
Buonaiuto 1 SmallSat 2017
 Small Satellite Conference, Logan UT

SSC17-WK-56
Satellite Identification Imaging for Small Satellites Using NVIDIA

Nick Buonaiuto, Craig Kief, Mark Louie, Jim Aarestad, Brain Zufelt

COSMIAC at UNM
Albuquerque, NM; 916-539-1526
nick.buoniauto@COSMIAC.org

Rohit Mital, Dennis Mateik

Stinger Ghaffarian Technologies Inc.
Colorado Springs, CO; 719-201-6996

rmital@sgt-inc.com

Robert Sivilli, Apoorva Bhopale
Air Force Research Laboratory, Space Vehicles Directorate

Albuquerque, NM; 505-846-1813
robert.sivilli.1@us.af.mil

ABSTRACT
The Nvidia Tegra X1 (TX1) is a credit-card size system-on-a-chip (SoC) that contains an entire suite of input,
output, and processing hardware. It is designed to take advantage of Nvidia’s graphics processing unit (GPU)
architecture and CUDA (formerly Compute Unified Device Architecture) parallel computing platform in
order to provide a deep learning capability within a small form factor. The novelty of such a small size makes
the TX1 capable of being deployed onboard a satellite, or as the primary instrument of a CubeSat.
Accompanying software exists to optimize the TX1 for image processing tasks such as image recognition,
object detection and location, and image segmentation. Such on-board processing power would make an
equipped satellite able to execute complex decisions based on the images it receives during flight. This paper
describes the effort to achieve these image processing tasks on the ground based on original datasets, with the
motivation that models could be trained to be deployed onboard spacecraft containing cameras and GPU
hardware. Though the distances of space make high-resolution images difficult to obtain from orbital assets,
compact devices such as the Nvidia TX1 (and the newer TX2) demonstrate the potential for a spacecraft to
achieve increased situational awareness based on streams of collected images.

I. BACKGROUND
As more and more satellites are launched (including
smaller CubeSats), the requirements to more accurately
and quickly identify objects from orbit will become
increasingly important. To be most responsive, there is a
need to move the analysis of objects from ground-based
systems to onboard assets that can quickly identify not
only what is flying by (e.g. recognizing junk versus a
CubeSat), but also the types of satellites being observed
(e.g. communications, imaging, friendly, hostile, etc.).
This level of space situational awareness (SSA) is
becoming more critical each day. At the same time that
the SSA demand for actionable information is growing,
the funding for large space programs is shrinking, which
leads to a premium being placed on efficiency. What has
to occur for the warfighter to get the best information
most quickly, to provide time to make the best decisions,
is for the advancement of the capabilities that enable

data-collecting instruments to also have the ability to
process and transform data into intelligence.
Opportunities are made possible by hardware such as
Nvidia graphics processing units to provide machine
learning type analysis in real time, so that processed
information (and not raw data) are downloaded to ground
stations for action.
The purpose of this project is to experiment with GPU
hardware for image processing and inference within a
small form factor, such as that of a nanosatellite or
CubeSat. Nvidia’s graphics processing hardware is
capable of massively parallel computation, which is
realized by several accompanying software libraries and
deep learning frameworks, discussed briefly in Section
II.1

The Nvidia TX1 has height and width of 3.5 x 2 inches,
with a depth of 1.5 inches including the heatsink and fan.

Buonaiuto 2 SmallSat 2017
 Small Satellite Conference, Logan UT

The system includes the following specifications and
input/output (I/O) ports, seen in Table 1. 2

Table 1: NVIDIA TX1 Module Specifications.2

Feature Specifications

GPU NVIDIA Maxwell, 256 CUDA cores

CPU Quad ARM A57/2 MB L2

Video 4K x 2K 30 Hz Encode (HEVC)
4K x 2K 60 Hz Decode (10-Bit
Support)

Memory 4Gb 64 bit LPDDR4
25.6 GB/s

Display 2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI

CSI Up to 6 Cameras (2 Lane)
CSI2 D-PHY 1.1 (1.5 Gbps/Lane)

