a parent
class that initializes and stacks multiple components of the
GUI.

SODA’s early development has followed a rapid pro-
totyping approach, with requirements readily defined, pri-
oritized and implemented. Functionality benefits from
early user feedback. Future efforts will continue to en-
sure that the code structure is flexible, expandable, and
manageable.
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Figure 2: (Left) In the example depicted, small satellites are deployed in the orbit-normal direction. Deployments in
the velocity or co-normal direction are also simulation options. (Right) Satellites are deployed from a rotating vehicle

Bypassing the SODA GUI
In the Windows command line the user can bypass the
GUI and SODA will look for all necessary parameters
in user-provided text files. Executing SODA via scripts
enables Monte Carlo style analyses, a feature that is espe-
cially useful if the user needs to define unique initial states
and propulsion system properties for tens or hundreds of
satellites.

Deployment Simulators
Rather than specifying the initial state of each individual
satellite, a user may rely on SODA to perform a simula-
tion of a small satellite deployment. Currently, two de-
ployment simulators are available in SODA. We describe
them as “VNC Directional” (velocity, normal, co-normal)
and “Rotating” and illustrate the concepts inFigure 2.

For both deployment simulations, the orbit of the dis-
penser is specified by the user. There is a five second delay
between the individual deployments. To simulate the im-
perfect nature of small satellite deployments, random er-
rors of up to 10% create a distribution for the deployment
spring force. The VNC Directional deployer simulation is
for deployments along one of the three axes of the deploy-
ing vehicle’s VNC reference frame. Individual deploy-
ment vectors have pointing errors of up to 0.5º. The Ro-
tating deployer simulation models CubeSat deployments
from a rotating vehicle. The deployment vector includes
components from the spring force and a tangential com-
ponent due to the dispenser’s rotation.

Propagation via GMAT
To model the individual spacecraft trajectories, we rely
on GMAT, an open-source mission analysis tool devel-
oped by a team of NASA, private industry, public, and
private contributors.4 Each time SODA runs, user inputs
define a custom GMAT script. User creation of a simula-
tion script in GMAT’s GUI is also possible, but SODA

takes care of this automatically and avoids what could
become a tedious task to configure a swarm of a large
number of satellites. GMAT propagates the motion of
the satellites for the specified time step, and then passes
all state data to the custom Python function written for
that swarm type. If ∆v maneuvers are required for this
epoch, GMAT implements them as impulsive burns. Fuel
depletion modeling by GMAT reflects propulsion system
parameters given by the user (Isp, max thrust magnitude,
and duty cycle). GMAT then propagates forward another
time step, using a high fidelity model that includes per-
turbations due to atmospheric drag, solar radiation pres-
sure, and J2 effects. At the next epoch, the calls back
and forth to the Python function repeat. The entire propa-
gation process continues for the specified duration of the
simulation. GMAT outputs data of interest for each satel-
lite, such as state vectors, fuel use, and maneuvers, to text
files. Output files support subsequent scripts that generate
final products. GMAT also displays an animation of the
swarm motion.

Swarm Types

Missions have unique requirements for science data re-
turn, and swarm types will support different science ob-
jectives. To support swarm mission design, SODA cur-
rently has two swarm types enabled, each with its own
control logic. Additional swarm types are in development.

Swarm Type: In-Train Distribution

In this swarm type, the objective is to phase the satel-
lites ahead and behind each other to achieve an in-track,
or string-of-pearls, relative position configuration. SODA
maneuvers each satellite by performing a two-impulse el-
liptical transfer orbit from and back to the same orbit,
known as a phasing maneuver.

If the spacecraft’s relative position is trailing the tar-
get position, then the phasing orbital period must be less
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than that of the current orbit. A retrofire is required; the
spacecraft must slow down to speed up. The retrograde ∆v
occurs at apoapsis of the phasing orbit. On the other hand,
if the target is “behind” or trailing in the along-track direc-
tion, the phasing orbit must have an orbital period greater
than that of the current orbit. A forward fire thruster is re-
quired to boost the spacecraft’s velocity. The prograde ∆v
occurs at periapsis of the phasing orbit. We illustrate two
possible phasing orbits relative to a circular baseline in
Figure 4, where both ∆v maneuvers would occur at point
P.

If the baseline orbit is not circular, then the resulting
in-train formation will have relative motion in the radial
and along-track directions. The residual relative motion
is due to the speed of the satellites changing as they move
around the elliptical orbit. As shown in Figure 5, the mag-
nitude of the resulting relative motion will be a function of
the in-train separation distances; satellites that maneuver
further ahead or behind will have greater relative motion
than those spacecraft closest to the point of reference.

Figure 4: A baseline orbit is shown with two potential
phasing orbits: a smaller semimajor axis (green dash-
dot) to results in moving forward in-track, and a larger
semimajor axis (blue dashed) to regress in relative true
anomaly.

