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ABSTRACT 

The days of “dumb” satellites in LEO are numbered.  As many CubeSat missions have proven, commercial off the 
shelf (COTS) processors – orders of magnitude more powerful than traditional rad-hard parts – can fly.  Powerful 
processors give satellite designers the horsepower they need to collect, analyze, and process big datasets on-orbit.  
The extra headroom also accommodates rapid development using traditionally-terrestrial COTS and open-source 
operating systems and software stacks.  Unfortunately, these large software ecosystems bring their terrestrial cyber 
sins into orbit with them.  We need to understand and mitigate the cyber threat now, before bad patterns become 
entrenched and propagated. 

This paper reviews a set of cybersecurity guidelines that help developers craft more securable designs for small 
satellites.  The guidelines highlight ways that satellite security and ground system security can strengthen each other.  
Since system compromise remains possible even if best practices are followed, the guidelines suggest ways to 
recover control.  We further describe ongoing work in a reference implementation that honors the guidelines, 
building on the seL4 microkernel as the security foundation and NASA’s Core Flight Software (cFS) as the 
functionality foundation. 
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INTRODUCTION 

Satellites have historically had modest amounts of 
computational power.  Radiation-hardened parts with 
extensive flight heritage are naturally the components 
of choice for traditional, large, expensive satellite 
systems.  These expensive, low processing power 
systems had correspondingly straightforward software 
loads. 

The SmallSat paradigm – especially the LEO CubeSat 
regime – is substantially changing the calculus in space.  
CubeSats willing to tolerate the higher risk of COTS 
components can fly tremendous amounts of 
computational power for a fraction of the cost and size, 
weight, and power (SWaP) of traditional rad-hard 
components.  This has opened up a world of additional 
possibilities for on-orbit data processing. 

However, the additional headroom has also made it 
possible to use traditional COTS software in space as 
well.  This is a difficult temptation to resist:  the rapid 
development timelines of small satellites would 
certainly benefit from the use of COTS technology 
typically seen in the embedded computing space.  It is 
no longer unheard of to fly Linux in space, for example, 
with all of the overhead of a traditional distribution.  
Such an approach brings with it all of the cyber security 
risks of these large, expansive computing environments.   

It’s difficult enough to survive with this level of 
vulnerability on the ground; it becomes nearly 
untenable in space.  A space-based computer has only 
itself as its root of recovery; no trusted human can come 
along and push the reset button, or unplug it, or replace 
the hard drive.  An adversary could conceivably 
compromise a satellite processor to such a degree that 
the rightful owner permanently and irrevocably loses 
control of their satellite. 

We can’t simply return to the era of low power 
processing, either; the increased horsepower enables 
novel on-orbit processing approaches that are too 
valuable to abandon.  We must find some middle 
ground, a way to have robust processing capability on 
orbit coupled with the safety and security guarantees 
necessary to ensure mission success and recoverability 
in a challenging world.  This paper documents our 
efforts to achieve that goal. 

If our ground control system is impervious to attack, 
and our vendors provide only malware-free software for 
our use, and our authorized administrators never 
misbehave, then the attack surface is minimal.  
However, reality is often less assured.  We have 
selected an attack surface that assumes temporary loss 
of control of the ground control system, allowing an 

adversary to issue properly authenticated commands 
and software updates to the satellite for a brief time.  
The way that the adversary is detected and evicted from 
the ground control station, while important, is beyond 
the scope of this paper.  Our goal is to make such a 
transient compromise non-fatal for the satellite.  

We have established a set of guidelines for design of 
space systems that move beyond the basic and 
traditional security approaches of encrypted command-
and-control links to consider the broader set of threats 
to space systems, the residual threats faced even if 
encrypted C2 is used.  We review these guidelines in 
the next section.  They receive a more thorough 
treatment in [2]. 

