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ABSTRACT 
The problem of creating a fast, robust startracker optimized for a specific camera is both of great importance, and 
great difficulty for smallsat missions. A cycle of algorithm development, camera calibration, validation, and 
database tuning typically requires several iterations, and consumes a great deal of time and effort. Unfortunately this 
is often the only option for smallsat missions, where financial constraints put commercial star trackers out of reach. 
  
In this paper, we present a framework which automates the process from end to end. Given a set of sample star 
images taken with a given camera at the desired exposure time, we can automatically calculate all the parameters, 
generate the optimal startracker database, and perform testing and validation. Depending on the camera, this results 
in a startracker with performance that has been shown to be on par with, or in many cases better than existing 
commercial startrackers. A startracker produced using this method has been tested and will soon have flight 
heritage, at which point this software will be made available to the smallsat community via an open source license. 

 

Introduction: 
  
The problem of identifying orientation given an image 
of the stars is of great importance in both astronomy 
and spacecraft guidance. Up to this point in time, the 
two communities have developed different algorithms 
to meet different sets of constraints. 
  
In the astronomical community, images can come from 
many different sources and CPU time is virtually 
unlimited. State of the art astronomy-type algorithms 
such as astrometry.net are able to not only 
automatically solve for orientation, but also camera 
field of view, photon sensitivity, signal to noise ratio, 
and first order lens distortion parameters. On the other 
hand, in spacecraft guidance, it is necessary to rapidly 
solve images with limited computational resources. The 
tradeoffs needed in order to meet the requirements of 
this class of algorithms means that additional time 
and/or money has to be put into improving the 
performance of the camera itself. This poses a problem 
for nanosatellite missions, where both time and money 
are in short supply. 
  
The framework we have developed combines the best 
of both worlds, enabling the rapid development of low 
cost, high performance star-trackers 
Framework components: 

  
The framework we have developed consists of three 
components: 
1. A novel state of the art high speed star-tracker 
algorithm which incorporates relative brightness and 
scale information.  
2. An optimal star-tracker database generation 
framework which uses astronomy-type algorithms to 
estimate calibration parameters from a set of sample 
images.  
3. An automatic test suite which validates the star-
tracker under a variety of test conditions, and 
 determines expected slew tolerance and sky coverage. 
  
Star tracker algorithm: 
  
Current state of the art, fast star-tracker algorithms can 
trace their origins back to the work of Dr. Daniele 
Mortari from Texas A&M, who developed the Pyramid 
Star Identification Technique for Lost in Space star 
identification[1]. Lost in Space refers to the situation 
where there is no prior knowledge of satellite 
orientation. In essence, the pyramid technique works as 
follows: 
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1. The positions of stars in the image are 
determined by the centroiding technique. This 
is detailed in the image preprocessor section. 

2. Possible four star constellations are generated, 
and checked to match a reference constellation 
database 

a. A pilot star is selected from an image 
b. Three reference stars are selected 

from the image 
c. The distance between the pilot star 

and the three reference stars are 
looked up in a “K-vector” database (a 
variant of the hash-table devised by 
Dr. Mortari and commonly used in 
the spacecraft guidance community) 

d. If a constellation has been uniquely 
identified, solve for spacecraft 
orientation, and identify the 
remaining stars by looking them up in 
a star database based on their position 
in the sky. Otherwise select the next 
constellation in the image 

e. Repeat until identification has 
occurred, or all combinations have 
been exhausted.  

  
  
In the original paper, this technique was tested with a 
12 degree field of view, and a database consisting of 
stars of magnitude greater than 5.5 magnitude. The 
algorithm is fine in this case, however  the constellation 
database size quickly balloons and starts producing 
false positives when dimmer stars are included. It is 
necessary to include dimmer stars in order to ensure 
complete sky coverage with lower field of view sizes. 
Lower Field of view sizes are desirable due to the fact 
that they are the cheapest way to lower the number of 
degrees per pixel, which improves the accuracy of the 
final position estimate. 
  
