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ABSTRACT 

This work presents 3 candidate strategies for all-magnetic attitude control of a 3U CubeSat using a magnetometer and 

sun sensors for attitude determination. The study focuses on the sun-acquisition problem and does not treat rate 

damping (detumbling). The first method is a ‘naïve’ 3-Axis position control applying torques on each axis depending 

on the attitude error angle on that axis. This method is well known to yield poor results, but provides a theoretical 

footing for the rest of the work. The second method takes specificities of actuators and the sun-acquisition problem 

into account to tailor a better controller. Since the Sun acquisition is a 2-axis positioning problem, this method 

particularizes the previous one, leaving the pointed axis uncontrolled in rotation. Safeguards are foreseen to avoid 

velocity build-up on the uncontrolled axis. The last method uses a 2-phases strategy to spin the satellite and provide 

gyroscopic stiffness before pointing the spun axis towards the sun. The momentum is directed in such a way that if 

the satellite is perfectly pointed, the momentum is collinear to the target direction. After presenting these 3 strategies, 

their performances in the simulation environment of CNES are analyzed in terms of pointing accuracy and 

convergence time. 

INTRODUCTION 

To fulfil their missions, satellites have to be oriented and 

stabilized. Whether it is to take a picture of a precise 

location on the surface of the earth or on the celestial 

sphere, orient an antenna towards a receiving station, or 

solar panels towards the sun, a satellite is often required 

to modify its attitude in space.  

When it comes to safety, a major role of the Attitude 

Control System (ACS) is to ensure that the satellite will 

always remain under control, whatever happens on 

board. A dedicated mode of operation is foreseen to face 

any contingency, and is conveniently called the safe 

mode. Its main objective is to orient the solar panels 

towards the sun to insure battery charging. 

The safe mode is all the more important for nanosatellites 

given that the equipment is usually less reliable than 

conventional space hardware. The spacecraft are thus 

very likely to spend extended periods of time in that 

mode following equipment failures. 

This study summarizes the work that has been carried out 

to design and validate an orientation strategy for the safe 

mode of 3-U CubeSats developed under the supervision 

of CNES in the context of its education and outreach 

project JANUS. 

All the satellite data used in this work (satellite’s inertia, 

orbital characteristics, etc.) have been taken from 

EyeSat, which is the reference 3-U cubesat for JANUS, 

designed and built in CNES. 1, 2 

In the following, the bases of attitude control are recalled 

as well as of the satellite’s dynamics.  

The core of the work is then addressed. After a brief 

review of the objectives and constraints of the safe mode 

is presented, and a strategy for estimating the angular 

rates is proposed. 3 candidate attitude control strategies 

are then presented. For each case, the closed loop 

dynamic is assessed to determine the stability conditions 

and compute the controller parameters.  

Finally, a comparative analysis of the 3 strategies is 

carried out based on results obtained in simulations. The 

selected criteria for this comparison are the batteries’ 

depth of discharge, the convergence time, and the 

pointing accuracy to a lesser extent. 

REFERENCES AND CONVENTIONS 

The movement and attitude of a spacecraft is always 

defined with respect to a reference frame. There can be 

an infinity of reference frames depending on the satellite 

and its mission, but it is customary to define at least the 

following 3 

Body reference frame 

The body, satellite, or vehicle frame is linked to the 

satellite platform.  
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It is usually centered on the spacecraft’s center of mass, 

and its axes correspond to the principal axes of inertia. 

The chosen BRF is presented in Figure 1.  

 
Figure 1: Body reference frame 

Local Orbital Frame (LOF) 

The origin of the local orbital frame also coincides with 

the satellite’s center of mass, but its axes are not bound 

to the spacecraft. It is customary to define the Z axis as 

Nadir pointing (i.e. towards the center of the earth). The 

X axis is in the direction of the velocity, and the Y axis 

completes the direct orthogonal system as illustrated in 

Figure 2. 

Inertial Reference Frame (IRF) 

The inertial frame is fixed with respect to the stars. When 

studying Earth-bound satellites, its origin is usually 

placed at the Earth’s center of mass. Its X axis is collinear 

with the sun-earth direction at the spring equinox (Aries). 

The Z axis is in the direction of Polaris, and the Y axis 

completes the direct orthogonal system as illustrated in 

Figure 2. 

 

Figure 2: LOF and IRF 

Attitude representation 

There are 2 different ways to express the attitude. The 

Euler angles describe 3 successive rotations around 3 

axes needed to align the BRF with another reference 

frame. The axes X, Y, and Z are generally numbered 1, 

2, and 3, and the corresponding rotation angles around 

them are labelled 𝜑, 𝜃, and 𝜓 respectively.  

These rotations can be expressed by their rotation matrix 

as follows: 

[𝐴𝜑] = [

1 0 0
0 cos𝜑 sin𝜑
0 −sin 𝜑 cos𝜑

]  

[𝐴𝜃] = [

cos 𝜑 0 − sin𝜑
0 1 0

sin𝜑 0 cos𝜑
]  

[𝐴𝜓] = [
cos𝜓 sin𝜓 0
−sin𝜓 cos𝜓 0

0 0 1

] 

(1) 

The order in which the successive rotations are 

performed is free, which makes 6 possible 

transformations to get from one frame to another. It is 

also possible to define transformations in which the first 

and third rotations are performed about the same axis 

which makes 6 other possibilities, but they will not be 

presented here. Each possible transformation is generally 

referred to by the ordered list of its rotation axes, for 

example a transformation ‘1-2-3’ means that the first 

rotation is done around axis 1 (X), and so on. It is 

interesting to note that, for small angles, the six 

transformations have the same approximated form which 

is presented below. 

[𝐴𝛼𝛽𝛾] ≅ [

1 𝜓 −𝜃
−𝜓 1 𝜑
𝜃 −𝜑 1

] (2) 

This representation has the advantage of being intuitive 

but it necessitates 9 parameters. Moreover, obtaining the 

angles involves using several trigonometric functions 

that might cause singularities.  

The other way to represent attitude is to use quaternions. 

Quaternions are 4 dimensional vectors defined as: 

𝒒 = 𝑞4 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 (3) 

The conjugate quaternion can also be defined and is 

expressed as: 

𝒒∗ = 𝑞4 − 𝒊𝑞1 − 𝒋𝑞2 − 𝒌𝑞3 (4) 
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The terms i, j, and k having the following properties: 

𝒊2 = 𝒋2 = 𝒌2 = −1 

𝒊𝒋 = −𝒋𝒊 = 𝒌 

𝒋𝒌 = −𝒌𝒋 = 𝒊 
𝒌𝒊 = −𝒊𝒌 = 𝒋 

(5) 

Their use to express a rotation (and therefore an attitude) 

is based upon Euler’s rotation theorem, which states that 

any displacement in 3-dimensional space of a rigid body 

fixed in one point can always be expressed as a single 

rotation around some axis passing through that fixed 

point. If this axis is expressed as a unit vector e, it can be 

shown that a rotation of an angle 𝛼 around that axis can 

be represented by a quaternion whose parameters are 

defined as follows: 

𝑞1 = 𝑒1 sin (
𝛼

2
) ; 𝑞2 = 𝑒2 sin (

𝛼

2
) 

𝑞3 = 𝑒3 sin (
𝛼

2
) ; 𝑞4 = cos (

𝛼

2
) 

(6) 

This allows a very compact and elegant representation 

and requires only 4 parameters instead of 9 for the Euler 

angles representation. Furthermore, it is devoid of any 

singularities.  