Additionally, we have been developing an example 
implementation of secure satellite processor, with those 
guidelines in mind.  The bulk of the paper reviews this 
effort and reports on our ongoing results and planned 
future work. 

GUIDELINES 
To mitigate those three scenarios, we propose design 
guidelines geared to motivate more secure and more 
securable designs. We deliberately neglect traditional 
security approaches one might otherwise employ from, 
e.g., NIST controls [3], as they are adequately covered 
there. 

In [2] we call out five key guidelines, which we 
summarize here. 

First, fail slowly – ensure that any dangerous 
commands that your satellite can receive have a 
substantial margin between when the command is 
received and when the command is obeyed.  This gives 
ground controllers time to recognize and countermand 
if the command is unintended. 

Second, employ crypto beyond COMSEC, to 
cryptographically enforce role-based access control.  
This provides finer grained security vs. the basic 
approach of offering complete trust to any ground 
control entity on the good side of the encryptor. 

Third, and most importantly, satellites must provide a 
root of recovery.  In traditional, terrestrial systems, any 
amount of compromise can effectively be remediated 
by a human being asserting physical control – 
rebooting, reimaging, or replacing the compromised 
system.  For satellites, that is a very expensive and slow 
luxury.  A root of recovery becomes imperative. 

In [2] we also consider ablative defenses as a 
technique to reduce the risk that the security 
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enhancements themselves will jeopardize the mission, 
but we do not consider it further here. 

Lastly, we wish to reboot and succeed quickly.  If 
malware must be evicted by restarting the satellite, the 
restart sequence should be as short as possible.  Ideally, 
restart takes seconds and allows controllers ample time 
to recover the satellite and resume operations.  This also 
has benefits for SEE mitigation, which we revisit later 
in the paper. 

Fast reboot is not always the answer.  If the system ends 
up in a loop where it reboots very frequently, perhaps a 
more thorough hardware self-test is warranted.  The 
satellite can also differentiate between “soft” (software-
initiated) and “hard” (watchdog-initiated) reboots and 
perform self-tests accordingly. 

KEY COMPONENTS 

We are developing an example space processing 
environment that is a “one size fits many” model.  Our 
ultimate goal is to provide an environment that 
developers can use almost as readily as the less secure 
options, so that a superior security foundation can be 
had even within the aggressive timelines of a traditional 
small satellite effort. 

We have selected a set of representative software and 
hardware.  For the underlying processor, we focus on 
the Zynq 7000 series parts, used in the CHREC Space 
Processor (CSP) and other products.  The Zynq is a 
very powerful and capable system-on-chip (SoC), 
featuring two ARM cores for general-purpose 
processing, FPGA configurable logic, and an ARM 
AXI bus to connect the two.  The SoC additionally 
offers easy support for a variety of hardware interfaces, 
including Ethernet, I2C, SPI, and GPIO pins. 

The operating system is a crucial underpinning to the 
ultimate security of the system.  Rather than a 
traditional OS choice like Linux or even FreeRTOS, we 
are using seL4.  The seL4, or “security enhanced L4,” 
microkernel provides unparalleled safety and security at 
the OS level [4].  It is correct by construction – the 
seL4 specification is written in a machine-readable 
language, and formal methods are used to reduce the 
specification to an implementation that is proven to 
implement the specification faithfully.  Large classes of 
vulnerabilities – buffer overflows, use-after-frees, and 
the like – simply don’t exist. 

An OS that provides such strong separation may offer 
other benefits beyond traditional security.  It could 
make it safe to co-host bus, payload, and cryptographic 
processing in the same processor, further saving SWaP 
on orbit. 

Although one could imagine building directly on seL4 – 
and we do just that for some things – we can better 
serve the community if we can support an environment 
with which they are already familiar.  We are 
investigating the feasibility of using NASA’s Core 
Flight Software (cFS) as our representative software 
stack.  cFS includes an operating-system abstraction 
layer (OSAL) for easier portability between operating 
systems.  Later in the paper we describe our 
experiences porting OSAL to seL4. 

