SSC17-P1-41

Building Modern Cross-Platform Flight Software for Small Satellites

Ryan Plauché
Kubos

525 North Elm Street, Denton, TX
ryan@kubos.co

ABSTRACT

The current software ecosystem for small satellites is characterized by proprietary libraries, tight coupling with hard-
ware and little thought for interoperability. These qualities also marked the software found in the early days of the
computing revolution. As modern computing has advanced and hardware platforms have standardized, there has been
arise in software packages which operate using open standards and are designed with multiple platforms in mind. The
software surrounding small satellites is posed to undergo a similar revolution. Increased interest in the market will
only drive the need for flexible, reusable software libraries. This paper discusses the approaches used to create flight
software capable of reuse on multiple small satellite platforms.

INTRODUCTION

Over the past several years the small satellite market has
seen significant growth, particularly in the cubesat sec-
tor'. An increasing number of missions and new oppor-
tunities have brought about numerous innovations. The
majority of these innovations have dealt primarily with
hardware components. However, small satellite software
has not benefited from the same level of attention. In
order to fully leverage new hardware functionality, soft-
ware engineers must have equally innovative components
to work with.

An inevitable consequence of increased small satellite
hardware innovations is a fractured hardware ecosystem.
Driven by evolving customer needs, vendors introduce
new hardware platforms and components. While this va-
riety gives developers expansive choices when planning
a mission, it complicates software development®. Engi-
neers are given the choice of either using proprietary ven-
dor software, or developing their own from the ground

up.

The greater community does not provide many options to
leverage in the software development phase. Frameworks
that support hardware from multiple vendors are absent
for the most part. A search for community based, or open
source, software projects reveals a variety of work de-
signed for specific missions or platforms. In most cases
the engineer looking for reuse would be forced to per-
form a fair amount of refactoring before the software is

suitable for their specific use case.

Kubos has invested significant time in the design and cre-
ation of KubOS, a cross-platform flight software frame-
work?, in an effort to promote rapid development and fu-
ture innovation. This paper presents the thought process
and high level design used in the creation of this frame-
work.

[Mission Application)

[Flig ht Software Framework)

¥

[Satellite Hardware)

High Level Framework Context

Kubos emphasized high software reuse, interoperability
and cross-platform compatibility when architecting and
implementing KubOS*. A top down design approach was
taken: Kubos found a high level architecture and used it
as a structure for details and abstractions. The chosen ar-
chitecture here is the “full stack”, a term borrowed from
the web development sector, and more formally known
as an N-tier architecture.

Plauché

31% Annual ATAA/USU
Conference on Small Satellites

mailto:ryan@kubos.co

An N-tier architecture allows for a clean separation of
concerns’, and accurately models the layers created in
embedded software development. At its core, a software
architecture is just a framework and must be filled with
the practical details necessary to fulfill specific use cases.
The requirements of this framework have been split into
three major categories: mission objectives, satellite ser-
vices and hardware interaction. N-tiers of software span
across these categories, creating rich functionality on
multiple operating systems and hardware platforms.

SYSTEM ARCHITECTURE

Full stack is a term originating in the world of web based
software. This term typically refers to the layers of soft-
ware and infrastructure required to build and run a web
site. The typical full stack consists of an operating sys-
tem, database, web server, server-side or back end soft-
ware and client-side or front end software. All of these
layers are required in order to receive, process, render
and deliver requests for web pages. Each of these lay-
ers have different, well established responsibilities in this
process. The full stack implementation of the N-tier ar-
chitecture provides a robust model for separating con-
cerns and responsibilities—one that is invaluable when
building a software framework.

Front End Back End

o

Web Server

N

0s

Database

Web Software Full Stack

Designing a framework for satellite software requires
evaluating the different requirements necessary for a suc-
cessful satellite mission. Three major categories are im-
mediately obvious: mission objectives, satellite services
and hardware interaction. Mission objectives encompass
any special data gathering, processing, or actions which
are mission specific. Satellite services are common high
level software components used in most missions. Lastly
there is the need to operate on and interact with mission
hardware.

