
Ingols 1 31st Annual AIAA/USU
 Conference on Small Satellites

SSC17-XII-08

Cyber in a World of Plenty: Secure High-Performance On-Orbit Processing1

Kyle Ingols, Jeff Brandon, Eric Koziel, Michael Zhivich
244 Wood Street, Lexington MA 02421

kwi@ll.mit.edu

ABSTRACT

The days of “dumb” satellites in LEO are numbered. As many CubeSat missions have proven, commercial off the
shelf (COTS) processors – orders of magnitude more powerful than traditional rad-hard parts – can fly. Powerful
processors give satellite designers the horsepower they need to collect, analyze, and process big datasets on-orbit.
The extra headroom also accommodates rapid development using traditionally-terrestrial COTS and open-source
operating systems and software stacks. Unfortunately, these large software ecosystems bring their terrestrial cyber
sins into orbit with them. We need to understand and mitigate the cyber threat now, before bad patterns become
entrenched and propagated.

This paper reviews a set of cybersecurity guidelines that help developers craft more securable designs for small
satellites. The guidelines highlight ways that satellite security and ground system security can strengthen each other.
Since system compromise remains possible even if best practices are followed, the guidelines suggest ways to
recover control. We further describe ongoing work in a reference implementation that honors the guidelines,
building on the seL4 microkernel as the security foundation and NASA’s Core Flight Software (cFS) as the
functionality foundation.

1 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No.
FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering.

Ingols 2 31st Annual AIAA/USU
 Conference on Small Satellites

INTRODUCTION

Satellites have historically had modest amounts of
computational power. Radiation-hardened parts with
extensive flight heritage are naturally the components
of choice for traditional, large, expensive satellite
systems. These expensive, low processing power
systems had correspondingly straightforward software
loads.

The SmallSat paradigm – especially the LEO CubeSat
regime – is substantially changing the calculus in space.
CubeSats willing to tolerate the higher risk of COTS
components can fly tremendous amounts of
computational power for a fraction of the cost and size,
weight, and power (SWaP) of traditional rad-hard
components. This has opened up a world of additional
possibilities for on-orbit data processing.

However, the additional headroom has also made it
possible to use traditional COTS software in space as
well. This is a difficult temptation to resist: the rapid
development timelines of small satellites would
certainly benefit from the use of COTS technology
typically seen in the embedded computing space. It is
no longer unheard of to fly Linux in space, for example,
with all of the overhead of a traditional distribution.
Such an approach brings with it all of the cyber security
risks of these large, expansive computing environments.

It’s difficult enough to survive with this level of
vulnerability on the ground; it becomes nearly
untenable in space. A space-based computer has only
itself as its root of recovery; no trusted human can come
along and push the reset button, or unplug it, or replace
the hard drive. An adversary could conceivably
compromise a satellite processor to such a degree that
the rightful owner permanently and irrevocably loses
control of their satellite.

We can’t simply return to the era of low power
processing, either; the increased horsepower enables
novel on-orbit processing approaches that are too
valuable to abandon. We must find some middle
ground, a way to have robust processing capability on
orbit coupled with the safety and security guarantees
necessary to ensure mission success and recoverability
in a challenging world. This paper documents our
efforts to achieve that goal.

If our ground control system is impervious to attack,
and our vendors provide only malware-free software for
our use, and our authorized administrators never
misbehave, then the attack surface is minimal.
However, reality is often less assured. We have
selected an attack surface that assumes temporary loss
of control of the ground control system, allowing an

adversary to issue properly authenticated commands
and software updates to the satellite for a brief time.
The way that the adversary is detected and evicted from
the ground control station, while important, is beyond
the scope of this paper. Our goal is to make such a
transient compromise non-fatal for the satellite.

We have established a set of guidelines for design of
space systems that move beyond the basic and
traditional security approaches of encrypted command-
and-control links to consider the broader set of threats
to space systems, the residual threats faced even if
encrypted C2 is used. We review these guidelines in
the next section. They receive a more thorough
treatment in [2].