Lastly, we require a test infrastructure within which we 
can verify that our processing environment operates 
properly and supports satellite operations.  We intend to 
use the NASA Operational Simulator for Small 
Satellites (NOS3) satellite simulation environment for 
this purpose.  NOS3 includes a physical model of orbit, 
a ground station, and key pieces of emulated satellite 
hardware (EPS, radio, etc.). 

The NOS3 emulation environment assumes the use of 
the Linux operating system, however, and cannot 
simulate satellite software running on some other OS 
such as FreeRTOS or seL4.  The NASA IV&V group is 
actively developing extensions to NOS3 that decouple 
the NOS3 simulation environment from the satellite 
control system itself, instead connecting the two only 
via the real, physical interfaces by which data flows on 
orbit (I2C and SPI in this case).  When complete, NOS3 
will be able to drive arbitrary C2 systems on arbitrary 
processing hardware using NOS3’s emulated 
peripherals. 

KERNEL 

The seL4 microkernel is the result of work done via  
NICTA and the DARPA “High-Assurance Cyber 
Military Systems” (HACMS) program.  The work 
consisted of two staff-years building the actual 
microkernel, and twenty staff-years proving that the 
microkernel is correct.  The result is perhaps the most 
thoroughly vetted 8,000 lines of C code in the world. 

Although it substantially advances the state of the art, 
the formal methods pedigree of seL4 is not in itself a 
panacea.  seL4 is guaranteed to faithfully implement its 
specification, if the proof tools are correct, and – more 
importantly – if the specification is correct.  The 
specification is written by humans, and humans have 
not been proven to be correct.  The hope is that the 
specification is a far simpler and easier thing to get 
right than the actual nuts and bolts needed to implement 
it.  Regardless of those limitations, however, seL4 
offers guarantees well beyond those of heavier-weight 
operating systems such as Linux. 
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Compared to Linux, however, seL4 is much harder to 
work with.  It doesn’t have a robust ecosystem yet, it 
doesn’t lend itself well to GUIs or enterprise remote 
administration tools or even common IDEs, and setting 
up an execution environment around it is challenging. 

For all those challenges, however, seL4 is still a viable 
choice for embedded processing.  One need only 
manage I/O to on-board systems via device drivers; no 
complicated UI support is needed.  Although 
administrators won’t have the easy familiarity of shell 
access to poke around their satellites, seL4 should be 
more than capable of handling more traditional 
command and control (C2) frames. 

API 

Compared to the hundreds of system calls supported by 
Linux, the seL4 kernel has a remarkably svelte seven: 

seL4_Send() 
seL4_NBSend() 
seL4_Call() 
seL4_Wait() 
seL4_Reply() 
seL4_ReplyWait() 
seL4_Yield() 

These seven calls comprise a message-passing 
paradigm by which distinct processes can 
communicate.  At first blush this seems to be 
insufficient; it is unclear how one establishes the actual 
processes that are communicating via this API in the 
first place. 

In fact, seL4 hides a lot of complexity (and a series of 
other calls) in the concept of capabilities.  A capability-
based scheme allocates specific rights to specific 
processes – message queues that they are allowed to 
access, memory regions that they are allowed to use, 
the right to make another process, and so on – and gives 
those processes the ability to delegate privileges to 
other processes.  At system startup, a single “init 
process” is given full rights to every capability in the 
system, and this process spawns the additional 
processes and delegates the credentials as needed to 
accomplish the system’s goals. 

Processes in seL4 communicate with each other and 
with the kernel using inter-process communication 
(IPC) message passing.  A process or thread capable of 
sending or receiving a given message on a given IPC 
channel is called an endpoint.  seL4 uses these 
extensively to pass capabilities as well as process-
specific data. 

seL4 includes in its ecosystem several other tools that 
aid in compile-time configuration and runtime 
interaction.  Chief among them is the component 

architecture for microkernel-based embedded systems 
(CAmkES).  The CAmkES system allows developers to 
define a static system configuration at compile time, 
indicating which processes are started in which order 
and communicate via which means with which other 
processes and so on.  CAmkES then auto-generates the 
seL4 calls necessary to establish the identified scheme. 