Quaternions have many interesting properties but a 

comprehensive presentation is beyond the scope of this 

work. The interested reader can refer to references on the 

subject. 3, 4 

SPACECRAFT DYNAMICS 

Before designing an attitude control law, it is necessary 

to understand how a satellite moves in space. The 

quantity of interest here is the link between the torques 

applied on the spacecraft and the rate of change of its 

angular momentum. It can be shown that this relationship 

can be expressed as follows: 

𝑻𝑡𝑜𝑡 = �̇�𝑖𝑟𝑓 = �̇�𝑏𝑟𝑓 + 𝝎 ∧ 𝑯 (7) 

With: 𝑻𝑡𝑜𝑡 the sum of all torques applied on the 

spacecraft [Nm]; �̇�𝑖𝑟𝑓 the derivative of the angular 

momentum as seen in inertial frame [Nm]; �̇�𝑏𝑟𝑓 the 

derivative of the angular momentum as seen in body 

frame [Nm]; 𝝎 the angular velocity of the body frame in 

the inertial frame [s-1]; 𝑯 the angular momentum of the 

spacecraft [Nms] 

𝑯 being expressed as: 

𝑯 = [𝐼]. 𝝎 (8) 

With 𝑰 the inertia matrix of the spacecraft: 

[𝐼] = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] [𝑘𝑔.𝑚2] (9) 

In the rest of this work, it will be assumed that the inertia 

matrix is diagonal and constant in time. This hypothesis 

is known to be valid in the case of 3-U cubesats due to 

the symmetrical shape of the spacecraft. The inertia 

matrix is also constant in time as they do not contain any 

consumables that would be expelled during the mission. 

It can also be shown that their shape makes the inertia 

around x and y identical, and the inertia matrix is thus of 

the form: 

[𝐼] = [
𝐴 0 0
0 𝐴 0
0 0 𝐶

] [𝑘𝑔.𝑚2] (10) 

For reasons that will be made clear later the spacecraft 

will not contain any embedded momentum (i.e. inertia 

wheel) in safe mode, and 𝑯 is therefore exclusively the 

angular momentum of the spacecraft itself. 

By inserting equation (10) into (8) and then the latter into 

(7), the following set of equations can be obtained in the 

body axis frame: 

𝑇𝑡𝑜𝑡,𝑥 = 𝐴�̇�𝑥 + 𝜔𝑦𝜔𝑧(𝐶 − 𝐴) 

𝑇𝑡𝑜𝑡,𝑦 = 𝐴�̇�𝑦 + 𝜔𝑥𝜔𝑧(𝐴 − 𝐶) 

𝑇𝑡𝑜𝑡,𝑧 = 𝐶�̇�𝑧 

(11) 

By stating 𝛾 = (𝐶 − 𝐴), one can finally obtain: 

𝑇𝑡𝑜𝑡,𝑥 = 𝐴�̇�𝑥 + 𝛾𝜔𝑦𝜔𝑧 

𝑇𝑡𝑜𝑡,𝑦 = 𝐴�̇�𝑦 − 𝛾𝜔𝑥𝜔𝑧 

𝑇𝑡𝑜𝑡,𝑧 = 𝐶�̇�𝑧 

(12) 

This fundamental set of equation expresses the attitude 

dynamic of the satellite, and is the basis upon which an 

attitude control system can be built. 

ANGULAR RATES ESTIMATION 

To control the attitude, it is necessary to know it first. For 

a safe mode the task is simplified by the fact that the 

objective is to point towards the sun, and that it is 

assumed that the satellite is fitted with sun sensors. The 

setpoint is therefore directly measurable in body frame. 

As in safe mode one only needs to align 2 vectors, the 

sun direction vector is sufficient to insure proper 

pointing. Considering the sun as being inertial, 

measuring its position gives information about the 

position of the satellite in inertial frame. 
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Provided that the sun sensors give the unit sun direction 

vector: 

𝒔𝒃𝒓𝒇 = [𝑆𝑥,𝑏𝑟𝑓 𝑆𝑦,𝑏𝑟𝑓 𝑆𝑧,𝑏𝑟𝑓]
𝑇
 (13) 

The positioning error is determined as the difference 

between the vector normal to the solar panels (−𝒛𝒃𝒓𝒇) 

and the direction of the sun in body frame sbrf.  

The axis of rotation R around which the satellite must 

move is defined as the cross product: 

𝑹𝒃𝒓𝒇 = (−𝒛𝒃𝒓𝒇) ∧  𝒔𝒃𝒓𝒇 (14) 

The error angle α can either be obtained from the cross 

product or from the scalar product: 

sin 𝛼 = ‖𝑹𝒃𝒓𝒇‖ 

cos 𝛼 =  (−𝒛𝒃𝒓𝒇 • 𝒔𝒃𝒓𝒇) 
(15) 

It is preferable to use the first expression, as it reduces to 

𝛼 = ‖𝑹𝒃𝒓𝒇‖ for small error angles. 

In addition to the attitude, angular rates must also be 

measured. The estimation strategy is here based on a 

combination between the magnetic and solar 

measurements, or magnetic measurements alone while 

the satellite is in eclipse.  

The strategy has been developed for the Myriade family 

of satellites and can be summarized as follows: 5 

Let u be a unit vector. Its derivative in inertial frame can 

be expressed as: 

𝑑𝒖

𝑑𝑡 𝐼𝑅𝐹
= 

𝑑𝒖

𝑑𝑡 𝐵𝑟𝑓
+ 𝜔 ∧ 𝒖 (16) 

With 𝜔 the angular speed of the BRF with respect to the 

IRF.  

The estimation principle supposes that the inertial 

velocity of u is negligible with respect to the satellite 

angular rate, which means: 

𝑑𝒖

𝑑𝑡 𝐼𝑅𝐹
= 0 (17) 

Equation (16) can therefore be re-written as: 

𝑑𝒖

𝑑𝑡 𝐵𝑟𝑓
+ 𝜔 ∧ 𝒖 = 0 (18) 

This relationship shows that only the 2 components of 𝜔 

that are perpendicular to u can be estimated. This leads 

to the estimated angular rate �̂� 

�̂� =
�̇� ∧ 𝒖

‖𝒖‖
= �̇� ∧ 𝒖 (19) 

From a signal processing point of view, the derivative of 

u can be computed as: 

�̇� =
𝒖𝒌 − 𝒖𝒌−𝟏

Δ𝑇
 (20) 

Δ𝑇 being the sampling period of the ACS, and 𝒖𝒌 and 

𝒖𝒌−𝟏 the measurements at time k and k-1 respectively. 