Additionally, we have been developing an example
implementation of secure satellite processor, with those
guidelines in mind. The bulk of the paper reviews this
effort and reports on our ongoing results and planned
future work.

GUIDELINES
To mitigate those three scenarios, we propose design
guidelines geared to motivate more secure and more
securable designs. We deliberately neglect traditional
security approaches one might otherwise employ from,
e.g., NIST controls [3], as they are adequately covered
there.

In [2] we call out five key guidelines, which we
summarize here.

First, fail slowly – ensure that any dangerous
commands that your satellite can receive have a
substantial margin between when the command is
received and when the command is obeyed. This gives
ground controllers time to recognize and countermand
if the command is unintended.

Second, employ crypto beyond COMSEC, to
cryptographically enforce role-based access control.
This provides finer grained security vs. the basic
approach of offering complete trust to any ground
control entity on the good side of the encryptor.

Third, and most importantly, satellites must provide a
root of recovery. In traditional, terrestrial systems, any
amount of compromise can effectively be remediated
by a human being asserting physical control –
rebooting, reimaging, or replacing the compromised
system. For satellites, that is a very expensive and slow
luxury. A root of recovery becomes imperative.

In [2] we also consider ablative defenses as a
technique to reduce the risk that the security

Ingols 3 31st Annual AIAA/USU
 Conference on Small Satellites

enhancements themselves will jeopardize the mission,
but we do not consider it further here.

Lastly, we wish to reboot and succeed quickly. If
malware must be evicted by restarting the satellite, the
restart sequence should be as short as possible. Ideally,
restart takes seconds and allows controllers ample time
to recover the satellite and resume operations. This also
has benefits for SEE mitigation, which we revisit later
in the paper.

Fast reboot is not always the answer. If the system ends
up in a loop where it reboots very frequently, perhaps a
more thorough hardware self-test is warranted. The
satellite can also differentiate between “soft” (software-
initiated) and “hard” (watchdog-initiated) reboots and
perform self-tests accordingly.

KEY COMPONENTS

We are developing an example space processing
environment that is a “one size fits many” model. Our
ultimate goal is to provide an environment that
developers can use almost as readily as the less secure
options, so that a superior security foundation can be
had even within the aggressive timelines of a traditional
small satellite effort.

We have selected a set of representative software and
hardware. For the underlying processor, we focus on
the Zynq 7000 series parts, used in the CHREC Space
Processor (CSP) and other products. The Zynq is a
very powerful and capable system-on-chip (SoC),
featuring two ARM cores for general-purpose
processing, FPGA configurable logic, and an ARM
AXI bus to connect the two. The SoC additionally
offers easy support for a variety of hardware interfaces,
including Ethernet, I2C, SPI, and GPIO pins.

The operating system is a crucial underpinning to the
ultimate security of the system. Rather than a
traditional OS choice like Linux or even FreeRTOS, we
are using seL4. The seL4, or “security enhanced L4,”
microkernel provides unparalleled safety and security at
the OS level [4]. It is correct by construction – the
seL4 specification is written in a machine-readable
language, and formal methods are used to reduce the
specification to an implementation that is proven to
implement the specification faithfully. Large classes of
vulnerabilities – buffer overflows, use-after-frees, and
the like – simply don’t exist.

An OS that provides such strong separation may offer
other benefits beyond traditional security. It could
make it safe to co-host bus, payload, and cryptographic
processing in the same processor, further saving SWaP
on orbit.

Although one could imagine building directly on seL4 –
and we do just that for some things – we can better
serve the community if we can support an environment
with which they are already familiar. We are
investigating the feasibility of using NASA’s Core
Flight Software (cFS) as our representative software
stack. cFS includes an operating-system abstraction
layer (OSAL) for easier portability between operating
systems. Later in the paper we describe our
experiences porting OSAL to seL4.

Lastly, we require a test infrastructure within which we
can verify that our processing environment operates
properly and supports satellite operations. We intend to
use the NASA Operational Simulator for Small
Satellites (NOS3) satellite simulation environment for
this purpose. NOS3 includes a physical model of orbit,
a ground station, and key pieces of emulated satellite
hardware (EPS, radio, etc.).

