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ABSTRACT 
The Nvidia Tegra X1 (TX1) is a credit-card size system-on-a-chip (SoC) that contains an entire suite of input, 
output, and processing hardware. It is designed to take advantage of Nvidia’s graphics processing unit (GPU) 
architecture and CUDA (formerly Compute Unified Device Architecture) parallel computing platform in 
order to provide a deep learning capability within a small form factor. The novelty of such a small size makes 
the TX1 capable of being deployed onboard a satellite, or as the primary instrument of a CubeSat. 
Accompanying software exists to optimize the TX1 for image processing tasks such as image recognition, 
object detection and location, and image segmentation. Such on-board processing power would make an 
equipped satellite able to execute complex decisions based on the images it receives during flight. This paper 
describes the effort to achieve these image processing tasks on the ground based on original datasets, with the 
motivation that models could be trained to be deployed onboard spacecraft containing cameras and GPU 
hardware. Though the distances of space make high-resolution images difficult to obtain from orbital assets, 
compact devices such as the Nvidia TX1 (and the newer TX2) demonstrate the potential for a spacecraft to 
achieve increased situational awareness based on streams of collected images. 

 

I. BACKGROUND 
As more and more satellites are launched (including 
smaller CubeSats), the requirements to more accurately 
and quickly identify objects from orbit will become 
increasingly important. To be most responsive, there is a 
need to move the analysis of objects from ground-based 
systems to onboard assets that can quickly identify not 
only what is flying by (e.g. recognizing junk versus a 
CubeSat), but also the types of satellites being observed 
(e.g. communications, imaging, friendly, hostile, etc.). 
This level of space situational awareness (SSA) is 
becoming more critical each day. At the same time that 
the SSA demand for actionable information is growing, 
the funding for large space programs is shrinking, which 
leads to a premium being placed on efficiency. What has 
to occur for the warfighter to get the best information 
most quickly, to provide time to make the best decisions, 
is for the advancement of the capabilities that enable 

data-collecting instruments to also have the ability to 
process and transform data into intelligence. 
Opportunities are made possible by hardware such as 
Nvidia graphics processing units to provide machine 
learning type analysis in real time, so that processed 
information (and not raw data) are downloaded to ground 
stations for action. 
The purpose of this project is to experiment with GPU 
hardware for image processing and inference within a 
small form factor, such as that of a nanosatellite or 
CubeSat. Nvidia’s graphics processing hardware is 
capable of massively parallel computation, which is 
realized by several accompanying software libraries and 
deep learning frameworks, discussed briefly in Section 
II.1  

The Nvidia TX1 has height and width of 3.5 x 2 inches, 
with a depth of 1.5 inches including the heatsink and fan. 
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The system includes the following specifications and 
input/output (I/O) ports, seen in Table 1. 2 

Table 1: NVIDIA TX1 Module Specifications.2 

Feature Specifications 

GPU NVIDIA Maxwell, 256 CUDA cores 

CPU Quad ARM A57/2 MB L2 

Video 4K x 2K 30 Hz Encode (HEVC) 
4K x 2K 60 Hz Decode (10-Bit 
Support) 

Memory 4Gb 64 bit LPDDR4 
25.6 GB/s 

Display 2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI 

CSI Up to 6 Cameras (2 Lane)  
CSI2 D-PHY 1.1 (1.5 Gbps/Lane) 

PCIE Gen 2 | 1x4 + 1x1 

Storage 16 GB eMMC, SDIO, SATA 

Other UART, SPI, I2C, I2S, GPIOs 

USB USB 3.0 + USB 2.0 

Connect. 1 Gigabit Ethernet, 802.11ac WLAN, 
Bluetooth 

 

 

 

 

 

Figure 1: Nvidia TX1 module with heatsink removed, 
actual size.2 

 

The small size of the TX1 can be seen in Figure 1. When 
mounted onto a 7 x 7 inch printed circuit board 
containing the actual I/O device ports, the system is 
known as the Nvidia Jetson TX1 development board, as 
seen in Figure 2. For software, Nvidia’s Jetson-Inference  
suite contains all of the instructions, code, and other 
packages necessary for both training models on powerful 
local computers, or on GPU-optimized Amazon Web 
Services (AWS) instances, and then deploying trained 
models onto a Jetson TX1 or TX2.3 Training utilizes 
Nvidia’s Deep Learning GPU Training System 
(DIGITS), which is a software package meant to be 
deployed on ground systems equipped with Nvidia GPUs 
built with at least Maxwell or Pascal microarchitectures.4 
However, once the trained models are uploaded to the 
Jetson unit, all further processing of newly collected data 
occurs onboard. This means computationally expensive 
model training can be accomplished on the ground, and 
then fully trained and optimized model files are uploaded 
to the deployed spacecraft to enable onboard processing 
of mission data. 