Inserting equation (20) into (19) finally gives the angular 

rates estimates as a function of the measurements: 

�̂� =
𝒖𝑘 ∧ 𝒖𝑘−1

Δ𝑇
 (21) 

This technique can be applied to the measurements of the 

magnetic field and solar direction. The 2 measurements 

thus provide 2 partial estimates: 

�̂�𝑘
𝐵 =

𝒃𝑘 ∧ 𝒃𝑘−1

Δ𝑇
 

�̂�𝑘
𝑆 =

𝒔𝑘 ∧ 𝒔𝑘−1

Δ𝑇
 

(22) 

With b the direction of the magnetic field B. 

In the case of the magnetic field, the hypothesis stating 

that the vector is inertial is not met, as its direction will 

vary all along the orbit. But this variation can be 

considered as negligible as far as angular rates are 

concerned. Indeed, the field rotates twice during an orbit, 

which for a 700km SSO circular orbit represents a period 

of around 3000s, and an angular rate of only 0.0021 

rad/s.  

As each vector will provide 2 components of the angular 

rate, and that they are never aligned on the selected orbit, 

the combination of the 2 estimates will provide a 3-axis 

estimation of the angular rate.  

These can be merged together in the following manner: 

During detumbling, the sun direction measurement is 

considered as less precise and is exploited only on the 

axis which is not covered by the magnetic field 

measurement: 

�̂�𝑆+𝐵 = �̂�𝐵 + (�̂�𝑆 • 𝒃)𝒃 (23) 
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During sun acquisition on the other hand, the sun 

direction measurement is considered as more precise and 

is fully exploited. The magnetic measurement completes 

the estimate: 

�̂�𝑆+𝐵 = �̂�𝑆 + (�̂�𝐵 • 𝒔)𝒔 (24) 

In both cases, the complete estimate �̂�𝑆+𝐵 is composed 

of the partial estimate deemed the more reliable, and 

from the component of the less reliable estimate that is 

collinear to the reference vector. 

To improve the quality of the estimation, partial 

estimates can be filtered using a first order linear filter 

whose characteristics depend upon the noise pattern of 

each measurement. 

CONTROL SYSTEM SPECIFICATIONS 

The aim of the safe mode is ultimately to insure battery 

charging. The ACS must reach and maintain an attitude 

in which the solar panels are pointed towards the sun 

with a reasonable angle. It usually consists of 2 phases: 

Firstly, the angular rates must be damped in order to 

stabilize the satellite. Then, the solar panels must be 

pointed towards the sun to insure the energy supply and 

thermal equilibrium. The first phase is generally known 

as Detumbling, while the second is called sun acquisition 

for obvious reasons. 

Detumbling is generally based on a very simple magnetic 

control law called ‘b-dot’. This law is well mastered and 

has already been implemented and optimized in the 

context of Eyesat and a number of other cubesats all 

around the world. It will therefore be presented, but not 

be studied in detail in this work. The design effort will 

thus be exclusively focused on the sun-acquisition phase. 

It can be considered that the energy received by a solar 

panel is proportional to the cosine of the angle 𝛼𝑠𝑜𝑙  

between its normal vector (-Zsat for Robusta) and the 

direction of the sun S. Considering then that when the 

panels are perfectly perpendicular to the direction of the 

sun they produce their maximum power Pmax, the 

available input power Pa can be expressed as: 

𝑃𝑎 = 𝑃𝑚𝑎𝑥 . (−𝒁𝒔𝒂𝒕 • 𝑺) 
= 𝑃𝑚𝑎𝑥 . cos 𝛼𝑠𝑜𝑙 

(25) 

To insure a positive energy balance, it is imperative to 

maintain this available power higher than the consumed 

power Pc as far as possible. After convergence it is 

absolutely necessary that 𝑃𝑎 > 𝑃𝑐, and the pointing 

requirement can thus be expressed as: 

𝛼𝑠𝑜𝑙 < cos−1 (
𝑃𝑐

𝑃𝑚𝑎𝑥

) (26) 

For 3U cubesats having a ‘flower’ configuration with 4 

solar panels, Pmax is approximately 24 Watts.  

Concerning the consumption on the other hand, no 

precise information being available, estimation based on 

the rated power of Eyesat’s magnetorquer, 

magnetometer, and on-board computer led to an 

approximated power consumption of around 12 Watts 

while exposed to the sun, and 4 while in eclipse. The 

consumption is lower in eclipse due to the fact that the 

sun being by definition invisible, sun-acquisition is 

impossible, and no attitude control is performed. 

This information finally allows obtaining a clear numeric 

target for the pointing requirement after convergence: 

𝛼𝑠𝑜𝑙 < cos−1 (
12

24
) 

< 60 [°] 
(27) 

For safety reasons however, this requirement will be 

tighten to 30°. In addition to this, the convergence time 

is constrained by the battery capacity Cbat and its 

maximum allowable depth of discharge DoDmax. 

Considering that the satellite does not receive any energy 

as long as the attitude has not converged, the maximum 

allowable convergence time Tconv can be expressed as: 

𝑇𝑐𝑜𝑛𝑣 <
𝐶𝑏𝑎𝑡 . 𝐷𝑜𝐷𝑚𝑎𝑥

𝑃𝑐

 [ℎ] (28) 

Considering a battery capacity worth 47.6 Watt.h, and 

that the battery must never be discharged more than 60% 

of this value at the end of the first acquisition, this gives 

a total of 28.56 Watt.h available to slow down the 

satellite and reach the required attitude. 

𝑇𝑐𝑜𝑛𝑣 <
47.6 ∗ 0,6

10
 [ℎ] 

𝑇𝑐𝑜𝑛𝑣 < 10281 [𝑠] 
(29) 

It has to be reminded however that this computation 

considers no energy input during the whole process of 

convergence, which will not be true, especially 

considering the fact that an angle between the solar 

panels’ normal vector and the sun director of 60° is 

already sufficient to cover the energy needs. This 

requirement must therefore be considered with caution. 
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Finally, a last requirement must be set concerning the 

hardware to be used in safe mode. As already mentioned 

the ultimate fallback mode must only depend upon the 

most reliable sensors and actuators. If in conventional 

satellites reaction wheels can be regarded as such, it is 

not yet the case for nanosatellites. For this reason, it has 

been decided that the Safe mode should only use the 

magnetorquers for actuation.  

Concerning attitude determination, the magnetometer 

and the sun sensors being both very reliable, they can all 

be used in safe mode. 

