
Andrew Tennenbaum 1 31st Annual AIAA/USU
 Conference on Small Satellites

SSC17-VIII-6

Automatic Star-tracker Optimization Framework

Andrew Tennenbaum
The State University of New York at Buffalo

aztennen@buffalo.edu

Faculty Advisor: John Crassidis
The State University of New York at Buffalo

ABSTRACT
The problem of creating a fast, robust startracker optimized for a specific camera is both of great importance, and
great difficulty for smallsat missions. A cycle of algorithm development, camera calibration, validation, and
database tuning typically requires several iterations, and consumes a great deal of time and effort. Unfortunately this
is often the only option for smallsat missions, where financial constraints put commercial star trackers out of reach.

In this paper, we present a framework which automates the process from end to end. Given a set of sample star
images taken with a given camera at the desired exposure time, we can automatically calculate all the parameters,
generate the optimal startracker database, and perform testing and validation. Depending on the camera, this results
in a startracker with performance that has been shown to be on par with, or in many cases better than existing
commercial startrackers. A startracker produced using this method has been tested and will soon have flight
heritage, at which point this software will be made available to the smallsat community via an open source license.

Introduction:

The problem of identifying orientation given an image
of the stars is of great importance in both astronomy
and spacecraft guidance. Up to this point in time, the
two communities have developed different algorithms
to meet different sets of constraints.

In the astronomical community, images can come from
many different sources and CPU time is virtually
unlimited. State of the art astronomy-type algorithms
such as astrometry.net are able to not only
automatically solve for orientation, but also camera
field of view, photon sensitivity, signal to noise ratio,
and first order lens distortion parameters. On the other
hand, in spacecraft guidance, it is necessary to rapidly
solve images with limited computational resources. The
tradeoffs needed in order to meet the requirements of
this class of algorithms means that additional time
and/or money has to be put into improving the
performance of the camera itself. This poses a problem
for nanosatellite missions, where both time and money
are in short supply.

The framework we have developed combines the best
of both worlds, enabling the rapid development of low
cost, high performance star-trackers
Framework components:

The framework we have developed consists of three
components:
1. A novel state of the art high speed star-tracker
algorithm which incorporates relative brightness and
scale information.
2. An optimal star-tracker database generation
framework which uses astronomy-type algorithms to
estimate calibration parameters from a set of sample
images.
3. An automatic test suite which validates the star-
tracker under a variety of test conditions, and
 determines expected slew tolerance and sky coverage.

Star tracker algorithm:

Current state of the art, fast star-tracker algorithms can
trace their origins back to the work of Dr. Daniele
Mortari from Texas A&M, who developed the Pyramid
Star Identification Technique for Lost in Space star
identification[1]. Lost in Space refers to the situation
where there is no prior knowledge of satellite
orientation. In essence, the pyramid technique works as
follows:

Andrew Tennenbaum 2 31st Annual AIAA/USU
 Conference on Small Satellites

1. The positions of stars in the image are
determined by the centroiding technique. This
is detailed in the image preprocessor section.

2. Possible four star constellations are generated,
and checked to match a reference constellation
database

a. A pilot star is selected from an image
b. Three reference stars are selected

from the image
c. The distance between the pilot star

and the three reference stars are
looked up in a “K-vector” database (a
variant of the hash-table devised by
Dr. Mortari and commonly used in
the spacecraft guidance community)

d. If a constellation has been uniquely
identified, solve for spacecraft
orientation, and identify the
remaining stars by looking them up in
a star database based on their position
in the sky. Otherwise select the next
constellation in the image

e. Repeat until identification has
occurred, or all combinations have
been exhausted.

In the original paper, this technique was tested with a
12 degree field of view, and a database consisting of
stars of magnitude greater than 5.5 magnitude. The
algorithm is fine in this case, however the constellation
database size quickly balloons and starts producing
false positives when dimmer stars are included. It is
necessary to include dimmer stars in order to ensure
complete sky coverage with lower field of view sizes.
Lower Field of view sizes are desirable due to the fact
that they are the cheapest way to lower the number of
degrees per pixel, which improves the accuracy of the
final position estimate.