Figure 2: Jetson TX1 development board; the silver 
heatsink with black fan covers the TX1 SoC module.5 
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II. INTRODUCTION AND 
EXPERIMENTAL CONFIGURATION 

In 2016, work began at COSMIAC Research Center at 
the University of New Mexico in Albuquerque to explore 
using GPU processing within small form factors. With 
COSMIAC’s history and experience with small satellites, 
aerial drones, and computer graphics, the field of image 
processing was a natural area of interest as increasingly 
more images are being generated and saved by 
innumerable devices. COSMIAC routinely works with 
the Air Force Research Laboratory (AFRL) at Kirtland 
Air Force Base in Albuquerque. COSMIAC also 
collaborates with SGT, Inc. in Greenbelt, Maryland on a 
variety of projects involving enterprise ground station 
solutions and space situational awareness. SGT has a 
long history working with the National Aeronautics and 
Space Administration (NASA), among other federal 
partners. 

The purpose of working with Nvidia image processing is 
to make use of the enhanced capability of graphics 
processing units to enable the massively parallel 
processing of real-time big datasets, such as the images 
and video collected by aerial drones, autonomous 
vehicles, and orbital spacecraft. Moreover, the Nvidia 
Corporation produces and supports small form factor 
hardware that could fit into such platforms, as well as the 
software to execute image processing and object 
inference workloads on such embedded hardware. For 
this paper, image processing and inference will refer to 
any of the following three tasks, each of which utilizes a 
particular package of the Jetson-Inference software suite: 

Figure 3: Example of image recognition with 
imageNet; this example model gives 97.07% 

probability that this image contains a polar bear or 
ice bear .3 

The first image processing task is image recognition with 
the imageNet software package, seen in Figure 3. A 
satellite camera sensor system could be trained to 
recognize and respond to a variety of objects or 

situations it observes in space. Models can be trained to 
recognize images to a high degree of accuracy. The 
Jetson-Inference suite contains the imageNet package for 
image recognition. This includes the ImageNet database 
of 1000 labelled images, which can be used as a database 
for image recognition training.6 The ImageNet database 
of 1000 images should not be confused with the 
imageNet Jetson package; they are separate and distinct 
entities despite working together and having very little 
difference in naming style. The Jetson-Inference 
software also incorporates the AlexNet and GoogLeNet 
convolutional neural networks for training image 
classifiers.7, 8 Convolutional neural networks (CNNs) 
form the basis of deep learning, and AlexNet and 
GoogLeNet are examples of CNNs which have been 
created and optimized for classifying objects in images. 
Each competed in the ImageNet Large Scale Visual 
Recognition Challenge in 2012 and 2014, respectively, 
which is a competition to create the best-optimized 
classification models based specifically on the ImageNet 
database. These two CNN image classification models 
were themselves prefigured by the LeNet-5 
convolutional neural network created in 1998.   

               
Figure 4: Example of object detection and location 

with detectNet; this example model locates 
pedestrians in a public area.3 

The second image processing task is object detection and 
location with detectNet, seen in Figure 4. Similar to 
image recognition, a sensor system could be trained to 
detect objects and locate their in-frame coordinates. The 
Jetson-Inference suite also contains the detectNet 
package for detecting specific objects or in-camera 
events, and extracting their geometric bounding boxes 
within the image. As with imageNet object recognition, 
detectNet models are trained using collections of labelled 
images, such as the ImageNet database of 1000 object 
images. However, instead of merely identifying objects, 
detectNet goes further and also locates them within the 
picture by drawing a bounding box. Additionally, these 



Buonaiuto 4 SmallSat 2017 
  Small Satellite Conference, Logan UT 

bounding boxes will track and stay hovering over objects 
as they move in a video stream or live camera feed. 