The NOS3 emulation environment assumes the use of
the Linux operating system, however, and cannot
simulate satellite software running on some other OS
such as FreeRTOS or seL4. The NASA IV&V group is
actively developing extensions to NOS3 that decouple
the NOS3 simulation environment from the satellite
control system itself, instead connecting the two only
via the real, physical interfaces by which data flows on
orbit (I2C and SPI in this case). When complete, NOS3
will be able to drive arbitrary C2 systems on arbitrary
processing hardware using NOS3’s emulated
peripherals.

KERNEL

The seL4 microkernel is the result of work done via
NICTA and the DARPA “High-Assurance Cyber
Military Systems” (HACMS) program. The work
consisted of two staff-years building the actual
microkernel, and twenty staff-years proving that the
microkernel is correct. The result is perhaps the most
thoroughly vetted 8,000 lines of C code in the world.

Although it substantially advances the state of the art,
the formal methods pedigree of seL4 is not in itself a
panacea. seL4 is guaranteed to faithfully implement its
specification, if the proof tools are correct, and – more
importantly – if the specification is correct. The
specification is written by humans, and humans have
not been proven to be correct. The hope is that the
specification is a far simpler and easier thing to get
right than the actual nuts and bolts needed to implement
it. Regardless of those limitations, however, seL4
offers guarantees well beyond those of heavier-weight
operating systems such as Linux.

Ingols 4 31st Annual AIAA/USU
 Conference on Small Satellites

Compared to Linux, however, seL4 is much harder to
work with. It doesn’t have a robust ecosystem yet, it
doesn’t lend itself well to GUIs or enterprise remote
administration tools or even common IDEs, and setting
up an execution environment around it is challenging.

For all those challenges, however, seL4 is still a viable
choice for embedded processing. One need only
manage I/O to on-board systems via device drivers; no
complicated UI support is needed. Although
administrators won’t have the easy familiarity of shell
access to poke around their satellites, seL4 should be
more than capable of handling more traditional
command and control (C2) frames.

API

Compared to the hundreds of system calls supported by
Linux, the seL4 kernel has a remarkably svelte seven:

seL4_Send()
seL4_NBSend()
seL4_Call()
seL4_Wait()
seL4_Reply()
seL4_ReplyWait()
seL4_Yield()

These seven calls comprise a message-passing
paradigm by which distinct processes can
communicate. At first blush this seems to be
insufficient; it is unclear how one establishes the actual
processes that are communicating via this API in the
first place.

In fact, seL4 hides a lot of complexity (and a series of
other calls) in the concept of capabilities. A capability-
based scheme allocates specific rights to specific
processes – message queues that they are allowed to
access, memory regions that they are allowed to use,
the right to make another process, and so on – and gives
those processes the ability to delegate privileges to
other processes. At system startup, a single “init
process” is given full rights to every capability in the
system, and this process spawns the additional
processes and delegates the credentials as needed to
accomplish the system’s goals.

Processes in seL4 communicate with each other and
with the kernel using inter-process communication
(IPC) message passing. A process or thread capable of
sending or receiving a given message on a given IPC
channel is called an endpoint. seL4 uses these
extensively to pass capabilities as well as process-
specific data.

seL4 includes in its ecosystem several other tools that
aid in compile-time configuration and runtime
interaction. Chief among them is the component

architecture for microkernel-based embedded systems
(CAmkES). The CAmkES system allows developers to
define a static system configuration at compile time,
indicating which processes are started in which order
and communicate via which means with which other
processes and so on. CAmkES then auto-generates the
seL4 calls necessary to establish the identified scheme.

The CAmkES toolchain is not yet formally verified, but
it is on the development path. This becomes a critical
component of the ultimate root of recovery, as the
configuration of seL4 must be robust enough to ensure
that the root of recovery is appropriately privileged and
isolated relative to the system it is expected to recover.