The CAmkES toolchain is not yet formally verified, but 
it is on the development path.  This becomes a critical 
component of the ultimate root of recovery, as the 
configuration of seL4 must be robust enough to ensure 
that the root of recovery is appropriately privileged and 
isolated relative to the system it is expected to recover. 

Process Management 

Dynamic allocation and management of resources in 
seL4 is possible, but hard to do.  It is far easier if every 
process, mutex, semaphore, IPC channel, and the like 
are known a priori and configured appropriately.  We 
believe this is a plausible model for spacecraft 
processing. 

However, we must also contend with recovery.  If an 
individual process in seL4 goes awry, how can we 
identify this anomaly and recover from it in a safe and 
predictable manner? 

We plan to address this problem with another process, 
the respawn daemon, or respawnd.  This daemon is 
responsible for monitoring existing processes for bad 
behavior – or, more specifically, for receiving signals 
(just another IPC message) from the seL4 kernel if the 
process has done something untoward.  The respawn 
daemon can then restart the process as appropriate. 

 

Figure 1. IPC channels between respawnd threads 
and the SNAFU process. The watchdog and fault 
handler threads are responsible for alerting the 

respawnd process if SNAFU fails.  

As Figure 1 shows, respawnd serves as the endpoint 
for messages about a process’s misbehavior.  We use, 
for testing, a simple “echo server” process to provide 
IPC traffic to and from a “SNAFU server” process.  
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The SNAFU server is designed to deliberately 
misbehave – hang, or attempt boundless memory 
allocation, for example – so that we can test the 
respawnd process’s ability to detect and react to a 
problem.  This work is ongoing. 

HARDWARE SUPPORT 

No software is an island.  A satellite processor must be 
able to receive information from the various peripherals 
that comprise a satellite, and must be able to command 
them as appropriate to carry out the satellite’s mission 
and to ensure satellite survival.  This outreach 
necessitates support for device drivers. 

We are focusing initially on I2C- and SPI-based 
devices, as these are common busses by which a variety 
of peripherals communicate.  Importantly for us, these 
are the two busses supported by the NOS3 
environment, giving us a clear means to test what we 
develop. 

We are beginning our work with the I2C protocol, with 
the near-term goal of performing proper C2 on the 
NOS3 emulated EPS. 

I2C 

The Inter-Integrated Circuit (I2C) is a two wire protocol 
intended for short distance communications within a 
single device.  It has a single, fixed bus master, and 
allows a single bus to connect up to 127 peripheral 
devices [5].  It supports a range of bandwidths as well, 
since a single misbehaving peripheral can bring the 
entire bus down, we plan a single peripheral per bus.  
The Zynq system will serve as the I2C master for each. 

A newer variant called I3C exists, and offers backwards 
compatibility with I2C coupled with new features and 
higher data rates.  We opted not to use it.  In the near- 
and mid-term it offers no additional value, as the 
devices we are targeting do not use I3C.  Additionally, 
the I3C standard is not freely available.  We see no 
value in paying the necessary fees to read the standard, 
much less to try and implement it.  . 

To get from the seL4 environment to the I2C pins, we 
need to do a series of tricks.  We must allocate the 
correct memory-mapped I/O (MMIO) memory range to 
reach the bus itself.  We must get this physical address 
range into a seL4 process by issuing a seL4 capability 
providing exclusive access to the physical pages.  
Lastly, we must provide FPGA-based logic to bridge 
that MMIO access to the actual I2C pins. 