This issue was addressed by Dr. Mortari’s student
Benjamin Spratling in his PHD thesis, describing a new
startracker algorithm called Star-ND[2]. In it, he
proposes a new technique which involves selecting the
three stars that are nearest to the pilot star, and simply
using those as the basis for the star triangle. This allows
each pilot star to have a single, unique constellation,
which drastically reduces database size (cases where
the nearest three stars might be ambiguous are handled
by checking both cases). Finally, rather than performing
three separate lookups and cross checking the results, it
is possible to drastically increase performance by using
a hash function which takes the angles between the star
furthest from the pilot star and the two middle stars, and
produces a number which is unique to each

constellation. The end result is that it is possible to
increase both accuracy and performance. This was
tested in flight with an 8x8 fov camera, and a star
tracker database consisting of 7.5 magnitude stars.
However, it is assumed that centroiding accuracy is on
the order of within 1/20 of a pixel of the database
position, which requires that the camera be intentionally
defocused in order to spread the light around among
multiple pixels, as well as a very accurate database.

In order to meet our goals, we need another order of
magnitude Field of View improvement above Star-ND,
while simultaneously reducing the accuracy
requirement. This is accomplished by the following
refinements to the algorithm:

1. Rather than using the method for generating
the database lookup key described in Star-ND,
we order the stars by brightness, and use the
brightest star as the pilot. We then simply
measure the distance between pilot and the
2nd, 3rd and fourth brightest stars respectively,
and use those values to form a key for the k-
vector lookup. Cases where the relative
brightness is ambiguous is handled similarly to
the distance ambiguity, by inserting it into the
database both ways.

2. Memory usage is dramatically reduced by
memory mapping the constellation database.
This is a programming technique which
intelligently loads bits and pieces of a file into
memory as needed rather than reading the
entire thing into memory.

For a case where average constellation width is 500
pixels, this results in a 1000x improvement in the
maximum number of constellations which can quickly
be looked up (resolving the ambiguity of the ordering
of the values results in a 2x improvement, and adding a
third value results in a 500x improvement).

This can also be traded for a 10x improvement in the
amount of tolerable star position error.

Automatic star tracker calibration and database
generation

The process for automatically calibrating the star
tracker is divided into three parts, as follows:

1. Star tracker calibration.
a. Generate background subtraction

mask & calculate image statistics
b. Solve test images using

astrometry.net & compute average

Andrew Tennenbaum 3 31st Annual AIAA/USU
 Conference on Small Satellites

position error in star database using
solved sample images

c. Determine variance of star magnitude
between stars as seen in the image vs
the database

2. Star database preprocessing
3. Constellation database generation

Star Tracker calibration:

Generate background subtraction mask

The first step in preprocessing star images is to subtract
out the average noise background, as well as any dead
pixels that may be present. In order to generate a
background image, we remove stars by taking the
median of multiple test images containing stars in
different positions of the sky. This produces a clean test
image containing just the background, with no stars
present. We are then able to use this background
subtraction mask to reduce background noise in future
images.

Since this process is robust to stars in the image, it can
also be used for inflight recalibration (ie. to fix dead
pixels)

During this process, we also calculate image noise
variance, which will be used later in the database
generation process

Solve test images using astrometry.net

A piece of software called astrometry.net[3] is used in
this stage of the process to solve the orientation and
field of view size of our images. Using the orientation
information, we line up the stars in the image with the
stars in our database, and compute the average position
error between them. The field of view size of the
calibration image which matches the best is used later
in the database generation process

Star database preprocessing:

The star database is derived from a standard catalog
such as that hipparcos star survey. We load this catalog
& flag stars that are unsuitable for inclusion in the
database due to measurement error, being too close to a
neighbor star, high levels of brightness variability, or
being too dim for us to see. We then update their
positions to the current year based on the motions
observed by the hipparcos mission, and store the
position, brightness, and brightness variability of the
stars, as well as the suitability flag.

Constellation database generation:

Stars which have been flagged as suitable for inclusion
in the star database are used to generate constellations
in two ways: First, for each suitable star select the three
nearest suitable stars. Second, we need to add entries to
handle the case where we have enough stars to match,
but do not have any complete constellations of the first
type in our field of view. To do this, we generate a list
of overlapping fields of view that cover the sky, select
the star closest to the center of each, and generate a
constellation consisting only of suitable stars currently
in the field of view. In both cases, we handle
ambiguities in determining the three closest stars by
generating multiple constellations. Next, we sort all of
the stars in each constellation by brightness (duplicating
when ambiguous) and filter out non-unique
constellations. Finally, we save the star id’s and
distances between them to a binary k-vector file. A
technique called memory mapping allows us to quickly
access the data without having to pay to load it into
memory. This process is sped up by loading the star
positions into a kd-tree which is a data structure for
rapidly searching objects in n-dimensional space