Mission Application

Satellite Services

\

Portability Layer

0s

Satellite Software Full Stack

The end goal of the framework must be to fulfill the
requirements of all three categories. However the way
these requirements are met varies. Frameworks exist not
as complete solutions, but as tools to enable and em-
power. In this case the framework enables developers to
meet their mission objectives. Software components that
fulfill those objectives will be specifically tailored to the
mission at hand. These components will be built on top
of the framework, not included in it.

Satellite services is the next category serviced by the
framework. Most frameworks include a collection of
high level software functionality specific to the task at
hand. In this case that functionality is exposed through a
series of middleware services. These should be specif-
ically designed to meet common needs which arise in
most satellite missions. They are intended to be lever-
aged and reused across multiple mission implementa-
tions.

Lastly, a cross-platform framework must include compo-
nents that enable hardware integration on various plat-
forms. This portability layer has the dual purpose of ab-
stracting away both hardware differences and operating
system differences. Common hardware peripherals and
interfaces must be identified and hidden behind unified
software interfaces when possible. Likewise, common
operating system metaphors and operations should also
be unified. Other layers of the framework need not con-
cern themselves with these differences.

Plauché

31% Annual ATAA/USU
Conference on Small Satellites

MIDDLEWARE

As previously discussed, a major responsibility of the
software framework targeted at enabling small satellite
missions is providing common functionality unique to
that domain. These satellite services, or middleware,
provide high level functionality for application consump-
tion. The middleware is built on top of the portability lay-
ers below it, and provides great leverage for rapid devel-
opment. The middleware layer is the main difference be-
tween a framework enabling satellite-specific work and
one that merely enables typical embedded work.

Small satellite software comes with its own specific set
of challenges and goals that must be taken into account
when choosing and designing the middleware services.
Specific needs can and will be discussed, but it is impor-
tant to start with the bigger picture in mind. The majority
of a satellite’s requirements deal with data. A satellite
that is unable to send or receive data from the ground is
useless. Likewise, a satellite sent into deep space with-
out any method for data collection would be a waste of
resources and funding. The routing, collection and trans-
mission of data must be prioritized in the design of high
level software services.

A system that prioritizes data should have an independent
system solely for data routing. This data bus will give
other services in the system access to interfaces for data
submission, storage and retrieval. The bus must be inde-
pendent of other services to ensure that no one client ser-
vice can interfere with others’ interactions with the bus.
Initial framework designs have settled on a publisher-
subscriber style data bus. The “pub-sub” model allows
system services to provide and consume data in a highly
decoupled fashion.

Radio Comms Command & Control

Scheduler

Telemetry {(—) Data Bus

Services Architecture

Individual services in the small satellite system must
be designed to serve the common needs and usage of
the satellite. For instance, a graphical interface service
would serve no useful purpose. However, a service that
responds to ground station commands, or a service that
controls the power, are each essential. The selection of

specific services to implement must be a careful and in-
tentional process. Common use cases that demand ser-
vices include radio communications, command & con-
trol, activity scheduling, power management and the atti-
tude determination and control system (ADCS) interface.

PORTABILITY LAYERS

Standardized hardware platforms are rare in the satel-
lite industry. Most missions have unique hardware de-
mands, and the majority of the hardware vendors use
different hardware platforms. The variety of differ-
ent available hardware platforms lends itself to highly
customized software that is tightly coupled to mis-
sion hardware. While this approach creates high soft-
ware/hardware compatibility, it usually ensures difficul-
ties when attempting to reuse code. The KubOS portabil-
ity layer is designed to address these difficulties, fulfilling
one of the framework’s major set of requirements.

Addressing the portability issue involved evaluating po-
tential software use cases and expected platforms, and
determining what could be reused versus what must be
platform specific. Three main layers of functionality
have been identified for use in building a robust porta-
bility layer: the operating system, the operating system
abstraction layer, and the hardware abstraction layer.

Hardware Abstraction Layer

OS Abstraction Layer

Operating System

Satellite Hardware

Portability Layers

The operating system is the base layer of any embedded
framework. In order to ensure compatibility with a range
of small satellite hardware, two base operating systems
were chosen: FreeRTOS and Linux. FreeRTOS is tar-
geted at platforms with significant resource constraints,
Linux provides developers with a more common tool set
to leverage. Both of these operating systems are well
known and come from the greater open-source commu-

Plauché

31% Annual ATAA/USU
Conference on Small Satellites

nity. Achieving hardware compatibility involves porting
this base operating system to the desired hardware plat-
form.