The physical address of the I2C device is determined 
and assigned by the Xilinx SoC design software.  (At 
present, we do not choose the address ourselves.)  Once 

we have this address, we use seL4 utilities to assign 
capabilities and map that address so that it may be used 
by a process that serves as a device driver.  

There are three components necessary to successfully 
map a physical address in seL4:  a virtual address space 
or vspace, a virtual kernel allocator or vka, and an IO 
mapper.   

A vka is a seL4 type-aware object allocator that will 
allocate new kernel objects. It is commonly used in the 
creation of many seL4 types. It is created from seL4 
environment information, memory pool size 
information, and a reference to a memory pool. A 
vspace is a seL4 virtual memory management tool and 
is created using a previously instantiated vka and static 
memory for bootstrapping the virtual memory, along 
with information on the boot info frame so that it may 
be marked as a reserved region. Vspaces may be shared 
between threads, or not shared for isolation [7]. 

An IO mapper is a seL4 tool for mapping physical 
memory addresses to a vspace. The user creates an IO 
mapper in the seL4 root process using a vspace and 
vka. The vka also ensures that capabilities are assigned 
correctly to the mapped address range so that the 
calling process has the capability required to read or 
write to the newly mapped region, which can then be 
passed along to other seL4 processes.  In this case, 
because the root process has capabilities to everything, 
the call will succeed when it checks to make sure the 
calling process has the appropriate capability to access 
that memory region.  

Within seL4, memory mapping is a matter of 
capabilities management.  With these three components 
in hand, we use a call to the ps_io_map() function 
to map our desired physical address to a virtual address 
capability so we can use it in a seL4 process.  The 
mapping function uses the IO mapper, the physical 
address we wish to map, the size of the space we wish 
to map, a flag indicating whether or not the references 
should be cached (i.e. Does data need to be written to or 
read from the device directly each time because either 
the data is controlling the device or data is from a 
volatile sensor that may change based on factors 
external to our process), and flags indicating whether 
the space should be mapped for reading, writing, or 
both. As the resulting virtual address range is a 
capability, like everything else in seL4, we can then 
provide a device driver process with the necessary 
rights to reach the page, and deny access to all other 
processes. 

Xilinx provides autogenerated “glue code” to connect 
the remaining dots.  The glue software provides an API 
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to drive the I2C bus from software, and the glue 
firmware provides FPGA fabric elements to bridge the 
memory-mapped IO registers to the controller and 
physical bus interface pins.  The Xilinx-provided 
software functions directly use the virtual address we 
provisioned. They work off the base virtual address and 
use appropriate offsets to exercise the desired parts of a 
component.  We have found that the autogenerated 
software and firmware work cleanly within seL4, 
making for an easy and familiar foundation for an I2C 
driver. 

At present, we are performing basic tests using a 
ZedBoard to host seL4 on Zynq an Aardvark I2C 
adapter to emulate a virtual peripheral from a computer.  
In the near future we plan to migrate to the NOS3 EPS 
emulator as the peripheral under test, and develop a 
seL4-compatible device driver for it. 

CORE FLIGHT SYSTEM 

NASA’s Core Flight System is a reusable set of basic 
components and optional applications that allow for 
efficient construction of a flight software load and easy 
reuse of components across missions [8].  We selected 
cFS as our representative layer for two pragmatic 
reasons:  first, because it is widely used, including in 
the small satellite world; second, because it is freely 
available. 

OSAL 

cFS does not target one specific operating system.  
Instead, it provides an operating system abstraction 
layer (OSAL) that in principle allows cFS to run on a 
variety of operating systems.  OSAL supports Linux, 
VxWorks, and FreeRTOS, allowing adopters to choose 
the OS features they desire. 

To use cFS on seL4, we must necessarily provide an 
adaptation layer for OSAL.  This becomes somewhat 
complicated, however, as OSAL assumes certain 
POSIX-like features that seL4 simply doesn’t present.  
In this section we describe our exploration of OSAL 
and our assessment of its portability. 