Process Management

Dynamic allocation and management of resources in
seL4 is possible, but hard to do. It is far easier if every
process, mutex, semaphore, IPC channel, and the like
are known a priori and configured appropriately. We
believe this is a plausible model for spacecraft
processing.

However, we must also contend with recovery. If an
individual process in seL4 goes awry, how can we
identify this anomaly and recover from it in a safe and
predictable manner?

We plan to address this problem with another process,
the respawn daemon, or respawnd. This daemon is
responsible for monitoring existing processes for bad
behavior – or, more specifically, for receiving signals
(just another IPC message) from the seL4 kernel if the
process has done something untoward. The respawn
daemon can then restart the process as appropriate.

Figure 1. IPC channels between respawnd threads
and the SNAFU process. The watchdog and fault
handler threads are responsible for alerting the

respawnd process if SNAFU fails.

As Figure 1 shows, respawnd serves as the endpoint
for messages about a process’s misbehavior. We use,
for testing, a simple “echo server” process to provide
IPC traffic to and from a “SNAFU server” process.

Ingols 5 31st Annual AIAA/USU
 Conference on Small Satellites

The SNAFU server is designed to deliberately
misbehave – hang, or attempt boundless memory
allocation, for example – so that we can test the
respawnd process’s ability to detect and react to a
problem. This work is ongoing.

HARDWARE SUPPORT

No software is an island. A satellite processor must be
able to receive information from the various peripherals
that comprise a satellite, and must be able to command
them as appropriate to carry out the satellite’s mission
and to ensure satellite survival. This outreach
necessitates support for device drivers.

We are focusing initially on I2C- and SPI-based
devices, as these are common busses by which a variety
of peripherals communicate. Importantly for us, these
are the two busses supported by the NOS3
environment, giving us a clear means to test what we
develop.

We are beginning our work with the I2C protocol, with
the near-term goal of performing proper C2 on the
NOS3 emulated EPS.

I2C

The Inter-Integrated Circuit (I2C) is a two wire protocol
intended for short distance communications within a
single device. It has a single, fixed bus master, and
allows a single bus to connect up to 127 peripheral
devices [5]. It supports a range of bandwidths as well,
since a single misbehaving peripheral can bring the
entire bus down, we plan a single peripheral per bus.
The Zynq system will serve as the I2C master for each.

A newer variant called I3C exists, and offers backwards
compatibility with I2C coupled with new features and
higher data rates. We opted not to use it. In the near-
and mid-term it offers no additional value, as the
devices we are targeting do not use I3C. Additionally,
the I3C standard is not freely available. We see no
value in paying the necessary fees to read the standard,
much less to try and implement it. .

To get from the seL4 environment to the I2C pins, we
need to do a series of tricks. We must allocate the
correct memory-mapped I/O (MMIO) memory range to
reach the bus itself. We must get this physical address
range into a seL4 process by issuing a seL4 capability
providing exclusive access to the physical pages.
Lastly, we must provide FPGA-based logic to bridge
that MMIO access to the actual I2C pins.

The physical address of the I2C device is determined
and assigned by the Xilinx SoC design software. (At
present, we do not choose the address ourselves.) Once

we have this address, we use seL4 utilities to assign
capabilities and map that address so that it may be used
by a process that serves as a device driver.

There are three components necessary to successfully
map a physical address in seL4: a virtual address space
or vspace, a virtual kernel allocator or vka, and an IO
mapper.

A vka is a seL4 type-aware object allocator that will
allocate new kernel objects. It is commonly used in the
creation of many seL4 types. It is created from seL4
environment information, memory pool size
information, and a reference to a memory pool. A
vspace is a seL4 virtual memory management tool and
is created using a previously instantiated vka and static
memory for bootstrapping the virtual memory, along
with information on the boot info frame so that it may
be marked as a reserved region. Vspaces may be shared
between threads, or not shared for isolation [7].