 Figure 5: Example of image segmentation with 
segNet; this example model identifies and separates a 

multitude of different object types in an urban 
setting.3 

Finally, the third image processing task is image 
segmentation, seen in Figure 5. Each object within an 
image frame can be identified and separated by type. The 
Jetson-Inference suite contains the segNet package for 
image segmentation. In a simple implementation, image 
segmentation can be done merely to separate the ground 
from the sky, as with video taken from an aerial drone. 
However, more objects can be incorporated in addition to 
just ground and sky (including Earth, space, and 
satellites), leading to more complex segmentations of 
multiple types of objects as seen in Figure 5. 
Segmentation incorporates both object recognition and 
detection.  

To perform image processing and object inference 
according to the Nvidia Jetson-Inference guide, the 
required hardware includes two systems with Nvidia 
GPUs for training and deployment: 3 

First, the training GPU (the “host”) must have Nvidia 
Maxwell or Pascal architecture at minimum—these are 
the two most recent types of Nvidia GPU architectures 
available to consumers, with the upcoming Volta 
microarchitecture scheduled to be released in 2018.  The 
number of CUDA cores, and therefore parallel 
processing capability, is governed by which version of 
Nvidia microarchitecture a GPU was built with. Or, 
instead of costly in-house graphics processing units, a 
less-costly GPU-optimized AWS cloud compute instance 
could be utilized instead. Either way, the objective is to 
train using a powerful GPU with a massive number of 
CUDA cores and for parallelization. The training 
instance is optimized for 64-bit Ubuntu 16.04 or 14.04. 
This project utilized a host computer with an Intel i7-
7700 processor (3.6 gigahertz with four hyperthreaded 
cores), 32 gigabytes (Gb) double data rate fourth-
generation 2400 megahertz (DDR4-2400) random access 

memory (RAM), an M.2 form-factor peripheral 
component interconnect express (PCI-E) non-volatile 
memory express (NVME) solid state drive (SSD), and an 
Nvidia GTX 1050 Ti GPU with 4Gb of video random 
access memory (VRAM) and Pascal architecture.  

Note that an Ubuntu virtual machine will not work as a 
training system without extra configuration—this is due 
to the host GPU not being available automatically to the 
virtual machine. Therefore, the DIGITS software 
installed in a VM will not be able to detect that an Nvidia 
GPU is actually present, without further installation and 
configuration beyond the scope of the Nvidia Jetson-
Inference guide.  

Second, the deployment GPU (the “Jetson” or “TX1”) 
must be an Nvidia TX1 Developer kit with JetPack 2.3 
software or newer, or Nvidia TX2 Developer kit with 
JetPack 3.0 or newer, and Ubuntu 16.04. This project 
utilizes the Jetson TX1 development board. The Jetson 
TX1 and TX2 hardware were designed specifically to 
complement the JetPack software, and therefore the 
hardware and software must be used together. The small 
form factor of the Jetson TX1 makes it interesting for 
satellite deployments, and the processing capability of 
Nvidia GPU hardware makes it interesting for analyzing 
big image data. 

For software requirements, the Nvidia JetPack is the 
software development kit (SDK) for the Jetson TX1/TX2 
development boards. Installation of the JetPack software 
onto the training system (the host) can take place during 
the same process as flashing the Ubuntu operating 
system and JetPack software onto the Jetson TX1. This 
flashing process will also install the CUDA toolkit, the 
CUDA Deep Neural Network (cuDNN) package, and the 
TensorRT software package onto the Jetson. Onto the 
host will also be installed cuDNN, the Nvidia Caffe 
(NVcaffe) software package, and the DIGITS software 
package. Deep learning networks typically consist of two 
phases: training and inference. Training occurs on the 
powerful host computer, and inference would occur in 
the field (in orbit) on the Jetson TX1.9   

Caffe is a deep learning framework originally developed 
at University of California, Berkeley for image 
classification.10 Nvidia’s implementation of Caffe is at 
the core of the TX1’s deep learning processing ability. 
Other examples of deep learning frameworks include 
Theano, Torch, and TensorFlow.11 Caffe is installed on 
the host system. Deep learning frameworks such as Caffe 
are what conduct the conversion of data (e.g. images) 
into tensor objects, as well as the mathematical 
operations for optimizing the neural network. For 
simplicity, tensors can be considered to be N-
dimensional array objects that are inputs into a neural 
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network. The “learning” and optimization occurs as the 
neural net adjusts over subsequent passes of data 
through, in order to correct error between its output and 
the expected output.12 For image classification, neural 
nets are used in order to train and deploy models to be 
able to recognize and detect various specified objects 
within an image. 