CONTROL WITHOUT INDUCED KINETIC  

MOMENTUM 

Control Strategy 

Control without kinetic momentum basically applies 

torques on each axis depending on the attitude error 

angle on that axis.  Such a control law could be expressed 

as: 

𝑻 = 𝑲((−𝒛𝒃𝒓𝒇) ∧  𝒔𝒃𝒓𝒇) (30) 

With: T the control torque vector [Nm]; K the control 

gain vector. 

This is a simple proportional law, but any other classical 

control technique such as PID could be applied. 

When on the other hand the satellite possesses an on-

board kinetic momentum, it responds differently to 

applied torques, and the previous technique cannot be 

used anymore. 

Controller synthesis 

A simple control law based on the pointing error can be 

obtained using a classical Proportional derivative 

controller. The derivative term is added to avoid 

oscillations that would certainly occur with a 

proportional gain alone as the system is an undamped 

second order. For a pointing error αe on a given axis, the 

control torque is thus of the form: 

𝑇𝑐 = 𝐾𝑝𝛼𝑒 + 𝐾𝑑�̇�𝑒 (31) 

The pointing error being expressed 𝛼𝑒 = 𝛼𝑠𝑝 − 𝛼 with 

sp standing for setpoint, equation (30) can be expanded 

as: 

𝑇𝑐 = 𝐾𝑝𝛼𝑠𝑝 − 𝐾𝑝𝛼 + 𝐾𝑑�̇�𝑠𝑝 − 𝐾𝑑�̇� (32) 

Then, knowing that the setpoint will never vary, the final 

expression of the control torque can finally be obtained: 

𝑇𝑐 = 𝐾𝑝(𝛼𝑠𝑝 − 𝐾𝑝𝛼) − 𝐾𝑑�̇� (33) 

For sun acquisition, the pointing error around Z has no 

meaning since axes X and Y can point in any direction 

without impacting the power supply. The aim of the 

controller will therefore simply be to ensure that the 

satellite does not rotate around Z.  

As this represent controlling a first order system, a 

simple gain can be used. 

These expressions can be inserted in the equations of 

dynamics (12) that have been reproduced hereunder to 

determine the closed loop dynamics of the satellite. 

𝑇𝑡𝑜𝑡,𝑥 = 𝐴�̇�𝑥 + 𝛾𝜔𝑦𝜔𝑧 

𝑇𝑡𝑜𝑡,𝑦 = 𝐴�̇�𝑦 − 𝛾𝜔𝑥𝜔𝑧 

𝑇𝑡𝑜𝑡,𝑧 = 𝐶�̇�𝑧 

(34) 

For the sake of clarity, Euler angles will be used in this 

development, and it will be assumed that the small angles 

hypothesis is valid. In that case the following 

relationships hold: 

𝜔𝑥 = φ̇ 

𝜔𝑦 = θ̇ 
(35) 

Furthermore, as the sun acquisition phase follows 

detumbling, it can be assumed that ωz is small and might 

only vary slowly with respect to the other terms, and can 

therefore be considered as constant. The coupling term γ 

being constant as well, let us define a new constant Γ =
𝛾𝜔𝑧.The dynamics equations can now be re-written: 

𝑇𝑡𝑜𝑡,𝑥 = 𝐴�̇�𝑥 + Γ𝜔𝑦 

𝑇𝑡𝑜𝑡,𝑦 = 𝐴�̇�𝑦 − Γ𝜔𝑥 

𝑇𝑡𝑜𝑡,𝑧 = 𝐶�̇�𝑧 

(36) 

Inserting equations (34) and (35) into (36) finally leads 

to the expression of the closed loop dynamics: 

−𝐾𝑝𝜑 − 𝐾𝑑�̇� = 𝐴�̈� + Γ�̇� 

−𝐾𝑝𝜃 − 𝐾𝑑�̇� = 𝐴�̈� − Γ�̇� 

−𝐾𝑠𝜔𝑧 = 𝐶�̇�𝑧 

(37) 

Solving the last equation shows that 𝜔𝑧 is of the form: 

𝜔𝑧(𝑡) = 𝑒− 
𝐾𝑠
𝐶

𝑡
 (38) 

Which will converge to zero as long as the gain Ks is 

positive.  
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Since the dynamics of the third axis is supposed to be 

very slow and is unaffected by that of the other axes they 

can be studied separately. 

The 2 first equations of (37) can be rearranged as: 

�̈� = −
𝐾𝑝

𝐴
𝜑 −

𝐾𝑑

𝐴
�̇� −

Γ

A
�̇� 

�̈� = −
𝐾𝑝

𝐴
𝜃 −

𝐾𝑑

𝐴
�̇� +

Γ

A
�̇� 

(39) 

This system can then be expressed in matrix form: 

[
 
 
 
�̇�

�̇�
�̈�

�̈�]
 
 
 
=

[
 
 
 
 
 
 
 

0 0 1 0

0 0 0 1

−
𝐾𝑝

𝐴
0 −

𝐾𝑑

𝐴
−

Γ

A

0 −
𝐾𝑝

𝐴

Γ

A
−

𝐾𝑑

𝐴 ]
 
 
 
 
 
 
 

[

𝜑
𝜃
�̇�

�̇�

] (40) 

It can be shown that the eigenvalues of this matrix are 

the roots of the equation: 

[𝜆 (
𝐾𝑑

𝐴
+ 𝜆) + (

𝐾𝑝

𝐴
)]

2

+ (
λΓ

𝐴
)

2

= 0 (41) 

Which can be further transformed as: 

𝜆 (
𝐾𝑑

𝐴
+ 𝜆) + (

𝐾𝑝

𝐴
) = 𝑗

λΓ

𝐴
 (42) 

Then, expanding the left-hand side finally leads to: 

𝜆2 + (
𝐾𝑑

𝐴
− 𝑗

Γ

𝐴
) 𝜆 +

𝐾𝑝

𝐴
= 0 (43) 

It can be noticed that if the angular velocity around Z is 

zero the Γ term vanishes, and the equation reverts to the 

characteristic polynomial of a second order system. 

In the general case, the roots of the equation are of the 

form: 

𝜆0 =
−(

𝐾𝑑

𝐴
− 𝑗

Γ
𝐴
) ± √(

𝐾𝑑

𝐴
− 𝑗

Γ
𝐴
)

2

−
4𝐾𝑝

𝐴
2

 
(44) 

Solving this equation involves taking the root of a 

complex number, which in this case cannot be done 

analytically. It is nevertheless possible to detect a trend 

concerning the impact of the spin. If Γ is small, it has 

already been seen that the roots revert to those of a 

simple second order system.  

If on the other hand Γ is big with respect to the term 
𝐾𝑑

𝐴
, 

the latter can be neglected, and the roots become: 

𝜆0,Γ≫ =
𝑗
Γ
𝐴

± √(
Γ
𝐴
)

2

−
4𝐾𝑝

𝐴
2

 
(45) 

In that case, 2 solutions are possible: 

 (
Γ

𝐴
)
2

>
4𝐾𝑝

𝐴
 

In that case the term under the square root is real, and 1 

of the eigenvalues has a positive real part. This situation 

therefore leads to instability. 