The OSAL API has a total of 99 calls in a handful of 
broad categories: 

• Miscellaneous – overall initialization, debug 
printing, and time measurement 

• Queue – a reasonably direct translation to seL4 IPC 
• Semaphore and Mutex 
• Task Control – creating and destroying tasks, 

which in OSAL are threads, not processes 
• Dynamic Loader and Symbol Lookup – for support 

of runtime module loading and unloading 

• Timers 
• Networking – strangely minimal, with no actual I/O 

support 
• File System – a subset of the NFS API, with basics 

for creating, reading, writing, moving, copying, 
and deleting files 

• Interrupts 
• Exceptions 

Luckily, not everything in this API list must be ported, 
and much of what remains is straightforward.  The 
Exceptions and Networking APIs, for example, are 
actually never used by cFS, so we ignore them 
completely.  (A smattering of other calls can similarly 
be neglected.) 

The Semaphore and Mutex support will need to be done 
via IPC, with a dedicated process that manages the 
resources.  CAmkES can support the creation of 
support for these.  Dynamic loading is deliberately 
neglected; for seL4, we are using static configurations.  
The File System appears to be used for very small 
quantities of data – not large sensor outlays or the like – 
and can be efficiently supported with a simple backing 
store. 

Interrupts, Timers, and Task Control remain a concern.  
Although the first two should ultimately be 
surmountable, we expect that a lot of additional work is 
required to handle OSAL-style task control in the seL4 
model.  Our initial approach will be to forbid the 
dynamism that this API reports, instead requiring 
adopters to use only a statically configured set of 
processes and interconnects.  We hope to ease the 
configuration by instrumenting OSAL on, e.g., Linux to 
identify which resources are created and issued, and 
then simply preallocating them on seL4 and handing 
them out to the OSAL allocator functions as if they had 
been dynamically created on the spot. 

cFS (and thus OSAL) makes very heavy use of global 
variables as a way to share state.  Although convenient 
and memory-efficient, global variables are vastly less 
safe and secure than traditional parameter-passed 
models of data sharing.  This idiom was adopted 
presumably to foster higher speed by minimizing the 
number of memory-to-memory copies necessary, and 
when resources were limited in space, it may have been 
a necessary evil.  It is no longer. 

To support this global-variables approach, OSAL treats 
separate “tasks” as threads.  This means that every task 
in cFS shares the same memory space.  There is no 
meaningful restriction in access between disparate 
threads; one can easily read, write, or corrupt data used 
by others.  It is only by extensive testing and the 
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absence of an adversary that these systems work as well 
as they do. 

To provide enhanced security, we feel it is necessary to 
migrate cFS Tasks into separate processes, not threads, 
so that there are clear and explicit separators between 
disparate tasks’ privileges.  A separate “global variable 
controller” task would hold the globals and carefully 
mete out access to them as required.  

Although this sounds straightforward, we expect this to 
be a large level of effort, as we must identify all 
references to globals, isolate them in getters/setters, and 
identify what static restrictions can be placed on them.  
We plan to use the clang C frontend to build a set of 
pre-processing tools to help us explore the codebase 
and identify the globals and interdependencies in an 
automated manner.  Even if we succeed, we have not 
necessarily created a secure system; while we reduce 
cFS to doing only what it normally does, there is no 
guarantee that what it normally does is in fact secure. 

Although we do not imagine it yet in this effort, there 
may be merit to considering a more “ground-up” re-
engineering of spacecraft C2 software with cyber 
security and more processing power in mind. 

NEXT STEPS 

We have made good initial progress on our desired 
track.  We have a ZedBoard for representative testing 
on the Zynq platform, as shown in Figure 2, and have 
successfully loaded seL4 onto the ZedBoard for 
hardware execution and debugging. We have 
demonstrated a physical memory page mapping scheme 
for seL4 on Zynq, laying the groundwork for all future 
hardware driver I/O. 