This issue was addressed by Dr. Mortari’s student 
Benjamin Spratling in his PHD thesis, describing a new 
startracker algorithm called Star-ND[2]. In it, he 
proposes a new technique which involves selecting the 
three stars that are nearest to the pilot star, and simply 
using those as the basis for the star triangle. This allows 
each pilot star to have a single, unique constellation, 
which drastically reduces database size (cases where 
the nearest three stars might be ambiguous are handled 
by checking both cases). Finally, rather than performing 
three separate lookups and cross checking the results, it 
is possible to drastically increase performance by using 
a hash function which takes the angles between the star 
furthest from the pilot star and the two middle stars, and 
produces a number which is unique to each 

constellation. The end result is that it is possible to 
increase both accuracy and performance. This was 
tested in flight with an 8x8 fov camera, and a star 
tracker database consisting of 7.5 magnitude stars. 
However, it is assumed that centroiding accuracy is on 
the order of within 1/20 of a pixel of the database 
position, which requires that the camera be intentionally 
defocused in order to spread the light around among 
multiple pixels, as well as a very accurate database. 
  
In order to meet our goals, we need another order of 
magnitude Field of View improvement above Star-ND, 
while simultaneously reducing the accuracy 
requirement. This is accomplished by the following 
refinements to the algorithm: 
  

1. Rather than using the method for generating 
the database lookup key described in Star-ND, 
we order the stars by brightness, and use the 
brightest star as the pilot. We then simply 
measure the distance between pilot and the 
2nd, 3rd and fourth brightest stars respectively, 
and use those values to form a key for the k-
vector lookup. Cases where the relative 
brightness is ambiguous is handled similarly to 
the distance ambiguity, by inserting it into the 
database both ways.  

2. Memory usage is dramatically reduced by 
memory mapping the constellation database. 
This is a programming technique which 
intelligently loads bits and pieces of a file into 
memory as needed rather than reading the 
entire thing into memory. 

  
For a case where average constellation width is 500 
pixels, this results in a 1000x improvement in the 
maximum number of constellations which can quickly 
be looked up (resolving the ambiguity of the ordering 
of the values results in a 2x improvement, and adding a 
third value results in a 500x improvement). 
  
This can also be traded for a 10x improvement in the 
amount of tolerable star position error. 
  
Automatic star tracker calibration and database 
generation 
  
The process for automatically calibrating the star 
tracker is divided into three parts, as follows: 

1. Star tracker calibration.  
a. Generate background subtraction 

mask & calculate image statistics 
b. Solve test images using 

astrometry.net & compute average 
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position error in star database using 
solved sample images 

c. Determine variance of star magnitude 
between stars as seen in the image vs 
the database 

2. Star database preprocessing 
3. Constellation database generation 

  
Star Tracker calibration: 
  
Generate background subtraction mask 
  
The first step in preprocessing star images is to subtract 
out the average noise background, as well as any dead 
pixels that may be present. In order to generate a 
background image, we remove stars by taking the 
median of multiple test images containing stars in 
different positions of the sky. This produces a clean test 
image containing just the background, with no stars 
present. We are then able to use this background 
subtraction mask to reduce background noise in future 
images. 
  
Since this process is robust to stars in the image, it can 
also be used for inflight recalibration (ie. to fix dead 
pixels) 
 
During this process, we also calculate image noise 
variance, which will be used later in the database 
generation process 
  
Solve test images using astrometry.net  
  
A piece of software called astrometry.net[3] is used in 
this stage of the process to solve the orientation and 
field of view size of our images. Using the orientation 
information, we line up the stars in the image with the 
stars in our database, and compute the average position 
error between them. The field of view size of the 
calibration image which matches the best is used later 
in the database generation process 
  
Star database preprocessing:  
  
The star database is derived from a standard catalog 
such as that hipparcos star survey. We load this catalog 
& flag stars that are unsuitable for inclusion in the 
database due to measurement error, being too close to a 
neighbor star, high levels of brightness variability, or 
being too dim for us to see. We then update their 
positions to the current year based on the motions 
observed by the hipparcos mission, and store the 
position, brightness, and brightness variability of the 
stars, as well as the suitability flag. 

Constellation database generation: 
  
Stars which have been flagged as suitable for inclusion 
in the star database are used to generate constellations 
in two ways: First, for each suitable star select the three 
nearest suitable stars. Second, we need to add entries to 
handle the case where we have enough stars to match, 
but do not have any complete constellations of the first 
type in our field of view. To do this, we generate a list 
of overlapping fields of view that cover the sky, select 
the star closest to the center of each, and generate a 
constellation consisting only of suitable stars currently 
in the field of view. In both cases, we handle 
ambiguities in determining the three closest stars by 
generating multiple constellations. Next, we sort all of 
the stars in each constellation by brightness (duplicating 
when ambiguous) and filter out non-unique 
constellations. Finally, we save the star id’s and 
distances between them to a binary k-vector file. A 
technique called memory mapping allows us to quickly 
access the data without having to pay to load it into 
memory. This process is sped up by loading the star 
positions into a kd-tree which is a data structure for 
rapidly searching objects in n-dimensional space 
  