 (
Γ

𝐴
)
2

≤
4𝐾𝑝

𝐴
 

In that case the term under the square root is complex or 

zero and the eigenvalues are purely complex. The system 

is thus undamped, but theoretically (critically) stable.  

All this shows that the spin around the Z-axis clearly has 

a negative impact on the control system. It is therefore 

very important to have 𝐾𝑝 ≥
Γ2

4𝐴
. As it is not possible to 

make the gain arbitrarily large due to actuator saturation, 

the spin must be reduced as much as possible. 

2 solutions have been considered in order to control the 

spacecraft using the strategy presented above. The first 

option is trying to control the dynamics of the Z-axis in 

order to maintain its spin as low as possible, and 

designing the controllers of the 2 other axes considering 

a zero value of spin. 

The second option is to consider that as the sun-

acquisition phase is performed after detumbling, the 

angular rates around all axes are very small. As the 

disturbances are also small, the spin around z is unlikely 

to increase very quickly. It is thus possible to consider 

controlling only the 2 other axes while leaving Z 

uncontrolled. In order to avoid instability, the spin 

around Z must nevertheless be monitored permanently, 

and if the spin were to become too important, the ACS 

would trigger a new detumbling phase. 

The simplest implementation of this method is to 

monitor the norm of the angular rate vector, and giving 

back total control to the detumbling controller if the spin 

becomes too important. However, this hard switch would 

create discontinuities that could bring instability. 
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Smoother transition between the 2 laws can be obtained 

using a kind of fuzzy logic controller that will 

continuously monitor the norm of the angular rate vector, 

and adjust the influence of the 2 laws on the commanded 

torque. That logic is illustrated in Figure 3. 

 

Figure 3: Fuzzy logic hybridization law 

In that precise case, one can see that when the norm of 

the angular rate vector ‖𝜔‖ is lower than 0.025 rad/s, the 

detumbling controller is disconnected (zero gain) and the 

satellite is completely controlled by the position 

controller. If the norm is higher than 0.05 rad/s on the 

other hand, it is the position controller that is 

disconnected, and the satellite is fully in detumbling. 

As it stays in detumbling, the satellite will slow down 

and ‖𝜔‖ will decrease, bringing the ‘cursor’ on the left 

of the graph. The less it rotates, the more it becomes 

controllable and the more the position controller will 

affect its dynamics. 

The 2 main parameters of this mechanism for the present 

application are the value of ‖𝜔‖ for which the Position 

control gain begins to decrease, and the width of the 

transition region. Indeed, if the position control law is 

allowed to act for excessive values of spin, the satellite 

will become unstable. If the transition region is too 

broad, the satellite might be trapped in a region where no 

law supersedes the other, and if it is too tight the situation 

will revert to that of a hard switch and possibly create 

instability. 

Let T be the threshold on the value of ‖𝜔‖ for which the 

Position control gain begins to decrease, and L the length 

of the transition region. The Detumbling gain Gdtb 

variation in that area can be expressed as: 

𝐺𝑑𝑡𝑏 =
1

𝐿
(‖𝜔‖ − 𝑇) (46) 

By bounding this equation between 0 and 1, the blue 

curve of Figure 3 is obtained.  

The evolution of the position control law gain Gpc is then 

computed as: 

𝐺𝑝𝑐 = 1 − 𝐺𝑑𝑡𝑏 (47) 

In both strategies, the controllers of the X and Y axes are 

designed considering the spin around Z is zero. The 

difference between the 2 techniques is that in the first 

case the gain Ks of equation (38) is non-zero, whereas in 

the second strategy it is.  

CONTROL WITH INDUCED KINETIC  

MOMENTUM 

Control Strategy 

Kinetic momentum can be applied to provide gyroscopic 

stability to the spacecraft, but in return it resists the 

control torques. The aim of the positioning control law is 

therefore not to fight against the momentum, but to use 

it to modify the attitude. Unlike in the previous 

technique, the toque must here be directed in the desired 

direction of motion to increase the component of the 

momentum in that direction and tilt the satellite. 

The momentum is directed in such a way that if the 

satellite is perfectly pointed, the momentum is collinear 

to the target direction. In conventional satellite it can be 

provided by inertia wheels. In this study however the use 

of wheels is forbidden in safe mode and it is the satellite 

itself that needs to be spun in order to provide the 

momentum. 

3-U cubesats allow to implement this strategy easily, as 

the dynamics of the axis that needs to be spun (Z) is 

decoupled from the others, as has been shown in the 

previous section dedicated to spacecraft dynamics. 

The strategy in that case is therefore to spin the satellite 

about its Z axis, and then to orient the resulting kinetic 

momentum H in the desired direction. The torques 

needed to achieve this goal must follow the relationship: 

𝑻 = 𝑲(𝑯 ∧ (𝒔 ∧ 𝑯)) (48) 

Knowing that this law will be applied in the context of 

magnetic control, equation (47) can be modified to take 

into account the fact that the control torque must be 

orthogonal to the Earth’s magnetic field B. 

First of all, let’s develop the double cross product: 

𝑯 ∧ (𝒔 ∧ 𝑯) = 𝒔(𝑯 • 𝑯) − 𝑯(𝑯 • 𝒔) 
= ‖𝑯‖2𝒔 − 𝑯(𝑯 • 𝒔) 

(49) 
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The torque must be orthogonal to B, but as this law 

concerns only the reorientation there should be no torque 

acting in the direction of the momentum H either. These 

constraints can be guaranteed by projecting the torque 

vector computed previously on the vector (𝒃 ∧ 𝒉).  

𝑻𝒂 = [𝑻𝒅 • (𝒃 ∧ 𝒉)](𝒃 ∧ 𝒉) 
= [‖𝑯‖2(𝒃 ∧ 𝒉) • 𝒔 − (𝑯 • 𝒔)(𝒃 ∧ 𝒉)

• 𝑯](𝒃 ∧ 𝒉) 

(50) 

With: Ta the actual torque that can be produced by the 

magnetic actuators. [Nm];  Td the desired control torque 

[Nm]. 

In the last equation, in is interesting to note that: 

(𝒃 ∧ 𝒉) • 𝑯 = 𝒃 • (𝒉 ∧ 𝑯) = 0 (51) 

And equation (50) can therefore be simplified as: 

Ta = [‖𝑯‖2(𝒃 ∧ 𝒉) • 𝒔](𝒃 ∧ 𝒉) (52) 

Contrarily to what has been done until now, the aim here 

is not to prevent the satellite from spinning, but to induce 

that movement.  

This technique requires 2 separate controllers. A first 

control law will produce and maintain the requested 

kinetic momentum properly oriented in the satellite 

frame and with the good magnitude, and a second will 

orient this momentum in inertial space. 