PCIE Gen 2 | 1x4 + 1x1

Storage 16 GB eMMC, SDIO, SATA

Other UART, SPI, I2C, I2S, GPIOs

USB USB 3.0 + USB 2.0

Connect. 1 Gigabit Ethernet, 802.11ac WLAN,
Bluetooth

Figure 1: Nvidia TX1 module with heatsink removed,
actual size.2

The small size of the TX1 can be seen in Figure 1. When
mounted onto a 7 x 7 inch printed circuit board
containing the actual I/O device ports, the system is
known as the Nvidia Jetson TX1 development board, as
seen in Figure 2. For software, Nvidia’s Jetson-Inference
suite contains all of the instructions, code, and other
packages necessary for both training models on powerful
local computers, or on GPU-optimized Amazon Web
Services (AWS) instances, and then deploying trained
models onto a Jetson TX1 or TX2.3 Training utilizes
Nvidia’s Deep Learning GPU Training System
(DIGITS), which is a software package meant to be
deployed on ground systems equipped with Nvidia GPUs
built with at least Maxwell or Pascal microarchitectures.4
However, once the trained models are uploaded to the
Jetson unit, all further processing of newly collected data
occurs onboard. This means computationally expensive
model training can be accomplished on the ground, and
then fully trained and optimized model files are uploaded
to the deployed spacecraft to enable onboard processing
of mission data.

Figure 2: Jetson TX1 development board; the silver
heatsink with black fan covers the TX1 SoC module.5

Buonaiuto 3 SmallSat 2017
 Small Satellite Conference, Logan UT

II. INTRODUCTION AND
EXPERIMENTAL CONFIGURATION

In 2016, work began at COSMIAC Research Center at
the University of New Mexico in Albuquerque to explore
using GPU processing within small form factors. With
COSMIAC’s history and experience with small satellites,
aerial drones, and computer graphics, the field of image
processing was a natural area of interest as increasingly
more images are being generated and saved by
innumerable devices. COSMIAC routinely works with
the Air Force Research Laboratory (AFRL) at Kirtland
Air Force Base in Albuquerque. COSMIAC also
collaborates with SGT, Inc. in Greenbelt, Maryland on a
variety of projects involving enterprise ground station
solutions and space situational awareness. SGT has a
long history working with the National Aeronautics and
Space Administration (NASA), among other federal
partners.

The purpose of working with Nvidia image processing is
to make use of the enhanced capability of graphics
processing units to enable the massively parallel
processing of real-time big datasets, such as the images
and video collected by aerial drones, autonomous
vehicles, and orbital spacecraft. Moreover, the Nvidia
Corporation produces and supports small form factor
hardware that could fit into such platforms, as well as the
software to execute image processing and object
inference workloads on such embedded hardware. For
this paper, image processing and inference will refer to
any of the following three tasks, each of which utilizes a
particular package of the Jetson-Inference software suite:

Figure 3: Example of image recognition with
imageNet; this example model gives 97.07%

probability that this image contains a polar bear or
ice bear .3

The first image processing task is image recognition with
the imageNet software package, seen in Figure 3. A
satellite camera sensor system could be trained to
recognize and respond to a variety of objects or

situations it observes in space. Models can be trained to
recognize images to a high degree of accuracy. The
Jetson-Inference suite contains the imageNet package for
image recognition. This includes the ImageNet database
of 1000 labelled images, which can be used as a database
for image recognition training.6 The ImageNet database
of 1000 images should not be confused with the
imageNet Jetson package; they are separate and distinct
entities despite working together and having very little
difference in naming style. The Jetson-Inference
software also incorporates the AlexNet and GoogLeNet
convolutional neural networks for training image
classifiers.7, 8 Convolutional neural networks (CNNs)
form the basis of deep learning, and AlexNet and
GoogLeNet are examples of CNNs which have been
created and optimized for classifying objects in images.
Each competed in the ImageNet Large Scale Visual
Recognition Challenge in 2012 and 2014, respectively,
which is a competition to create the best-optimized
classification models based specifically on the ImageNet
database. These two CNN image classification models
were themselves prefigured by the LeNet-5
convolutional neural network created in 1998.

Figure 4: Example of object detection and location

with detectNet; this example model locates
pedestrians in a public area.3

The second image processing task is object detection and
location with detectNet, seen in Figure 4. Similar to
image recognition, a sensor system could be trained to
detect objects and locate their in-frame coordinates. The
Jetson-Inference suite also contains the detectNet
package for detecting specific objects or in-camera
events, and extracting their geometric bounding boxes
within the image. As with imageNet object recognition,
detectNet models are trained using collections of labelled
images, such as the ImageNet database of 1000 object
images. However, instead of merely identifying objects,
detectNet goes further and also locates them within the
picture by drawing a bounding box. Additionally, these

Buonaiuto 4 SmallSat 2017
 Small Satellite Conference, Logan UT

bounding boxes will track and stay hovering over objects
as they move in a video stream or live camera feed.