An IO mapper is a seL4 tool for mapping physical
memory addresses to a vspace. The user creates an IO
mapper in the seL4 root process using a vspace and
vka. The vka also ensures that capabilities are assigned
correctly to the mapped address range so that the
calling process has the capability required to read or
write to the newly mapped region, which can then be
passed along to other seL4 processes. In this case,
because the root process has capabilities to everything,
the call will succeed when it checks to make sure the
calling process has the appropriate capability to access
that memory region.

Within seL4, memory mapping is a matter of
capabilities management. With these three components
in hand, we use a call to the ps_io_map() function
to map our desired physical address to a virtual address
capability so we can use it in a seL4 process. The
mapping function uses the IO mapper, the physical
address we wish to map, the size of the space we wish
to map, a flag indicating whether or not the references
should be cached (i.e. Does data need to be written to or
read from the device directly each time because either
the data is controlling the device or data is from a
volatile sensor that may change based on factors
external to our process), and flags indicating whether
the space should be mapped for reading, writing, or
both. As the resulting virtual address range is a
capability, like everything else in seL4, we can then
provide a device driver process with the necessary
rights to reach the page, and deny access to all other
processes.

Xilinx provides autogenerated “glue code” to connect
the remaining dots. The glue software provides an API

Ingols 6 31st Annual AIAA/USU
 Conference on Small Satellites

to drive the I2C bus from software, and the glue
firmware provides FPGA fabric elements to bridge the
memory-mapped IO registers to the controller and
physical bus interface pins. The Xilinx-provided
software functions directly use the virtual address we
provisioned. They work off the base virtual address and
use appropriate offsets to exercise the desired parts of a
component. We have found that the autogenerated
software and firmware work cleanly within seL4,
making for an easy and familiar foundation for an I2C
driver.

At present, we are performing basic tests using a
ZedBoard to host seL4 on Zynq an Aardvark I2C
adapter to emulate a virtual peripheral from a computer.
In the near future we plan to migrate to the NOS3 EPS
emulator as the peripheral under test, and develop a
seL4-compatible device driver for it.

CORE FLIGHT SYSTEM

NASA’s Core Flight System is a reusable set of basic
components and optional applications that allow for
efficient construction of a flight software load and easy
reuse of components across missions [8]. We selected
cFS as our representative layer for two pragmatic
reasons: first, because it is widely used, including in
the small satellite world; second, because it is freely
available.

OSAL

cFS does not target one specific operating system.
Instead, it provides an operating system abstraction
layer (OSAL) that in principle allows cFS to run on a
variety of operating systems. OSAL supports Linux,
VxWorks, and FreeRTOS, allowing adopters to choose
the OS features they desire.

To use cFS on seL4, we must necessarily provide an
adaptation layer for OSAL. This becomes somewhat
complicated, however, as OSAL assumes certain
POSIX-like features that seL4 simply doesn’t present.
In this section we describe our exploration of OSAL
and our assessment of its portability.

The OSAL API has a total of 99 calls in a handful of
broad categories:

• Miscellaneous – overall initialization, debug
printing, and time measurement

• Queue – a reasonably direct translation to seL4 IPC
• Semaphore and Mutex
• Task Control – creating and destroying tasks,

which in OSAL are threads, not processes
• Dynamic Loader and Symbol Lookup – for support

of runtime module loading and unloading

• Timers
• Networking – strangely minimal, with no actual I/O

support
• File System – a subset of the NFS API, with basics

for creating, reading, writing, moving, copying,
and deleting files

• Interrupts
• Exceptions

Luckily, not everything in this API list must be ported,
and much of what remains is straightforward. The
Exceptions and Networking APIs, for example, are
actually never used by cFS, so we ignore them
completely. (A smattering of other calls can similarly
be neglected.)

The Semaphore and Mutex support will need to be done
via IPC, with a dedicated process that manages the
resources. CAmkES can support the creation of
support for these. Dynamic loading is deliberately
neglected; for seL4, we are using static configurations.
The File System appears to be used for very small
quantities of data – not large sensor outlays or the like –
and can be efficiently supported with a simple backing
store.