The CUDA Deep Neural Network (cuDNN) is a suite of 
Nvidia software libraries for GPU-acceleration of deep 
learning frameworks such as Caffe. As images are fed 
into the Caffe neural net framework, the cuDNN 
software accelerates this processing by utilizing the 
massively parallel processing capability of the Nvidia 
GPU hardware. GPU acceleration is accomplished in 
part by parallelization across the multiple CUDA cores 
within the Nvidia GPU microarchitecture.13 CUDA 
formerly stood for “Compute Unified Device 
Architecture”, but this acronym is no longer used. 
CuDNN is installed on both the host system and on the 
TX1.  

As previously mentioned, Nvidia’s Deep Learning GPU 
Training System (DIGITS) is the software package for 
training neural networks for the tasks of image 
classification, detection, and segmentation, as seen in 
Figure 6. DIGITS is Nvidia software that provides the 
main interface for training models on the host computer, 
both via command line and web browser, and is installed 
on the host system.4 However, while the Jetson TX1 has 
network access, it will be able to access the DIGITS 
server of the host via web browser. 

The TensorRT software package is Nvidia’s deep 
learning inference optimizer and runtime engine for 
deploying neural network applications. TensorRT also 
provides great advantages in terms of power reduction so 
as to make its use in deployments very advantageous for 
small satellites with limited power budgets.  As with 
cuDNN, TensorRT is Nvidia software which is designed 
to optimize the deployment of neural nets onto GPU 
hardware. TensorRT is installed onto the Jetson, and is 
what deploys the trained neural net model from DIGITS 
on the host to the Jetson TX1, as seen in Figure 7.14 

     
Figure 6: Training with DIGITS on host system—

deep neural net models (such as AlexNet and 
GoogLeNet) are trained using vast image repository 

databases (such as ImageNet).3  

              
Figure 7: Inference with TensorRT and cuDNN on 

deployed Jetson system—camera inputs record image 
data for subsequent processing, and also permit real-

time image processing.3 

 

III. EXPERIMENTAL RESULTS 

The experiments consisted of the three image processing 
tasks: recognition using imageNet, detection using 
detectNet, and segmentation using segNet. The goal at 
all times was to achieve proof of concept for each task on 
the TX1, which has a compact form factor that makes it 
ideal for small satellites.  

The first task consisted of image recognition with 
imageNet. The imageNet package performs image 
recognition by accepting an input image and outputting 
the percentage that the content of the image belongs to a 
particular class. The AlexNet and GoogLeNet neural 
networks are utilized, which are trained on the ImageNet 
database of 1000 objects. The 1000 objects are arranged 
as a directory of images organized into subfolders, with 
the subfolder names being the image class labels. The 
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interface for imageNet training is DIGITS, via either the 
command line or web browser.  

To demonstrate the ability to classify new objects, it is 
possible to add items to the existing ImageNet database 
of 1000 objects. Subfolders containing hundreds of 
images of 1U- and 3U-sized CubeSats were created at 
COSMIAC in order to augment the existing model. 
However, training hundreds of images through a 
convolutional neural network is a very computationally 
expensive process, and is likely to be non-trivial using 
anything but the latest GPU hardware with at least 8Gb 
of VRAM with Pascal (or newer e.g. Volta in 2018) 
Nvidia microarchitecture. The host computer for this 
experiment is equipped with an Nvidia GTX 1050 Ti 
GPU which, while having only 4Gb of VRAM, has the 
latest Pascal architecture and cost only $150 at the time 
of the experiments. For example, quickly training a 
rough model to classify 1U-sized CubeSats and just two 
other objects (foxes and fish, selected randomly from the 
ImageNet 1000 objects) took approximately 30 minutes. 
Re-training for the full 1000 objects plus additional items 
would take considerably longer, in proportion to the total 
number of items in the training image database. 
Naturally, the solution to these computationally 
expensive challenges is financially expensive GPU 
hardware—for example, COSMIAC recently upgraded 
to the Nvidia GTX 1080 Ti GPU with 11Gb of video 
memory, which cost just over $700 for a baseline 
version.   

Examples of the results of our CubeSat-Fox-Fish image 
classification model are seen as follows in Figures 8, 9, 
10, and 11: 

 

 

Figure 8: imageNet classification results for 1U-sized 
CubeSat image—the model calculates there is a 

98.95% chance this image contains a 1U CubeSat; 
photo credit: Montana State University. 