 Figure 5: Example of image segmentation with
segNet; this example model identifies and separates a

multitude of different object types in an urban
setting.3

Finally, the third image processing task is image
segmentation, seen in Figure 5. Each object within an
image frame can be identified and separated by type. The
Jetson-Inference suite contains the segNet package for
image segmentation. In a simple implementation, image
segmentation can be done merely to separate the ground
from the sky, as with video taken from an aerial drone.
However, more objects can be incorporated in addition to
just ground and sky (including Earth, space, and
satellites), leading to more complex segmentations of
multiple types of objects as seen in Figure 5.
Segmentation incorporates both object recognition and
detection.

To perform image processing and object inference
according to the Nvidia Jetson-Inference guide, the
required hardware includes two systems with Nvidia
GPUs for training and deployment: 3

First, the training GPU (the “host”) must have Nvidia
Maxwell or Pascal architecture at minimum—these are
the two most recent types of Nvidia GPU architectures
available to consumers, with the upcoming Volta
microarchitecture scheduled to be released in 2018. The
number of CUDA cores, and therefore parallel
processing capability, is governed by which version of
Nvidia microarchitecture a GPU was built with. Or,
instead of costly in-house graphics processing units, a
less-costly GPU-optimized AWS cloud compute instance
could be utilized instead. Either way, the objective is to
train using a powerful GPU with a massive number of
CUDA cores and for parallelization. The training
instance is optimized for 64-bit Ubuntu 16.04 or 14.04.
This project utilized a host computer with an Intel i7-
7700 processor (3.6 gigahertz with four hyperthreaded
cores), 32 gigabytes (Gb) double data rate fourth-
generation 2400 megahertz (DDR4-2400) random access

memory (RAM), an M.2 form-factor peripheral
component interconnect express (PCI-E) non-volatile
memory express (NVME) solid state drive (SSD), and an
Nvidia GTX 1050 Ti GPU with 4Gb of video random
access memory (VRAM) and Pascal architecture.

Note that an Ubuntu virtual machine will not work as a
training system without extra configuration—this is due
to the host GPU not being available automatically to the
virtual machine. Therefore, the DIGITS software
installed in a VM will not be able to detect that an Nvidia
GPU is actually present, without further installation and
configuration beyond the scope of the Nvidia Jetson-
Inference guide.

Second, the deployment GPU (the “Jetson” or “TX1”)
must be an Nvidia TX1 Developer kit with JetPack 2.3
software or newer, or Nvidia TX2 Developer kit with
JetPack 3.0 or newer, and Ubuntu 16.04. This project
utilizes the Jetson TX1 development board. The Jetson
TX1 and TX2 hardware were designed specifically to
complement the JetPack software, and therefore the
hardware and software must be used together. The small
form factor of the Jetson TX1 makes it interesting for
satellite deployments, and the processing capability of
Nvidia GPU hardware makes it interesting for analyzing
big image data.

For software requirements, the Nvidia JetPack is the
software development kit (SDK) for the Jetson TX1/TX2
development boards. Installation of the JetPack software
onto the training system (the host) can take place during
the same process as flashing the Ubuntu operating
system and JetPack software onto the Jetson TX1. This
flashing process will also install the CUDA toolkit, the
CUDA Deep Neural Network (cuDNN) package, and the
TensorRT software package onto the Jetson. Onto the
host will also be installed cuDNN, the Nvidia Caffe
(NVcaffe) software package, and the DIGITS software
package. Deep learning networks typically consist of two
phases: training and inference. Training occurs on the
powerful host computer, and inference would occur in
the field (in orbit) on the Jetson TX1.9

Caffe is a deep learning framework originally developed
at University of California, Berkeley for image
classification.10 Nvidia’s implementation of Caffe is at
the core of the TX1’s deep learning processing ability.
Other examples of deep learning frameworks include
Theano, Torch, and TensorFlow.11 Caffe is installed on
the host system. Deep learning frameworks such as Caffe
are what conduct the conversion of data (e.g. images)
into tensor objects, as well as the mathematical
operations for optimizing the neural network. For
simplicity, tensors can be considered to be N-
dimensional array objects that are inputs into a neural

Buonaiuto 5 SmallSat 2017
 Small Satellite Conference, Logan UT

network. The “learning” and optimization occurs as the
neural net adjusts over subsequent passes of data
through, in order to correct error between its output and
the expected output.12 For image classification, neural
nets are used in order to train and deploy models to be
able to recognize and detect various specified objects
within an image.

The CUDA Deep Neural Network (cuDNN) is a suite of
Nvidia software libraries for GPU-acceleration of deep
learning frameworks such as Caffe. As images are fed
into the Caffe neural net framework, the cuDNN
software accelerates this processing by utilizing the
massively parallel processing capability of the Nvidia
GPU hardware. GPU acceleration is accomplished in
part by parallelization across the multiple CUDA cores
within the Nvidia GPU microarchitecture.13 CUDA
formerly stood for “Compute Unified Device
Architecture”, but this acronym is no longer used.
CuDNN is installed on both the host system and on the
TX1.

