

A Deep Space Radio Communications Link for Cubesats: The CU-E³ Communication Subsystem

John S. Sobtzak, Elie G.Tianang, Varun Joshi, Breana M. Branham, Neeti P. Sonth, Michael DeLuca, Travis Moyer, Kyle Wislinsky, and Dr. Scott E. Palo College of Engineering & Applied Science, University of Colorado at Boulder

The Challenge!

CU's Earth Escape Explorer (CU-E³)

The University of Colorado's - Earth Escape Explorer (CU-E³) is a 6U cubesat being designed and built to compete in NASA's Cube Quest Challenge - Deep Space Derby. CU-E³ will be attempting communication from $\geq 4,000,000$ km, requiring us to "escape" the influence of the "Earth" and "explore" deep space.

NASA's Cube Quest Challenge

- o The Cube Quest Challenge has two phases:
 - 1. Ground Tournaments (GT-1 thru GT-4)†:
 - Maximum of \$100,000 for any one team.
 - Phase completed in June 2017.
 - 2. The "In-space Prizes":
 - 365-day competition period.

a) **Lunar Derby**

- Up to \$3 million in prizes.
- Technical objectives in propulsion & communications.

b) Deep Space Derby

- Up to \$1.5 million in prizes.
- Focus on deep space communications using small spacecraft.
- Competition starts at 4,000,000 km:
 - Best Burst Data Rate \$250,000
 - ii. Largest Aggregate Data \$750,000
 - iii. Spacecraft Longevity \$250,000
 - iv. Farthest Communication \$250,000
- † CU-E³ placed 2nd during the Ground Tournament phase, earning \$80,000, and has been offered a position on the SLS's EM-1 mission!!!

Challenges Faced by CU-E³

- Size restricted to 6U dimensions.
- Limits power generation and heat dissipation.
- Limits transmitter power.
- Limits use of classic high-gain antennas.
- → Limits possible radiated signal strength (EIRP)!
- Limited time & money!
 - GTs' schedule very short & tight.
 - Rad-hardened parts too expensive.
 - → Could not design everything from scratch.
 - \rightarrow Use COTS components as much as possible.
 - → Prototype circuits quickly for P.O.C & testing.

Tx_COAX_8 IL ≈ 0.1 dB

- o Distance *extremely* long range.
 - → EVERY dB COUNTS!!!

The CU-E³ Solution **Rx C-Band Patch** Rx_PCB Rx LNA **Astronautical** Development NF ≈ 0.9 dB Lithium - 2 Mini-Circuits Rx IF BPF Lark Engineering RF = 5210 MHz IF = 450 MHzRx_VCO_Amp **C-BAND UPLINK** XB1 CDH ↔ Rx UHF 5182 MHz Rx_OCXO Taitien XO-0087 TT 100 MHz XB1 BCT HMC833LP6GE XB1 CDH ↔ Rx_PLL_VCO CDH/FSW **ADCS** Gain = 22.3 dBiTX_Hybrid_1 X-BAND DOWNLINK **EPS** Anaren Tx_COAX_5 8447.6 MHz **EIRP** Tx_COAX_3 XB1 CDH ↔ Tx_HRCCS_FPGA Tx_PA_PCB **RS422** Tx_SW Tx_COAX_6 Tx_PA Dow-Key Microwave Tx_PA_VR IL ≈ 0.1 dB **Analog Devices** 401T-420832 Linear Technologies Tx_HRCCS_PCB HMC7357LP5GE RL ≥ 17.7 dB LT8610AC P1dB ≈ +35.5 dBm IL ≤ 0.3 dB $\eta \approx 90\% @ 1.6 A$ HRCCS[‡] PAE ≥ 32% CU/NASA/LASP Tx_COAX_2 Bias Controller Regulator Processor FPGA +35.1 dBn 8.0 V Tx_Feed_Horn Gain = 12.8 dBiTx_Hybrid_2 1E0018-3 +35.5 dBm Tx_COAX_7 RL ≥ 18.0 dB **EIRP** Tx_COAX_4 IL ≈ 0.1 dB

Key Notes

Reflectarray & Horn Antennas

- o CU-E³ utilizes a novel, student-designed, *reflectarray* antenna and feed horn.
 - Planar design → fits 6U cubesat form factor.
 - Utilizes standard PCB microstrip technology. \rightarrow easy and relatively inexpensive to fabricate.
 - High gain \rightarrow 22.3 dB at X-band Tx frequency.
- o CU-E³'s design includes a second *feed horn* antenna.
 - Provides back-up communication link in the event primary reflectarray antenna does not deploy.
 - Lower gain \rightarrow 12.8 dB, but can still close link.

High-Rate CubeSat Communication System (HRCCS)[‡]

- CU-E³ will provide the maiden launch for the HRCCS.
- Designed for deep space X-band frequencies.
- Provides a flexible communications platform.
- Compatible with NASA's NEN & DSN.

Downlink Budget Analysis Summary

ANTENNA		Reflect	Feed	Reflect	Feed	Reflect	Feed
	-	Array	Horn	Array	Horn	Array	Horn
NT RANGE	km	4,000,000		6,000,000		27,000,000	
NSMITTED EIRP	dBm	56.6	47.1	56.6	47.1	56.6	47.1
'AL SIGNAL POWER @ OUTPUT OF LNB (S)	dBm	-82.4	-91.9	-85.9	-95.4	-99.0	-108.5
SE POWER DENSITY OF RX @ OUTPUT OF LNB (No)	dBm/Hz	-123.0	-123.0	-123.0	-123.0	-123.0	-123.0
SE POWER OF RX (N)	dBm	-94.3	-103.8	-97.9	-107.4	-111.0	-112.2
FUL BIT RATE	bits/s	608	68	270	30	13	1
RGY PER BIT (Eb)	W/bit	-110.3	-110.2	-110.3	-110.2	-110.1	-108.5
eived SNR (@ OUTPUT OF LNB)	dB	11.9	11.9	11.9	12.0	12.0	3.7
ulting Eb/No	dB	12.7	12.7	12.7	12.8	12.8	14.5
(Margin	dB	6.10	6.12	6.11	6.15	6.22	7.86

‡Palo, S.E., "High Rate Communications for CubeSats", Proc. of the IEEE International Microwave Symposium, Phoenix, AZ, 2015. [‡]Palo, S.E., D. O'Connor, E. DeVito, R. Kohnert, G. Crum and S. Altunc, "Expanding CubeSat Capabilities with a Low Cost