Spin Controller Synthesis 

As already mentioned, the aim of the spin controller is to 

control the kinetic momentum of the spacecraft. This 

amount to controlling a first order system and the use of 

a derivative action is not required. A simple proportional 

law can thus be used, and the control torque can be 

expressed as: 

𝑻𝒔𝒑𝒊𝒏 = 𝐾𝑠(𝑯𝒔𝒑 − 𝑯𝒎) (53) 

Hsp and Hm being respectively the kinetic momentum 

setpoint and actual vectors. 6 

The inertia matrix being diagonal, the components of the 

torques are simply: 

𝑇𝑠𝑝𝑖𝑛,𝑥 = 𝐾𝑠𝐴(𝜔𝑥,𝑠𝑝 − 𝜔𝑥)

𝑇𝑠𝑝𝑖𝑛,𝑦 = 𝐾𝑠𝐴(𝜔𝑦,𝑠𝑝 − 𝜔𝑦)

𝑇𝑠𝑝𝑖𝑛,𝑧 = 𝐾𝑠𝐶(𝜔𝑧,𝑠𝑝 − 𝜔𝑧)

 (54) 

Inserting these torques in the dynamics equations, one 

obtains: 

𝐾𝑠𝐴(𝜔𝑥,𝑠𝑝 − 𝜔𝑥) = 𝐴�̇�𝑥 + 𝛾𝜔𝑦𝜔𝑧 

𝐾𝑠𝐴(𝜔𝑦,𝑠𝑝 − 𝜔𝑦) = 𝐴�̇�𝑦 − 𝛾𝜔𝑥𝜔𝑧 

𝐾𝑠𝐶(𝜔𝑧,𝑠𝑝 − 𝜔𝑧) = 𝐶�̇�𝑧 

(55) 

In order to develop these equations any further, some 

simplifications are necessary. First of all, only the 

particular case of the safe mode will be considered, and 

the setpoint on x and y will be to zero. Secondly, 𝜔𝑧 will 

be considered as slowly varying, this time around its 

setpoint value, which implies: 

𝜔𝑧(𝑡) = Ω𝑧,𝑠𝑝 + 𝜖𝑧(𝑡) ;  (𝜖𝑧 ≪ Ω𝑧) 

�̇�𝑧(𝑡) = 𝜖�̇�(𝑡) 
(56) 

This allows re-writing the equation (55) as: 

�̇�𝑥 = −𝐾𝑠𝜔𝑥 −
γ

A
Ωzωy 

�̇�𝑦 = −𝐾𝑠𝜔𝑦 +
γ

A
Ωzω𝑥 

ϵ̇𝑧 = −𝐾𝑠𝜖𝑧 

(57) 

This set of equation now being linear, it can be expressed 

in state-space form: 

[

�̇�𝑥

�̇�𝑦

ϵ̇𝑧

] =

[
 
 
 
 −𝐾𝑠 −

γ

A
Ωz 0

γ

A
Ωz −𝐾𝑠 0

0 0 −𝐾𝑠]
 
 
 
 

[

𝜔𝑥

𝜔𝑦

𝜖𝑧

] (58) 

Whose characteristic polynomial can be found: 

−(𝐾𝑠 + 𝜆) [(𝐾𝑠 + 𝜆)2 + (
γ

A
Ω)

2

] = 0 (59) 

Polynomial from which the eigenvalues can be obtained 

and are worth: 

𝜆1 = −𝐾𝑠

𝜆2,3 = −𝐾𝑠 ± 𝑗
𝛾Ω𝑧

𝐴

 (60) 

This result is very interesting for various reasons. First 

of all, it shows that the spin controller is stable provided 

that the gain is positive. Secondly, the eigenvalues have 

a very clear physical significance, and can easily be 

linked to the dynamics of the satellite.  
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The first eigenvalue is real and is not impacted by the 

spin around Z because it corresponds to the dynamics 

around that axis, which is decoupled from the others. The 

2 other eigenvalues correspond to the 2 other axis and are 

impacted by the spin. The kinetic momentum around 

these 2 axes will tend to oscillate due to the spin and the 

coupling term, and this appears here in the form of the 

complex term of the eigenvalue. 

The choice of the gain is not critical as the system is 

stable anyway. However, it is better to take a gain that is 

higher than the complex part of the root, as it will 

decrease the amplitude of the oscillations and the settling 

time. 

Position Controller Synthesis 

The aim of the controller is not here to modify the 

position of the satellite directly, but of the direction of 

the kinetic momentum. It was shown earlier in this work 

that this control requires torques following the command 

law: 

𝑇𝑝𝑜𝑠 = 𝐾𝑎‖𝑯‖2((𝒃 ∧ −𝒛) • 𝐬)(𝐛 ∧ −𝐳) (61) 

This expression can be expanded to express the 

components along x and y: 

𝑇𝑝𝑜𝑠,𝑥 = 𝐾𝑎‖𝑯‖2(𝑠𝑥𝑏𝑦
2 − 𝑠𝑦𝑏𝑥𝑏𝑦) 

𝑇𝑝𝑜𝑠,𝑦 = 𝐾𝑎‖𝑯‖2(𝑠𝑦𝑏𝑥
2 − 𝑠𝑥𝑏𝑥𝑏𝑦) 

(62) 

Let’s simplify these equations by posing: 

βy = 𝐾𝑎‖𝑯‖2𝑏𝑦
2 

𝛽𝑥𝑦 = 𝐾𝑎‖𝑯‖2𝑏𝑥𝑏𝑦 

𝛽𝑥 = 𝐾𝑎‖𝑯‖2𝑏𝑥
2 

(63) 

The expressions of the torques thus become: 

𝑇𝑝𝑜𝑠,𝑥 = 𝛽𝑦𝑠𝑥 − 𝛽𝑥𝑦𝑠𝑦 

𝑇𝑝𝑜𝑠,𝑦 = 𝛽𝑥𝑠𝑦 − 𝛽𝑥𝑦𝑠𝑥 
(64) 

As the aim is to align the sun direction vector with –z, 

the components 𝑠𝑥 and 𝑠𝑦 represent error signals that 

must be zeroed. Therefore, it can be considered that: 

𝑠𝑥 ≃ 𝜑𝑒 = −𝜑 

𝑠𝑦 ≃ 𝜃𝑒 = −𝜃 
(65) 

And the torques can finally be linked to the attitude 

angles: 

𝑇𝑝𝑜𝑠,𝑥 = 𝛽𝑥𝑦𝜃 − 𝛽𝑦𝜑 

𝑇𝑝𝑜𝑠,𝑦 = 𝛽𝑥𝑦𝜑 − 𝛽𝑥𝜃 
(66) 

Once again, the expression of the control torques can be 

inserted in the dynamics equations. As the position 

controller is only concerned by axes x and y, there are 

only 2 equations to study. Moreover, as the angular 

velocity around z is supposed to be maintained constant 

by the spin controller, it will be considered as such.  