 

 

 

Figure 9: imageNet classification results for a 3D-
printed 1U-sized CubeSat frame created at 
COSMIAC—the model calculates there is a 99.96% 
chance this image contains a 1U CubeSat; photo 
credit: COSMIAC. 
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Figure 10: imageNet classification results for image of 
a fox—the model calculates there is a 98.59% chance 

this image contains a fox; photo credit: Google 
Images. 

 

Figure 11: imageNet classification results for image of 
fish—the model calculates there is a 98.34% chance 

this image contains fish; photo credit: Google Images. 

 

 

The second task consisted of object detection and 
localization with detectNet. The detectNet package takes 
a 2D image as input, locates specified objects within the 
image frame and creates bounding boxes around them, 
and then produces a list of coordinates of the detected 
bounding boxes. In order to train an object detection 
model, a pretrained ImageNet recognition neural network 
model such as AlexNet or GoogLeNet is first used, in 
which the training images contain bounding box 
coordinate labels.3 

Expanding upon the simple image classification provided 
by imageNet, detectNet not only identifies multiple types 
of objects in an image, it also locates and provides their 
coordinates. This enables a colored bounding box to be 
drawn over each object of a specified type. Bounding 
boxes will even track moving objects in a video or live 
stream, and will appear and disappear as objects enter 
and leave the field of view.  The ability to identify and 
locate multiple different types of objects within a single 
image provides increased potential capability compared 
to simply classifying an entire image as probably being 
one object or another.  

Nvidia offers pre-trained detectNet models for several 
types of objects, including pedestrians, bags or luggage, 
faces, airplanes, liquid container bottles, chairs, and 
dogs. Unfortunately, no readily available or open source 
libraries for detecting small spacecraft exist.   For 
practice, we first experimented with the pedestrian and 
luggage pre-trained models. From the third floor of the 
COSMIAC research lab, the TX1 was able to detect two 
pedestrians and a backpack, as seen in Figures 12 and 13: 

Figure 12: Nick Buonaiuto (holding backpack) and 
Casey Ottesen in the COSMIAC parking lot 

demonstrating pedestrian and luggage detection; 
photo credit: Brian Zufelt. 
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Figure 13: NVIDIA Jetson TX1 development board 
demonstrating pedestrian detection at COSMIAC. 

The Jetson board is housed within a clear protective 
case, and the fan and heatsink of the TX1 SoC can be 

seen just below the monitor stand; photo credit: 
Brian Zufelt. 

 

Training a customized detectNet model to locate 3U-
sized CubeSats took approximately 19 hours, and 
involved feeding several hundred images through the 
neural network. This length of time could be shortened 
by utilizing more powerful GPU hardware with increased 
VRAM. Detection of 3U-sized CubeSats can be seen in 
Figures 14 and 15. The localization of the two CubeSats, 
however, is not perfect: at greater distances, the model is 
not able to draw separate bounding boxes around each 
object, as seen in Figure 15. Correcting this would be a 
matter of increased training using more images, and 
would ideally be accomplished using the aforementioned 
powerful GPU with 8Gb+ of video memory in order to 
reduce processing time. 

 

   
Figure 14: Close-up of two 3U-sized CubeSats 

following NanoRacks deployment; photo credit: 
NanoRacks.    

 

 
Figure 15: Two 3U-sized CubeSats just after 

NanoRacks deployment from the International Space 
Station (ISS). Notice at greater distance the model 
does not distinguish two separate objects; photo 

credit: NanoRacks.      

 

The third and final image processing task consisted of 
image segmentation with segNet. The segNet package 
takes an image, identifies different object types based on 
a customizable list, and highlights objects of each type in 
different colors. Segmentation is similar to recognition 
and detection in that different objects are identified and 
located within a field of view. However, this 
classification occurs “at the pixel level as opposed to 
classifying entire images as with image recognition” or 
to locating a given set of objects within an image as with 
detection.3 Segmentation, therefore, allows for the 
possibility of every unique object or surface within an 
image to be separately identified and located. This can be 
as simple as a flying drone separating ground from sky, 
or as complex as a driverless automobile safely 
navigating through a crowded urban environment. 