Interrupts, Timers, and Task Control remain a concern.
Although the first two should ultimately be
surmountable, we expect that a lot of additional work is
required to handle OSAL-style task control in the seL4
model. Our initial approach will be to forbid the
dynamism that this API reports, instead requiring
adopters to use only a statically configured set of
processes and interconnects. We hope to ease the
configuration by instrumenting OSAL on, e.g., Linux to
identify which resources are created and issued, and
then simply preallocating them on seL4 and handing
them out to the OSAL allocator functions as if they had
been dynamically created on the spot.

cFS (and thus OSAL) makes very heavy use of global
variables as a way to share state. Although convenient
and memory-efficient, global variables are vastly less
safe and secure than traditional parameter-passed
models of data sharing. This idiom was adopted
presumably to foster higher speed by minimizing the
number of memory-to-memory copies necessary, and
when resources were limited in space, it may have been
a necessary evil. It is no longer.

To support this global-variables approach, OSAL treats
separate “tasks” as threads. This means that every task
in cFS shares the same memory space. There is no
meaningful restriction in access between disparate
threads; one can easily read, write, or corrupt data used
by others. It is only by extensive testing and the

Ingols 7 31st Annual AIAA/USU
 Conference on Small Satellites

absence of an adversary that these systems work as well
as they do.

To provide enhanced security, we feel it is necessary to
migrate cFS Tasks into separate processes, not threads,
so that there are clear and explicit separators between
disparate tasks’ privileges. A separate “global variable
controller” task would hold the globals and carefully
mete out access to them as required.

Although this sounds straightforward, we expect this to
be a large level of effort, as we must identify all
references to globals, isolate them in getters/setters, and
identify what static restrictions can be placed on them.
We plan to use the clang C frontend to build a set of
pre-processing tools to help us explore the codebase
and identify the globals and interdependencies in an
automated manner. Even if we succeed, we have not
necessarily created a secure system; while we reduce
cFS to doing only what it normally does, there is no
guarantee that what it normally does is in fact secure.

Although we do not imagine it yet in this effort, there
may be merit to considering a more “ground-up” re-
engineering of spacecraft C2 software with cyber
security and more processing power in mind.

NEXT STEPS

We have made good initial progress on our desired
track. We have a ZedBoard for representative testing
on the Zynq platform, as shown in Figure 2, and have
successfully loaded seL4 onto the ZedBoard for
hardware execution and debugging. We have
demonstrated a physical memory page mapping scheme
for seL4 on Zynq, laying the groundwork for all future
hardware driver I/O.

Figure 2: ZedBoard Development Environment

A great deal remains to be done, however, before the
system is truly ready to support mission applications.
We envision additional work in functionality,
reliability, and safety, and all that happens before we
truly begin work on the enhanced security systems we
aspire to build atop the seL4 foundation.

Hard Realtime Support

Although it is in their development plan, at this time
seL4 is not a hard realtime operating system. The
maximum execution time of every seL4 system call is
bounded and verified, so it is certainly very capable of
eventually supporting realtime operations. However,
for near- and possibly mid-term use, workarounds may
be required.

We plan to use the FPGA fabric to support hard
realtime needs, while leaving the ARM cores to
perform higher-level planning. Instead of
communicating directly to I2C, the ARM core will
communicate to a “low-level scheduler” in the FPGA
fabric that will queue commands until pre-set times,
and then issue them.

Performing the queue-and-execute in the FPGA
supports critical timing of “dumb” peripherals. A
system that needs to issue a “begin thruster burn”
command followed an exact number of milliseconds
later by a “cease thruster burn” command, for example,
can rely on that C2 channel’s dedicated FPGA logic to
monitor the time and issue the commands appropriately.
In effect, we put a tiny hard realtime processor between
each device and the seL4 system, and the seL4 system
uses a dedicated protocol between itself and this
intermediary.