𝛽𝑥𝑦𝜃 − 𝛽𝑦𝜑 = 𝐴φ̈ + γ𝜔𝑧θ̇ 

𝛽𝑥𝑦𝜑 − 𝛽𝑥𝜃 = 𝐴θ̈ − 𝛾𝜔𝑧�̇� 
(67) 

Posing Γ = 𝛾𝜔𝑧 and rearranging the terms to isolate the 

second derivatives, the equations finally become: 

�̈� =
𝛽𝑥𝑦

𝐴
𝜃 −

𝛽𝑦

𝐴
𝜑 −

Γ

A
�̇� 

�̈� =
𝛽𝑥𝑦

𝐴
𝜑 −

𝛽𝑥

𝐴
𝜃 +

Γ

A
�̇� 

(68) 

Putting these equations in the form of a matrix, one 

obtains the following state-space representation: 

[
 
 
 
�̇�

�̇�
�̈�

�̈�]
 
 
 
=

[
 
 
 
 
 

0 0 1 0
0 0 0 1

−
𝛽𝑦

𝐴

𝛽𝑥𝑦

𝐴
0 −

Γ

A
𝛽𝑥𝑦

𝐴
−

𝛽𝑥

𝐴

Γ

A
0 ]

 
 
 
 
 

[

𝜑
𝜃
�̇�

�̇�

] (69) 

One can then compute its characteristic polynomial: 

𝜆² (𝜆2 + (
Γ

𝐴
)

2

+
𝛽𝑥 + 𝛽𝑦

𝐴
) = 0 (70) 

And the eigenvalues are finally obtained: 

𝜆1,2 = 0 

𝜆3,4 = ±𝑗√(
Γ

𝐴
)

2

+
𝛽𝑥 + 𝛽𝑦

𝐴
 

(71) 

Replacing 𝛽𝑥 and 𝛽𝑦 by their expressions gives for the 

last 2 eigenvalues: 

𝜆3,4 = ±𝑗√(
Γ

𝐴
)

2

+ 𝐾𝑎

 ‖𝑯‖2(𝑏𝑥
2 + 𝑏𝑦

2)

𝐴
  (72) 
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The eigenvalues are purely imaginary, which is logical if 

one thinks that any torque applied on the x and y axes 

will inevitably cause the satellite to oscillate due to the 

momentum on z. 

From a control point of view, the eigenvalues show that 

to have any influence on the movement of the satellite, 

one must have: 

𝐾𝑎

 ‖𝑯‖2(𝑏𝑥
2 + 𝑏𝑦

2)

𝐴
≥  (

Γ

𝐴
)

2

 (73) 

In parallel to this requirement, it must be insured that the 

eigenvalue is not too important as it would make the 

system oscillate much quicker, and possibly harder to 

control. 

Kinetic momentum computation 

In the 2 preceding sections, one could see the 

eigenvalues of the system are balanced between the gains 

and the value of the angular momentum. In order to 

choose the gains properly, it is therefore necessary to 

determine first the desired kinetic momentum around 

axis Z. 

The bigger the momentum, the steadier the satellite. 

However, an important momentum might make it harder 

to control the satellite. Furthermore, it might create 

problems which are not linked to the satellite’s 

dynamics, but with the control system. Indeed, in order 

to provide the requested torques, the controller must 

measure the ambient magnetic field, and adapt the 

momentum created by the coils. However, the coils 

themselves disturb significantly the field around the 

magnetometer, and they must therefore be shut down in 

order to perform a valid measurement of the earth’s 

magnetic field. 

To make sure the measurements are properly executed, a 

technique called time sharing is put in place. This 

technique consists in allowing different time slots for the 

different actions that have to be performed by the 

controller, namely measuring, and then controlling.  

For a flight software period 𝑇𝑓𝑠 of 1 second, 200 

milliseconds will be allotted to the magnetic field 

measurement and the computation of the command 

torques (𝑇𝑚𝑒𝑠). The rest will be left for the actuation 

(𝑇𝑎𝑐𝑡), as illustrated in Figure 4. 

Assuming an instantaneous measurement at the 

beginning of the flight software period, the magnetic 

field is considered constant in satellite frame during the 

next second. It is not the case however since the satellite 

is spinning at 𝜔𝑠𝑝𝑖𝑛, and an error angle 𝛼𝑒 will appear 

between the measured and real magnetic field vector. At 

the end of the flight software period, this error will 

amount to: 

𝛼𝑒 = 𝜔𝑠𝑝𝑖𝑛𝑇𝑓𝑠 (74) 

To limit this error, the spin will be chosen so that 𝛼𝑒 is 

similar to the precision of the magnetometer. The latter 

being in the order of magnitude of 2° for cubesat 

magnetometers, the maximum value for 𝜔𝑠𝑝𝑖𝑛  can be 

obtained: 

𝜔𝑠𝑝𝑖𝑛 ≤ 35.10−3 𝑟𝑎𝑑/𝑠 (75) 

 

Figure 4: Time sharing chronogram 

 

SIMULATIONS AND RESULTS 

All the results presented below were obtained with 

25000s simulations on a 10h30 orbit with non-zero initial 

conditions on angular rates (0.2 rad/s on each axis). The 

characteristics of the satellite were those of EyeSat.  

These simulations were performed in the simulation 

environment developed by the AOCS department of 

CNES running on Matlab and Simulink. 

The most important criteria used to evaluate the 

performance of each strategy is the battery’s depth of 

discharge, which is the most important quantity to 

monitor in safe mode.  

Another important criterion is the convergence time. In 

the following results, it has been defined as the time 

between the activation of the acquisition phase and the 

moment at which the battery reaches its maximum DoD. 

The best convergence time and minimum depth of 

discharge where obtained for the 3-axis position 

controller with kinetic momentum. A sweep on the 

values of Ka and Ks was conducted for values of spin 

ranging from 0.01 to 0.035.  

The results obtained for a spin of 0.02 and 0.03 are 

presented in Figure 5 and Figure 6 respectively. These 

results are highly dependent on the inertia matrix of the 

spacecraft, as it was shown in the previous theoretical 

analysis, and cannot be generalized.  
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For Eyesat, a minimum theoretical value for Ka of 8.4 

had been found for an angular rate of 0.035, and it can be 

observed that a ‘valley’ of minima does exist for the 

values of Ka that are close to that condition. The values 

of Ks also seem to be appropriate. Indeed, the results are 

good which shows that the kinetic momentum is properly 

managed, and yet the variations of Ks do not impact 

strongly the result in the interesting region. This shows 

that the position controller is not hugely impacted by the 

spin controller, which is exactly what was expected. 

Concerning the choice of the kinetic momentum, the best 

values of both convergence time and DoD are obtained 

for the most important angular rate (0.03). Moreover, the 

width of the ‘valley’ is much larger in that case, which 

leaves more margins for uncertainties. 