Swarm Type: Ellipsoid Container

The purpose of the ellipsoid container swarm type is to
maneuver the satellites to within a defined ellipsoid, the
center of which is on its own specified (mathematical) or-
bit, shown conceptually in Figure 6. Within this volume,
the satellites may wander, but not escape.

Figure 6: For this swarm type, prescribed maneuvers con-
strain satellite motion to within an ellipsoid volume, as
illustrated in red.

The parameters a, b, and c specify the dimensions of
the ellipsoid container, as in:

x2

a2 +
y2

b2 +
z2

c2 = 1 (1)

where a, b, and c define the ellipsoid dimensions in the
x-, y-, and z-axis directions of the local-vertical, local-
horizontal frame with origin at the center of the ellipsoid
container. In other words, for a local frame with its origin
on the user-specified orbit, a would be the dimension in
the radial direction, c would be the dimension in the orbit
normal direction, and y would be in the direction of the
unit vector that completes the triad.

For the ellipsoid container swarm type, we rely on
artificial potential functions (APFs), a method for au-
tonomous spacecraft control receiving extensive study in
the past two decades.2, 7, 8, 9 APFs provide the maneuvers
that guide the spacecraft to the ellipsoid volume, constrain
their motion to within this volume, and prevent collisions.
To accomplish simultaneous attraction and repulsion, we
define the global potential function such that the negative
gradient of the potential leads to the desired target area.

For the APF method described in this section to be
feasible for autonomous control, there is a non-trivial re-
quirement that each satellite has knowledge of the esti-
mated states of all other spacecraft in the swarm at a given
instant of query. The relative position of each satellite in
the swarm is simply:

ri = xi− xt (2)

where xi is the position vector of satellite i and xt is the po-
sition vector of the ellipsoid center in the inertial reference
frame. We take the same approach as others,2, 8, 9 and de-
fine the general form of the attractive potential function
for satellite i to be:

φa,i =
1
2

rT
i Pri (3)

where φa,i is scalar-valued. Taking the time derivative
Equation (3) gives:

φ̇a,i = (Pri)
T ṙi (4)
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Figure 5: (Left) In-train distribution satellites. (Right) Snapshot of a ten satellite swarm simulation. An animation of
these swarm types are available online.[5, 6]

Because the purpose of this swarm type is to constrain the
satellites within the ellipsoid volume, we define:

φa,i = φ̇a,i = 0 (5)

if satellite i is is within the ellipsoid perimeter.
The repulsive potential is a function of the distances

between each pair of satellites. We apply the obstacle-
avoiding approach described by McQuade and McInnes
and use a Gaussian function.8 For a swarm of n satellites,
we define the total repulsive potential function for satellite
i to be:

φr,i =
n, j 6=i

∑
j=1

Ae−B(ρ
T
j,iPρ j,i) (6)

where ρ j,i is the position of satellite j with respect to
satellite i. Taking the time derivative of Equation (6)
gives:

φ̇r,i =
n, j 6=i

∑
j=1
−4AB

(
ρ

T
j,iPρ̇ j,i

)
e−B(ρ

T
j,iPρ j,i) (7)

The global potential for spacecraft i is the sum of the at-
tractive and repulsive potential functions:

φi = φa,i +φr,i (8)

SODA queries the states of all satellites in the swarm
at a user-specified frequency. The algorithm first checks
a wait condition, verifying that enough time has elapsed
since the last impulsive maneuver. For example, a par-
ticular spacecraft design may require a duty cycle of 30
seconds. If either the wait condition is unsatisfied or the
time derivative of the potential is negative, no maneuvers
are performed.

If the wait condition is satisfied and φ̇i ≥ 0, the gradi-
ent for spacecraft i is found as:

∇φ = ∇φa,i +∇φr,i (9)

∇φ = Pri +
n, j 6=i

∑
j=1
−2ABPρ j,ie

−B(ρ
T
j,iPρ j,i) (10)

The next step calculates a scaling factor for the magnitude
of the impulsive maneuver:8

κ = vmax,i

(
1− e−λφi

)
(11)

where λ is a constant and vmax,i is the maximum possi-
ble ∆v magnitude achievable by the satellite. Next, the
desired relative velocity vector for satellite i is calculated:

ṙi =−κ
∇φ

|∇φ |
(12)

Finally, the relative velocity change given by Equation
(12) executes via an impulsive maneuver.

There are several parameters in the above equations
that may be either tuned to constants or defined as time-
varying functions: A, B, λ , and P. Choosing these pa-
rameters is a swarm design choice, as different values can
yield very different maneuvers and thus impact fuel use
and mission life. For example, Figure 7 illustrates how
the total potential field is represented for different values
of A and B.