This does not address every hard realtime issue,
however. In the case where information is received
from a sensor and the ARM core must process the
information and issue an action within a finite amount
of time, seL4 as-is may not be fully up to the task.
However, if these processing tasks are not particularly
complicated, it may again be possible to handle them
via extremely simple logic (or, if necessary, code and a
soft microcontroller) in the FPGA fabric. Because our
first target is an I2C bus with the Zynq as the master,
we have adopted a polling model for reading data back
from the bus. However, an interrupt model should also
be feasible to support with seL4.

AMP Core with Arbiter

Single event effects (SEEs) are the primary Achilles
heel of COTS components in space. Unlike rad-hard
components, they have no built-in defense to SEEs.
The system must instead tolerate errors anywhere from
once an hour to once a week, depending on altitude,
proximity to the South Atlantic Anomaly, space
weather, and good fortune.

The traditional mitigation is to include a small, rad-hard
“watchdog” that observes the COTS component and
resets the component if anomalous behavior is

Ingols 8 31st Annual AIAA/USU
 Conference on Small Satellites

observed. This approach can be found on the CHREC
Space Processor (CSP) [9] and other products.

The problem is that the watchdog can only reset if
there’s clear, unmistakable evidence of an upset. If an
SEE causes a bit to flip in a cache line somewhere, for
example, and it alters a coefficient but doesn’t alter any
code, the part may continue to operate for quite some
time on the bad data, possibly even requiring ground
observation and intervention to detect, react, and
recover from the SEE.

The Zynq fabric has two options for protecting itself.
First, it can implement triple modular redundancy
(TMR) to reduce the likelihood that an SEE will corrupt
data, and it can implement additional logic that
periodically scans the SRAM configuration bits for
damage so that failures can be detected and remediated
rapidly [6]. Remediation could involve actively
rewriting SRAM with good values, or (as a safer
option) the scan tool may simply restart the part, or ask
the watchdog circuit to do so, if an upset is detected.

The ARM cores within the Zynq, however, have no
efficient introspection options. A hit to the L2 cache,
by far the largest physical feature of the subsystem,
would corrupt memory in unpredictable ways. The L2
cache can be disabled to mitigate that risk, but hits to
the ALU, register file, or other areas of the ARM
cannot be avoided or ignored.

Absent mitigation, the next best option is rapid
detection. If the Zynq’s two ARM cores were
configured to run the same code in parallel, the FPGA
fabric could monitor all I/O and ensure that the two
cores are always doing exactly the same thing at the
same time. Any deviation would indicate an SEU and
would be cause for immediate reboot.

Recent research from Sandia National Laboratory [10]
has advanced exactly that concept, using the
asymmetric multi-processing (AMP) configuration of
the Zynq. AMP allows the two cores to operate
independently. Unfortunately, there is no clean way to
leverage the L2 cache across both cores in an AMP
configuration, so there remains a rather substantial
performance hit in its absence.

Once an SEE is noticed and the part resets, the onus is
on the code to recover quickly to an operational state.
We will ensure that what we engineer supports this
goal, but more importantly we must encourage
engineers to keep this in mind when architecting their
systems.

Root of Recovery

A secure OS can, by itself, limit an adversary’s ability
to propagate and persist once some aspect of the user’s
code is compromised. However, it provides no
guarantees that the rightful owner of the satellite can
actually evict the adversary, or even command the
satellite at all, once a compromise has occurred.

If a critical subset of the satellite’s systems – power, a
low bandwidth C2 radio, and program EEPROM, for
example – can be isolated and formally verified as
correct, then that redoubt can be used as a proper root
of recovery. The adversary may be able to compromise
every other part of the system in some way, but the
owner can still use the root of recovery to reassert
control, reboot the satellite to a previous (presumably
uncompromised) state, and resume operations.

The root of recovery depends on many components.
Satellite EEPROM must be properly partitioned and
write-protected, so adversarial action can’t alter
previous states in an unauthorized fashion. The storage
device must resist radiation damage. Last but not least,
the software components of the root of recovery must
be impervious to attack and able to properly reach the
radio (so the recovery order can be received), command
the EEPROM (for read/write as appropriate), and effect
the reboot.