 

Figure 2:  ZedBoard Development Environment 

A great deal remains to be done, however, before the 
system is truly ready to support mission applications.  
We envision additional work in functionality, 
reliability, and safety, and all that happens before we 
truly begin work on the enhanced security systems we 
aspire to build atop the seL4 foundation. 

Hard Realtime Support 

Although it is in their development plan, at this time 
seL4 is not a hard realtime operating system.  The 
maximum execution time of every seL4 system call is 
bounded and verified, so it is certainly very capable of 
eventually supporting realtime operations.  However, 
for near- and possibly mid-term use, workarounds may 
be required. 

We plan to use the FPGA fabric to support hard 
realtime needs, while leaving the ARM cores to 
perform higher-level planning.  Instead of 
communicating directly to I2C, the ARM core will 
communicate to a “low-level scheduler” in the FPGA 
fabric that will queue commands until pre-set times, 
and then issue them. 

Performing the queue-and-execute in the FPGA 
supports critical timing of “dumb” peripherals.  A 
system that needs to issue a “begin thruster burn” 
command followed an exact number of milliseconds 
later by a “cease thruster burn” command, for example, 
can rely on that C2 channel’s dedicated FPGA logic to 
monitor the time and issue the commands appropriately.  
In effect, we put a tiny hard realtime processor between 
each device and the seL4 system, and the seL4 system 
uses a dedicated protocol between itself and this 
intermediary. 

This does not address every hard realtime issue, 
however.  In the case where information is received 
from a sensor and the ARM core must process the 
information and issue an action within a finite amount 
of time, seL4 as-is may not be fully up to the task.  
However, if these processing tasks are not particularly 
complicated, it may again be possible to handle them 
via extremely simple logic (or, if necessary, code and a 
soft microcontroller) in the FPGA fabric.  Because our 
first target is an I2C bus with the Zynq as the master, 
we have adopted a polling model for reading data back 
from the bus.  However, an interrupt model should also 
be feasible to support with seL4. 

AMP Core with Arbiter 

Single event effects (SEEs) are the primary Achilles 
heel of COTS components in space.  Unlike rad-hard 
components, they have no built-in defense to SEEs.  
The system must instead tolerate errors anywhere from 
once an hour to once a week, depending on altitude, 
proximity to the South Atlantic Anomaly, space 
weather, and good fortune. 

The traditional mitigation is to include a small, rad-hard 
“watchdog” that observes the COTS component and 
resets the component if anomalous behavior is 
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observed.  This approach can be found on the CHREC 
Space Processor (CSP) [9] and other products. 

The problem is that the watchdog can only reset if 
there’s clear, unmistakable evidence of an upset.  If an 
SEE causes a bit to flip in a cache line somewhere, for 
example, and it alters a coefficient but doesn’t alter any 
code, the part may continue to operate for quite some 
time on the bad data, possibly even requiring ground 
observation and intervention to detect, react, and 
recover from the SEE. 

The Zynq fabric has two options for protecting itself.  
First, it can implement triple modular redundancy 
(TMR) to reduce the likelihood that an SEE will corrupt 
data, and it can implement additional logic that 
periodically scans the SRAM configuration bits for 
damage so that failures can be detected and remediated 
rapidly [6].  Remediation could involve actively 
rewriting SRAM with good values, or (as a safer 
option) the scan tool may simply restart the part, or ask 
the watchdog circuit to do so, if an upset is detected. 

The ARM cores within the Zynq, however, have no 
efficient introspection options.  A hit to the L2 cache, 
by far the largest physical feature of the subsystem, 
would corrupt memory in unpredictable ways.  The L2 
cache can be disabled to mitigate that risk, but hits to 
the ALU, register file, or other areas of the ARM 
cannot be avoided or ignored. 