The operating system (OS) abstraction layer rests on
top of the operating system. Different operating sys-
tems, including FreeRTOS and Linux, have different in-
terfaces for dealing with common OS functionality. Pro-
grammers typically implement interfaces such as threads,
semaphores and message passing in a heterogeneous
fashion. A well designed OS abstraction layer allows
the developer to build against a high level OS interface,
rather than concerning their code with OS differences, or
tightly coupling their software with a specific OS. This
abstraction layer also opens up the possibility for run-
ning existing software on currently unsupported operat-
ing systems.

The hardware abstraction layer (HAL) lies alongside the
OS abstraction layer and on top of the OS. The purpose
of the hardware abstraction layer is to create unified soft-
ware interfaces for common hardware interfaces. These
hardware interfaces include system buses such as UART,
SPI, and I>C. Other hardware interfaces include higher
lever functionality such as flash memory (SD cards, e.g.)
support. The HAL abstracts away two main pieces for
developers: platform specific hardware differences, and
low level OS-to-hardware interfaces. Various microcon-
trollers (MCUSs) require different steps to enable and use
hardware functionality. The HAL takes these steps and
hides them behind higher level interfaces. Likewise, dif-
ferent operating systems may expose hardware to user
applications in different ways. The HAL also serves to
take these differences and place them behind common in-
terfaces. This design enables reuse of the same high level
SPI code on an ARM-based platform running Linux as a
MSP430-based platform running FreeRTOS.

SUMMARY

The implementation and integration of software layers
across the three categories discussed—mission objec-
tives, satellite services and hardware integration—allow
for the creation of a rich satellite software ecosystem.
All three categories are essential for allowing devel-
opers freedom of choice when selecting hardware and
designing software. A complete and functional soft-
ware ecosystem eases the process of integrating hardware
components and subsystems, and grants custom software
reliable access to needed data.

Radio

Command & Control Radio Comms

N

| Telemetry H Data Bus |(—)| Scheduler |

[

HAL Mission Application

g

ADCS Payload EPS

Detailed System Architecture

Creating a multi-platform software framework is not a
simple task, and tailoring one for small satellite systems
only increases the potential complexity. Software frame-
works form the foundation for future software develop-
ment, and the framework can either serve as an enabling
boon or a hindering nuisance. Only careful, intentional
design decisions and mindfulness of the domain will re-
sult in long term fitness. Functionality, layers and inter-
faces must all be crafted with the goal of simplicity and
reusability in mind. The KubOS framework is designed
around these concerns: using development platforms like
this one, engineers can better understand, leverage and
build software to achieve their mission goals.

Notes

lde Selding, Peter B. 2016. “The state of the satel-
lite industry in 5 charts.” Space News Magazine, June 20,
2016.

2Stringham, Gary. “Basics of hardware/firmware in-
terface codesign.” embedded.com, July 07, 2013.

3Kubos GitHub repository, accessed June 11, 2017.

4Culpepper, Marshall. “Eating Space with Software.”
Kubos blog, April 6, 2017.

S“Multitier architecture”, Wikipedia. Accessed June
11, 2017.

Plauché

31% Annual ATAA/USU
Conference on Small Satellites

http://www.spacenewsmag.com/feature/the-state-of-the-satellite-industry-in-5-charts/
http://www.spacenewsmag.com/feature/the-state-of-the-satellite-industry-in-5-charts/
http://www.spacenewsmag.com/feature/the-state-of-the-satellite-industry-in-5-charts/
http://www.embedded.com/design/mcus-processors-and-socs/4418036/Basics-of-hardware-firmware-interface-codesign
http://www.embedded.com/design/mcus-processors-and-socs/4418036/Basics-of-hardware-firmware-interface-codesign
https://github.com/kubostech/kubos
https://medium.com/kubos-tech/kubos-a-software-platform-for-space-30d211062919
https://medium.com/kubos-tech/kubos-a-software-platform-for-space-30d211062919
https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Multitier_architecture

	INTRODUCTION
	SYSTEM ARCHITECTURE
	MIDDLEWARE
	PORTABILITY LAYERS
	SUMMARY