This doesn’t necessarily prevent an adversary from
denying access to the satellite eventually, however, by
orienting the solar panels in a bad direction or the like.
However, if that critical subset of impervious code
includes sufficient logic to ensure spacecraft survival,
then the owner can recover control at their convenience.
In addition to the safety benefits, a hard-coded, proven
“self-preservation instinct” would ensure that control
can be re-asserted regardless of the adversary’s
software-based actions.

SUMMARY

Satellite systems operate in a very challenging regime,
far from their owners, beyond hope of physical repair,
and under constant assault by cosmic radiation.
Traditional methods of mitigating cyber attack are
insufficient in such a challenging environment.

We seek to improve the world of satellite security by
laying a foundation that respects the satellite’s role as
its own root of recovery. A certain subset of the code
must simply be immune to compromise, or no useful
guarantees can be made. We propose seL4 as one key
component of that foundation and are working to lay
the groundwork for additional components. The result,
if successful, will be a new platform that mitigates
much of the cyber risk and allows satellite developers

Ingols 9 31st Annual AIAA/USU
 Conference on Small Satellites

to focus their attention on the missions they wish to
accomplish, rather than on the miscreants that wish to
disrupt them.

Secure Communications and Role-Based Access
Control

Basic communications security is a necessary
prerequisite to a secure satellite system. We would
ideally also incorporate more nuanced
cryptographically-enforced security, tying specific
commands to specific cryptographic principals
authorized to issue them. Plotting out those commands,
the key management strategy, and the algorithmic and
protocol choices is an exciting future direction as well.

Traditionally cryptography is handled in separate,
dedicated hardware. If we can build up enough trust in
seL4 to separate and protect the cryptographic logic and
enforce proper data flows, it may be possible to host a
cryptographic implementation, e.g. Lincoln
Laboratory’s own LOCKMA library [11], within the
same processor.

Acknowledgments

We gratefully acknowledge Rob Cunningham and
Roger Khazan for their feedback on the paper’s
structure and content.

References

[1] CVE Details, "CVE Details," [Online]. Available:
http://www.cvedetails.com/product/47/Linux-
Linux-Kernel.html?vendor_id=33. [Accessed 7
June 2017].

[2] K. Ingols, "Design for Security: Guidelines for
Efficient, Secure Small Satellite Computation," in
Proceedings of the 2017 International Microwave
Symposium, Honolulu, HI, 2017.

[3] Joint Task Force Transformation Initiative
Iteragency Working Group, "NIST Special
Publication 800-53 Revision 4: Security and
Privacy Controls for Federal Information Systems
and Organizations," National Institute of Standards
and Technology, April 2013.

[4] G. e. a. Klein, "seL4: Formal verification of an OS
kernel," Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles,
2009.

[5] NXP Semiconductors, "UM10204 I2C-bus
specification and user manual," NXP
Semiconductors, 2014.

[6] A. Jacobs, G. G. A. Cieslewski, A. Gordon-Ross
and H. Lam, "Reconfigurable Fault Tolerance: A
Comprehensive Framework for Reliable and
Adaptive FPGA-Based Space Computing," ACM
Transactions on Reconfigurable Technology and
Systems, vol. 5, no. 4, 2012.

[7] NICTA Trustworthy Systems, "seL4 Reference
Manual Version 2.0," 1 December 2015. [Online].
Available: https://sel4.systems/Info/Docs/seL4-
manual-2.0.0.pdf. [Accessed 7 June 2017].

[8] D. McComas, NASA/GSFC's Flight Software Core
Flight System, San Antonio, TX: Workshop on
Spacecraft Flight Software, 2012.

[9] D. e. a. Rudolph, "CSP: A multifaceted hybrid
architecture for space computing, 2014.

[10] R. Kral and a. et, "Implementation of a Loosely
Coupled Lockstep Approach in the Xilinx
Zynq7000 All Programmable SoC for High
Consequence Applications," in GOMACtech,
2017.

[11] R. Khazan and D. Utin, "Lincoln open
cryptographic key management architecture," MIT
Lincoln Laboratory, Lexington MA, 2012.