Image preprocessor:

The image preprocessor is the component which
extracts the positions of stars from an image. In our
case, we also need to compensate for motion blur due to
spacecraft rotation. Thus, image preprocessing consists
of two steps:

1. Background subtraction
2. Star position extraction & projection

Background subtraction:

We subtract the noise background which was computed
previously. This lowers the noise floor, removes dead
pixels and certain other artifacts, to produce a cleaner
image

Star position extraction & projection:

The centroiding technique is used to extract the
positions of stars. This technique works as follows:

1. Set a threshold brightness. Any pixel which
falls above this threshold is considered to be
part of a star, while any pixel which falls
below this threshold is considered to be sky

2. Find the brightness weighted centroid of each
star

Andrew Tennenbaum 4 31st Annual AIAA/USU
 Conference on Small Satellites

3. Refine the position of the centroid by
including pixels along the boundary of the star
and recalculating the brightness

Finally we project the extracted star centroids onto the
celestial sphere. From there we are able to feed these
star positions into the star-tracker.

Automatic test suite:

The final piece of the framework is the automatic test
suite. During the first stage, we validate against an
additional set of test images taken with the startracker
camera under realistic conditions to insure that we can
solve them quickly. Finally a GPU based, hardware in
the loop camera image simulator generates realistic
moving starfields which are displayed on a projector,
which is used as an input for the startracker camera.
This is used to determine expected slew tolerance of the
star-tracker under a variety of conditions
Results:
The complete process of calibration, database
generation, and validation is run automatically via a
single shell script. Validation completed successfully
with both the consumer grade Logitech HD C270, as
well as our higher quality Gigevision Smartek flight
camera. We present a step by step breakdown of our
results for the Logitech HD C270 below, as it is the
more difficult of the two tests:

./startracker_unit_test.sh

At this point, we generate the background subtraction
mask, calculate image noise statistics, and solve the test
images using astrometry. We then match up the stars in
the test images with the stars in the database, and
calculate the average error between them (in pixels)

DEC=60.4992808694
RA=179.143292443
ORIENTATION=179.092210058
Stars found: 13
Average err: 0.816428478937

Figure 1: Centroids (red) vs Database (blue)
...
DEC=76.024542615
RA=-179.46769828
ORIENTATION=179.392884815
Stars found: 11

Next, we calculate lower, upper and median bounds
which relate the brightness of stars in our database to
stars in the image. Due to the low quality of the camera,
there is a large variance. The calibration process
compensates for this automatically by generating a
database in which very low emphasis is placed on star
brightness.

Figure 2: Star brightness vs. Database
Average err: 0.778982947253

Next we generate the star database. Statistics for sky
coverage, number of constellations, and maximum
constellations (for this particular camera) are generated

Database coverage: 98.2843137255% percent of the
sky

Andrew Tennenbaum 5 31st Annual AIAA/USU
 Conference on Small Satellites

PARAM1=75
PARAM2=75
PARAM3=75
NUMCONST=14280
MAXCONST=52734
...

Finally, we validate our image against actual test data.
The startracker is able to solve the lost in space problem
for these images in roughly 30 milliseconds (that’s
fast!)

Using OpenCV centroiding:

bg_sample/w1.png
Time: 0.0321140289307
DEC=60.4956492831
RA=179.157306008
ORIENTATION=178.979274135

….
bg_sample/w8.png
Time: 0.0311989784241
DEC=76.0048732316
RA=-179.516300048
ORIENTATION=179.343238004
andrew@spaaace:~/startracker$

Final remarks:
Many of the pieces necessary for a high performance
automatic star-tracker optimization framework have
been developed independently by different research
groups, but they have never been unified into a single,
easy to use framework for automatic star-tracker
optimization. It is our hope that this work will put high
performance star trackers within reach of college or
even high school cubesat projects, making missions
requiring high precision attitude determination
accessible for all.

References
1. Search-Less Algorithm for Star Pattern

Recognition. 1997, D. Mortari et. al,

2. Star-ND (Multi-Dimensional Star-Identification).
2012, Spratling, Benjamin et. al,

3. ASTROMETRY.NET: Blind Astrometric
Calibration of Arbitrary Astronomical Images,
2010, Dustin Lang,

	Automatic Star-tracker Optimization Framework
	ABSTRACT
	References