Image preprocessor: 
  
The image preprocessor is the component which 
extracts the positions of stars from an image. In our 
case, we also need to compensate for motion blur due to 
spacecraft rotation. Thus, image preprocessing consists 
of two steps: 
  

1. Background subtraction 
2. Star position extraction & projection 

  
  
Background subtraction: 
  
We subtract the noise background which was computed 
previously. This lowers the noise floor, removes dead 
pixels and certain other artifacts, to produce a cleaner 
image 
  
Star position extraction & projection: 
  
The centroiding technique is used to extract the 
positions of stars. This technique works as follows: 

1. Set a threshold brightness. Any pixel which 
falls above this threshold is considered to be 
part of a star, while any pixel which falls 
below this threshold is considered to be sky 

2. Find the brightness weighted centroid of each 
star 
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3. Refine the position of the centroid by 
including pixels along the boundary of the star 
and recalculating the brightness 

  
  
Finally we project the extracted star centroids onto the 
celestial sphere. From there we are able to feed these 
star positions into the star-tracker. 
  
Automatic test suite: 
  
The final piece of the framework is the automatic test 
suite. During the first stage, we validate against an 
additional set of test images taken with the startracker 
camera under realistic conditions to insure that we can 
solve them quickly. Finally a GPU based, hardware in 
the loop camera image simulator generates realistic 
moving starfields which are displayed on a projector, 
which is used as an input for the startracker camera. 
This is used to determine expected slew tolerance of the 
star-tracker under a variety of conditions 
Results: 
The complete process of calibration, database 
generation, and validation is run automatically via a 
single shell script. Validation completed successfully 
with both the consumer grade Logitech HD C270, as 
well as our higher quality Gigevision Smartek flight 
camera. We present a step by step breakdown of our 
results for the Logitech HD C270 below, as it is the 
more difficult of the two tests: 
  
  
./startracker_unit_test.sh 
  
At this point, we generate the background subtraction 
mask, calculate image noise statistics, and solve the test 
images using astrometry. We then match up the stars in 
the test images with the stars in the database, and 
calculate the average error between them (in pixels) 
  
DEC=60.4992808694 
RA=179.143292443 
ORIENTATION=179.092210058 
Stars found: 13 
Average err: 0.816428478937 

 
Figure 1: Centroids (red) vs Database (blue) 
... 
DEC=76.024542615 
RA=-179.46769828 
ORIENTATION=179.392884815 
Stars found: 11 
  
Next, we calculate lower, upper and median bounds 
which relate the brightness of stars in our database to 
stars in the image. Due to the low quality of the camera, 
there is a large variance. The calibration process 
compensates for this automatically by generating a 
database in which very low emphasis is placed on star 
brightness. 
  

 
Figure 2: Star brightness vs. Database  
Average err: 0.778982947253 
  
Next we generate the star database. Statistics for sky 
coverage, number of constellations, and maximum 
constellations (for this particular camera) are generated 
  
Database coverage: 98.2843137255% percent of the 
sky 
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PARAM1=75 
PARAM2=75 
PARAM3=75 
NUMCONST=14280 
MAXCONST=52734 
... 
  
Finally, we validate our image against actual test data. 
The startracker is able to solve the lost in space problem 
for these images in roughly 30 milliseconds (that’s 
fast!) 
  
  
Using OpenCV centroiding: 
  
bg_sample/w1.png 
Time: 0.0321140289307 
DEC=60.4956492831 
RA=179.157306008 
ORIENTATION=178.979274135 
  
…. 
bg_sample/w8.png 
Time: 0.0311989784241 
DEC=76.0048732316 
RA=-179.516300048 
ORIENTATION=179.343238004 
andrew@spaaace:~/startracker$ 
  
  
Final remarks: 
Many of the pieces necessary for a high performance 
automatic star-tracker optimization framework have 
been developed independently by different research 
groups, but they have never been unified into a single, 
easy to use framework for automatic star-tracker 
optimization. It is our hope that this work will put high 
performance star trackers within reach of college or 
even high school cubesat projects, making missions 
requiring high precision attitude determination 
accessible for all. 
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