As with imageNet and detectNet, the interface for 
training segNet models is DIGITS, via either command-
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line or web browser. Utilizing segNet essentially requires 
three data items: The first item is an image or stream of 
images in which to locate and separate objects. The 
second item is a text file containing the names of the 
object types being separated—these names are 
equivalent to the labels for object classification. The 
third item is another text file containing Red-Green-Blue 
(RGB) values to associate with the label of each object. 

For example, first-person perspective video taken from a 
flying aerial drone will consist of a stream of images that 
could be said to contain two basic types of objects: land 
(terrain) and sky, as seen in Figure 16.  A text file for 
labels would be created containing the lines “terrain” and 
“sky”. Another text file for colors would be created 
containing RBG color values corresponding to the labels: 
“0 255 0” is green for terrain and “0 0 255” is blue for 
sky.  

 Figure 16: Example of aerial drone sky vs. ground 
segmentation with segNet; this example model finds 
“terrain” and “sky” and colors those regions green 

and blue, respectively.3 

 

Our experiments replicated the ground and sky 
segmentation using the provided segNet pre-trained 
model to separate terrain and sky, seen in Figure 16, but 
with original aerial drone footage taken by COSMIAC, 
seen in Figure 17. Notice the segmentation is not perfect, 

and portions of land are being classified as sky. This can 
be solved with increased training using a more robust 
database of labelled training images. 

Figure 17: Aerial drone picture of COSMIAC team in 
New Mexico, with segmentation of sky (blue) vs. 
terrain (green), although some portions of ground are 
incorrectly classified as sky; source photo credit: 
COSMIAC. 

 

Though it is quite forward-thinking, image segmentation 
as applied by driverless road vehicles could theoretically 
be applied to direct traffic for pilotless space vehicles 
(e.g. satellites). In an orbital environment, image 
segmentation could be performed to separate planets or 
other objects from space or from each other, as seen in 
Figure 18. The example in Figure 18 uses an image of 
the Earth and Moon in space (image created at 
COSMIAC) and the same classification model as the 
aerial drone image in Figure 17 (which segments terrain 
and sky). Even though the model provided by segNet is 
nominally trained for “terrain” and “sky”, it is still able 
to segment the different types of objects in Figure 18, i.e. 
space vs. Earth and Moon. This classification occurs 
with an interesting reversal, in that the Earth and Moon 
objects are technically classified as “sky” and space is 
classified as “terrain”. However, the Earth object in 
frame is comprised of blue ocean and white clouds—
very similar in appearance to sky. Furthermore, the view 
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of the Earth and Moon from space could be considered to 
be a view of their skies. In any event, the object 
segmentation is sound, and it is possible to solve away 
these errors with longer training times using more 
images and better-optimized neural networks, or by 
simply reassigning the labels and colors in the text files. 

Figure 18: Segmentation of the Earth and Moon 
(blue), and space (green) using a source image created 
at COSMIAC. Notice that although terrain and sky 
are nominally labelled incorrectly, the segmentation 
of object types is rather good, and could be improved 
simply by editing the associated label and color text 
files; source photo credit: Brian Zufelt. 

 

IV. TECHNICAL CHALLENGES AND 
PROGRESS 
 

Running on the TX1 simulates potentially running on 
board of a small satellite. Challenges naturally include 
the volume of space and the distances between objects—
higher resolution images are more difficult to obtain at 
greater distances. Objects moving very fast also makes it 
difficult to obtain clear high-resolution images.   In 
addition, the lack of a large and robust image database of 
spacecraft that can be used for model training limits 
much of what can be accomplished. 

The challenge to fast and accurate models that is most 
able to be influenced by the user is the hardware 
implemented for training. But even with advanced 
hardware, model training times can become intractable if 
the training database grows exponentially large—adding 
one item to an image database means adding at least 
several dozen (if not hundreds or thousands) of 
individual images of that object. Each individual image 
is more work (i.e. more tensor objects) for the 
convolutional neural network. The most important 
hardware to consider is the GPU, with the GPU’s amount 
of VRAM being the most important specification. 
Maximizing processing power is difficult because GPU 
hardware, and especially Nvidia GPU hardware, tends to 
be very financially expensive for units containing more 
than 8Gb of VRAM. Fortunately, the proliferation of 
virtual reality technology, which theoretically requires 
twice as much VRAM to render separate image frames 
for each eye, is having an enabling effect on deep 
learning with GPUs—as VR applications become more 
commonplace, so does the hardware required to run 
them. Prices for GPUs with 8Gb of VRAM are now 
lowering to match GPUs that had 4Gb of VRAM just 
two years ago.   