Absent mitigation, the next best option is rapid 
detection.  If the Zynq’s two ARM cores were 
configured to run the same code in parallel, the FPGA 
fabric could monitor all I/O and ensure that the two 
cores are always doing exactly the same thing at the 
same time.  Any deviation would indicate an SEU and 
would be cause for immediate reboot. 

Recent research from Sandia National Laboratory [10] 
has advanced exactly that concept, using the 
asymmetric multi-processing (AMP) configuration of 
the Zynq.  AMP allows the two cores to operate 
independently.  Unfortunately, there is no clean way to 
leverage the L2 cache across both cores in an AMP 
configuration, so there remains a rather substantial 
performance hit in its absence. 

Once an SEE is noticed and the part resets, the onus is 
on the code to recover quickly to an operational state.  
We will ensure that what we engineer supports this 
goal, but more importantly we must encourage 
engineers to keep this in mind when architecting their 
systems. 

Root of Recovery 

A secure OS can, by itself, limit an adversary’s ability 
to propagate and persist once some aspect of the user’s 
code is compromised.  However, it provides no 
guarantees that the rightful owner of the satellite can 
actually evict the adversary, or even command the 
satellite at all, once a compromise has occurred. 

If a critical subset of the satellite’s systems – power, a 
low bandwidth C2 radio, and program EEPROM, for 
example – can be isolated and formally verified as 
correct, then that redoubt can be used as a proper root 
of recovery.  The adversary may be able to compromise 
every other part of the system in some way, but the 
owner can still use the root of recovery to reassert 
control, reboot the satellite to a previous (presumably 
uncompromised) state, and resume operations. 

The root of recovery depends on many components.  
Satellite EEPROM must be properly partitioned and 
write-protected, so adversarial action can’t alter 
previous states in an unauthorized fashion.  The storage 
device must resist radiation damage.   Last but not least, 
the software components of the root of recovery must 
be impervious to attack and able to properly reach the 
radio (so the recovery order can be received), command 
the EEPROM (for read/write as appropriate), and effect 
the reboot. 

This doesn’t necessarily prevent an adversary from 
denying access to the satellite eventually, however, by 
orienting the solar panels in a bad direction or the like.  
However, if that critical subset of impervious code 
includes sufficient logic to ensure spacecraft survival, 
then the owner can recover control at their convenience.  
In addition to the safety benefits, a hard-coded, proven 
“self-preservation instinct” would ensure that control 
can be re-asserted regardless of the adversary’s 
software-based actions. 

SUMMARY 

Satellite systems operate in a very challenging regime, 
far from their owners, beyond hope of physical repair, 
and under constant assault by cosmic radiation.  
Traditional methods of mitigating cyber attack are 
insufficient in such a challenging environment. 

We seek to improve the world of satellite security by 
laying a foundation that respects the satellite’s role as 
its own root of recovery.  A certain subset of the code 
must simply be immune to compromise, or no useful 
guarantees can be made.  We propose seL4 as one key 
component of that foundation and are working to lay 
the groundwork for additional components.  The result, 
if successful, will be a new platform that mitigates 
much of the cyber risk and allows satellite developers 
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to focus their attention on the missions they wish to 
accomplish, rather than on the miscreants that wish to 
disrupt them. 

Secure Communications and Role-Based Access 
Control 

Basic communications security is a necessary 
prerequisite to a secure satellite system.  We would 
ideally also incorporate more nuanced 
cryptographically-enforced security, tying specific 
commands to specific cryptographic principals 
authorized to issue them.  Plotting out those commands, 
the key management strategy, and the algorithmic and 
protocol choices is an exciting future direction as well. 

Traditionally cryptography is handled in separate, 
dedicated hardware.  If we can build up enough trust in 
seL4 to separate and protect the cryptographic logic and 
enforce proper data flows, it may be possible to host a 
cryptographic implementation, e.g. Lincoln 
Laboratory’s own LOCKMA library [11], within the 
same processor. 
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