A wider base and steeper curve for the repulsive func-
tion creates a more conservative “keep out” zone, but
may unnecessarily cause more maneuvers as the satellites
move within the ellipsoid volume. Monte Carlo analysis
is an option for choosing the optimal values of A, B, λ ,
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Figure 7: Three examples of unique choices for the repulsive function’s A and B parameters. An animation illustrating
how the peaks of the repulsive potential function vary with A and B is available online.[10]

and P for a specific mission concept. Currently SODA
defaults to: A = B = 50, λ = 1, and P = [I]3x3. In Figure
8, we illustrate a representative APF calculated by SODA
at the start of a simulation.

Figure 8: Snapshot of the APF field for a five satellite
swarm in an equatorial, circular LEO.

Products and Results

SODA creates output products which serve its uses as
a development environment for algorithms to control
swarm orbital dynamics, simulation support for swarm
technologies, and enhancing stakeholder awareness of
swarm mission concepts and issues.

Among the most powerful display capabilities are
3D animations of the trajectories of the satellites using
GMAT; a screen capture of the In-Train Distribution case
and an Ellipsoid Container example with 10 satellites are
shown in Figure 5. Impulsive burns are recognizable as
the cusp points in the trajectory curves. At present, the

spacecraft image defaults to a standard GMAT model;
pending capability will import custom designs.

Several aspects of on orbit relative motion may seem
counter-intuitive for stakeholders and multi-disciplinary
collaborators. For example, the effects of differential drag
in LEO are generally more pronounced than mission plan-
ners expect and can be a design driver on post-deployment
attitude control. It is beneficial to see how large a disper-
sion would be achieved in a given time, or how changes to
deployment vectors affect the spreading of the satellites.
For supporting stakeholder awareness, SODA has a “free
drift” swarm type where no corrective maneuvers are per-
formed; initial conditions are propagated only using the
high fidelity model. We find that the free drift mode is use-
ful mainly for studies comparing different swarm types, or
to illustrate the underlying relative motion dynamics.

Design analyses and trades studies rely on quantita-
tive evaluations and SODA captures metrics to character-
ize swarm performance. The plot on the left in Figure 9
is an example study of the collision avoidance feature of
the artificial potential functions. We see that the average
separation distance grows after deployment, but there are
instances where a pair of satellites come within 15 meters
of each other in this particular case. Close approach in-
formation allows us to study and tune the repulsive func-
tions of the APFs. We realize that in certain missions, the
“keep-out” zones around satellites should be much more
conservative than in other cases. An additional concern
is fuel use. The plot on the right side of Figure 9 shows
that one satellite used 1/2 kg of fuel over the duration of
this simulation. We would expect that more conservative
repulsive APFs, as well as smaller ellipsoid dimensions,
would require higher fuel use. Visualizations of the time
varying APFs allow a user to study different swarm design
choices and how they would impact performance.

Lastly, SODA generates tabular output files represent-
ing maneuver commands for swarm maintenance. Ad-
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Figure 9: After completing a swarm type simulation, SODA displays performance metrics.

vanced evolution of a swarm controller could become a
component of ground support and would leverage the cen-
tral advantage of SODA’s approach by streamlining op-
erations of a large number of swarm members using in-
put commands abstracted for the swarm as a single en-
tity. Closer on the development timeline are interfaces
to other mission components that use the maneuver com-
mands, such as control software or analytical simulations.

Conclusions and Forward Work

SODA has proven useful as a tool for both mission con-
cept development and propulsion system research. Work
is ongoing to enable additional swarm types, including:
statistical distribution, short-hold geometric formation,
periodic geometric formation, and specified relative mo-
tion. Furthermore, we intend to incorporate techniques
that optimize fuel, rather than time, by applying con-
straints to the timing of maneuvers.

Future research efforts include studying the effective-
ness of state of the art propulsion systems for small satel-
lite swarms. SODA enables trade analysis, performance
evaluation, and the generation of valuable parametric re-
sults to address the technical challenges associated with
maintaining a satellite swarm in close proximity.

Orbit Determination

We acknowledge that swarm maintenance requires knowl-
edge of the relative position and velocity of each satellite
- i.e. the orbital parameters of each swarm agent. Up to
this point, we have made the assumption of accurate state
information. In the context of swarms, this is admittedly
a big assumption.

The theory of orbit determination is as old as satel-
lites themselves; the orbit of Sputnik was determined from
Doppler shift measurements.11 In today’s mission design,
accurate measurement data and successful orbit determi-
nation algorithms are assumed. For example, the recent
Radio Aurora eXplorer II (RAX-2) CubeSat mission re-
ported a maximum GPS-derived error of 4.02 m for posi-
tion and 0.48 m/s for velocity.12 This may or may not be
sufficient accuracy for swarm satellites, and the require-
ments will be mission-specific. Deep space swarm mis-
sions beyond the help of GPS will rely on alternate orbit
determination methods using radio- or optical-based mea-
surements. Analysis of orbital estimation requirements
for satellite swarms has been beyond the scope of this ini-
tial paper, but imperfect measurements will be modeled in
future SODA versions.
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