The accuracy of the recognition, detection, and 
segmentation being performed could always stand to be 
improved. Even with the aforementioned lengthy training 
times, models can still makes mistakes, e.g. imageNet 
could still classify images incorrectly, detectNet could 
still fail to correctly locate objects, and segNet could still 
incorrectly draw boundary lines when separating objects. 
However, even these mistakes are sometimes able to be 
interpreted, which helps with optimizing the types of 
images required for efficient training. For example, 
notice that in Figure 19, almost the entire Earth along 
with the majority of the moon are being classified as the 
same object type. The fact that this object type is 
nominally classified as “sky” and assigned the color 
“blue” is merely a preprocessing decision that can be 
adjusted. Similarly, while space and the darker portion of 
the Moon (as well as slivers of the Earth containing 
clouds) are being classified as “terrain” and colored 
green, this can be adjusted as well.  
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 Figure 19: Layered images from Figure 18, 
highlighting that even imperfect segmentation is 
somewhat able to be interpreted; photo credit: Brian 
Zufelt. 

 

Improving model accuracy could occur in two ways: 
First, image classification accuracy could be improved 
via the brute-force method of simply spending more time 
training with larger databases of more objects and 
increased numbers of labelled training images. 
Eventually, models would see enough examples of 
objects from every angle and in every lighting condition 
so that any possible future image of the same object type 
would be recognized. Well-trained models could be 
based on databases of images for every object in the 
dictionary, for example. Second, classification accuracy 
could be also be improved by utilizing different and 
better neural network models than AlexNet and 
GoogLeNet (such as customized or proprietary models), 
though this goes beyond the scope of this experiment.  

The primary progress would be deploying increasingly 
autonomous systems on more types of satellites, and 
Nvidia’s TX1 hardware goes to great lengths to show 
that capability. The TX1 is not limited to image 
processing, and is a fully capable system on a chip that 
provides both central and graphics processing. Image 
processing tasks lend themselves easily to GPU 
hardware, but really any data-intensive deep learning 
task is well-suited to the parallel scalability of GPU 
processing. 

 
 

V. SUMMARY 

The Nvidia Corporation is making great effort to provide 
data scientists and engineers with the tools required to 
perform efficient deep learning tasks using off-the-shelf 
hardware and open-source software. Powerful processing 
capability in a small package such as the TX1 enables 
this learning to occur onboard the data-collecting 
instruments—rather than transmitting raw data to the 

ground, satellites could send processed intelligence. 
Similarly, instead of waiting to receive an update 
package from the ground, a satellite could process its 
own data and apply corrections automatically. This level 
of increased space situational awareness is the goal of 
applying Nvidia GPU technology to data collected by 
satellites. 

The three image processing tasks of recognition, 
detection, and segmentation can be applied to any type of 
image. On-ground experiments training models to 
recognize, detect, and separate two different sizes of 
cube satellites were successful using both images and 
live 3D-print models. However, this does not guarantee 
the process can be exactly replicated in space. Further 
training and testing using images obtained from space 
would be a beneficial step on the way to conducting 
actual tests in orbit.      

The onboard processing capability enabled by Nvidia 
hardware and software can reduce data requirements for 
missions and expand the types of missions that small 
satellites and CubeSats are used for. An example space 
situational awareness application of onboard satellite image 
processing would be the ability for a spacecraft to point out 
areas of interest, identify and locate objects it determines 
may be relevant, and then execute an autonomous course of 
action, rather than downloading massive arrays of images 
for post-processing on the ground. 

 

VI. FUTURE WORK 

For future work, both COSMIAC and SGT are currently 
involved in nanosatellite projects with organizations such as 
the Air Force Research Laboratory (AFRL) and the 
National Aeronautics and Space Administration (NASA). 
This has caused teams of scientists, engineers, and students 
to become well-versed in a wide variety of different satellite 
configurations and missions. Current activities are also 
underway at COSMIAC and SGT in the areas of machine 
learning and big data analytics. The big data aspects 
incorporate a multitude of open source software 
technologies that have made data processing and mining 
faster and more efficient than ever before. Additionally, 
with cloud computing becoming increasingly prevalent and 
inexpensive, the capability to acquire virtual hardware for 
model training is almost limitless.  

For long term activities, the team at COSMIAC would be 
interested in building and flying a payload imager upon the 
International Space Station for future studies of model 
deployment. 
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