The best results for both angular rates are presented in 

Table 1. For the smallest rate value, the best convergence 

time and DoD are not reached for the same settings, 

which is why there are 2 gain values for Ka. 

Table 1: best results for convergence time and DOD 

Parameter 
𝝎𝒛 = 𝟎.𝟎𝟐  
[𝒓𝒂𝒅/𝒔] 

𝝎𝒛 = 𝟎.𝟎𝟑  
[𝒓𝒂𝒅/𝒔] 

Ka (Tconv/DOD) [/] 6.84/10.53 12.37 

Ks [/] 0.001-0.02 0.001-0.02 

Convergence time [s] 4560 3900 

Maximum DOD (%) 17.3 16.7 

The convergence time presented in Table 1 includes the 

detumbling phase. The maximum depth of discharge 

remains well below 30% in both cases as requested.  

As the 2-axis controller with kinetic momentum 

monitoring is a particular case of the 3-axis controller 

without kinetic momentum, the results for both 

controllers could be obtained from the same simulation 

campaign, and are presented in Figure 7and Figure 8. 

This campaign swept the values of both gains (Kp/Kd) 

on large intervals which allowed bringing to light an 

interesting fact.  

A first campaign had been carried out with values of 

gains computed using the classical technique for second 

order systems, that is to say from requirements of a 

damping ratio around 0.7 and a settling time. 

This campaign led to mixed results, which are not 

presented here, where the depth of discharge could 

change very strongly from 16 to almost 30% for very 

limited variations of Kp and Kd. It was moreover 

impossible to extract any kind of trend linking the 

evolution of the gains with that of the DoD. 

By expanding the range of values admitted for Kd to 

reach significantly higher damping ratios, it could be 

seen that the system behaved much more predictably 

with respect to gains variations.   

For the 2-axis controller with momentum monitoring 

(Ks=0), results degraded significantly when the damping 

ratio fell under 2. The link between the performance and 

damping ratio is particularly important for the pointing 

accuracy, as can be seen in Figure 9 (The direction of 

increasing damping ratio is from top left to bottom right). 

Concerning convergence time and DoD, the results are 

less dependent upon the value of the damping ratio as 

long as it is higher than 2 (Figure 7). 

Trying to control the angular rate of the Z-axis 

substantially degrades the performances for all criteria as 

can be seen by comparing Figure 7 to Figure 8, and 

Figure 9 to Figure 10. This result was expected since the 

physical limitations of magnetic actuation only allow to 

control 2 axes at a time. 

Although the 3-axis controller with kinetic momentum 

has the best performances regarding DOD and 

convergence time, it is the 2-Axis controller that 

performs best for pointing accuracy. The evolution of the 

depointing error for the best controller of each strategy 

are presented in Figure 11 and Figure 12. Their 

respective parameters and performances are summarized 

in Table 2 and Table 3. 

The results for both controllers satisfy the 30° criterion, 

but the accuracy of the 2-axis controller is particularly 

striking. Another striking feature that can be observed in 

Figure 11 is the attitude stability during eclipses, 

although the controller is then turned off. This behaviour 

marks the presence of a stabilizing spin around the 

pointed axis. It could seem difficult to understand, as no 

spin is ever commander about that axis. It can actually 

be explained by the way the commanded torques are 

transformed into requested magnetic moment. Indeed, 

the process considers the torques as being in the plane 

normal to the magnetic field. But if they are not, it can 

be shown that when “translated” into magnetic moment, 

the components of the commanded torque will spill over 

all the axes, including Z, and therefore induce a spin.   
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Figure 6: Evolution of convergence time and DOD as a function of the gains for Wsp=0.03 

(3-axis control with kinetic momentum) 

Figure 5: Evolution of convergence time and DOD as a function of the gains for Wsp=0.02 

 (3-axis control with kinetic momentum) 
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Figure 7: Evolution of convergence time and DOD as a function of Kp and Kd for 𝑲𝒔 = 𝟎 

(2-axis control with kinetic momentum monitoring) 

Figure 8: Evolution of convergence time and DOD as a function of Kp and Kd for 𝑲𝒔 ≠ 𝟎 

(3-axis control without kinetic momentum) 
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Figure 9: Evolution of mean depointing and standard deviation as a function of Kp and Kd 

for 𝑲𝒔 = 𝟎 (2-axis control with kinetic momentum monitoring) 

Figure 10: Evolution of mean depointing and standard deviation as a function of Kp and Kd 

for 𝑲𝒔 ≠ 𝟎 (3-axis control without kinetic momentum) 
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Figure 11: Evolution of depointing error  

(Best result 2-axis control with kinetic momentum monitoring) 

Figure 12: Evolution of depointing error  

(3-axis control without kinetic momentum) 
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Table 2: Best parameters and performances for 2-

Axis Controller 

2-Axis controller with momentum monitoring 

Parameter Value 

Kp [/] 0.00065 

Kd [/] 0.013571 

Convergence time [s] 4760 

Maximum DoD [%] 18.35 

Mean error angle after convergence [°] 0.44 

Standard deviation angle after convergence 

[°] 
1.11 

 

Table 3: Best parameters and performances for 3-

axis controller with kinetic momentum 

3-axis controller with kinetic momentum 

Parameter Value 

Ka [/] 13.3729 

Ks [/] 0.0019474 

Wspin [rad/s] 0.03 

Convergence time [s] 4511.75 

Maximum DoD [%] 17.7 

Mean error angle after conv. [°] 10.5885 

 

CONCLUSION 

In this work, 3 candidate strategies for the attitude 

control in safe mode have been evaluated. Each strategy 

could be modelled theoretically, and criteria for stability 

and parameters selection have been determined in each 

case. 

The 3 controllers have been be implemented in the 

simulation environment of CNES, and their 

performances compared in terms of pointing accuracy 

and convergence time. This comparative study revealed 

that the best strategy to obtain a good pointing accuracy 

is the 2-axis position controller with kinetic momentum 

monitoring. The addition of a speed control gain in the 

3-axis position controller without kinetic momentum 

only degrades the performances and increases 

consumption. 

Concerning the convergence time and maximum DOD, 

the best strategy seems to be the 3-axis controller with 

kinetic momentum. The pointing accuracy is in that case 

a bit poorer, but the gain in convergence time and power 

gives it the advantage for a safe mode. 

The study also allowed confirming the theoretical 

results, in particular the ranges obtained for the gains. 

As a control strategy meeting the pointing and 

convergence time requirements could be found, it can be 

said that the objective has been met. 

In the future, this work could be extended by a robustness 

analysis of the 3 strategies with respect to uncertainties 

such as variations in the inertia matrix or residual 

magnetic moment. It could also be interesting to study in 

more detail the unintended spin that appears in the 2 axis 

control strategy. This behaviour does not threaten 

stability when it is handled properly, but its 

understanding could provide more insight on the internal 

dynamic of this control method. 
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