As previously mentioned, Nvidia’s Deep Learning GPU
Training System (DIGITS) is the software package for
training neural networks for the tasks of image
classification, detection, and segmentation, as seen in
Figure 6. DIGITS is Nvidia software that provides the
main interface for training models on the host computer,
both via command line and web browser, and is installed
on the host system.4 However, while the Jetson TX1 has
network access, it will be able to access the DIGITS
server of the host via web browser.

The TensorRT software package is Nvidia’s deep
learning inference optimizer and runtime engine for
deploying neural network applications. TensorRT also
provides great advantages in terms of power reduction so
as to make its use in deployments very advantageous for
small satellites with limited power budgets. As with
cuDNN, TensorRT is Nvidia software which is designed
to optimize the deployment of neural nets onto GPU
hardware. TensorRT is installed onto the Jetson, and is
what deploys the trained neural net model from DIGITS
on the host to the Jetson TX1, as seen in Figure 7.14

Figure 6: Training with DIGITS on host system—

deep neural net models (such as AlexNet and
GoogLeNet) are trained using vast image repository

databases (such as ImageNet).3

Figure 7: Inference with TensorRT and cuDNN on

deployed Jetson system—camera inputs record image
data for subsequent processing, and also permit real-

time image processing.3

III. EXPERIMENTAL RESULTS

The experiments consisted of the three image processing
tasks: recognition using imageNet, detection using
detectNet, and segmentation using segNet. The goal at
all times was to achieve proof of concept for each task on
the TX1, which has a compact form factor that makes it
ideal for small satellites.

The first task consisted of image recognition with
imageNet. The imageNet package performs image
recognition by accepting an input image and outputting
the percentage that the content of the image belongs to a
particular class. The AlexNet and GoogLeNet neural
networks are utilized, which are trained on the ImageNet
database of 1000 objects. The 1000 objects are arranged
as a directory of images organized into subfolders, with
the subfolder names being the image class labels. The

Buonaiuto 6 SmallSat 2017
 Small Satellite Conference, Logan UT

interface for imageNet training is DIGITS, via either the
command line or web browser.

To demonstrate the ability to classify new objects, it is
possible to add items to the existing ImageNet database
of 1000 objects. Subfolders containing hundreds of
images of 1U- and 3U-sized CubeSats were created at
COSMIAC in order to augment the existing model.
However, training hundreds of images through a
convolutional neural network is a very computationally
expensive process, and is likely to be non-trivial using
anything but the latest GPU hardware with at least 8Gb
of VRAM with Pascal (or newer e.g. Volta in 2018)
Nvidia microarchitecture. The host computer for this
experiment is equipped with an Nvidia GTX 1050 Ti
GPU which, while having only 4Gb of VRAM, has the
latest Pascal architecture and cost only $150 at the time
of the experiments. For example, quickly training a
rough model to classify 1U-sized CubeSats and just two
other objects (foxes and fish, selected randomly from the
ImageNet 1000 objects) took approximately 30 minutes.
Re-training for the full 1000 objects plus additional items
would take considerably longer, in proportion to the total
number of items in the training image database.
Naturally, the solution to these computationally
expensive challenges is financially expensive GPU
hardware—for example, COSMIAC recently upgraded
to the Nvidia GTX 1080 Ti GPU with 11Gb of video
memory, which cost just over $700 for a baseline
version.

Examples of the results of our CubeSat-Fox-Fish image
classification model are seen as follows in Figures 8, 9,
10, and 11:

Figure 8: imageNet classification results for 1U-sized
CubeSat image—the model calculates there is a

98.95% chance this image contains a 1U CubeSat;
photo credit: Montana State University.

Figure 9: imageNet classification results for a 3D-
printed 1U-sized CubeSat frame created at
COSMIAC—the model calculates there is a 99.96%
chance this image contains a 1U CubeSat; photo
credit: COSMIAC.

Buonaiuto 7 SmallSat 2017
 Small Satellite Conference, Logan UT

Figure 10: imageNet classification results for image of
a fox—the model calculates there is a 98.59% chance

this image contains a fox; photo credit: Google
Images.

Figure 11: imageNet classification results for image of
fish—the model calculates there is a 98.34% chance

this image contains fish; photo credit: Google Images.

The second task consisted of object detection and
localization with detectNet. The detectNet package takes
a 2D image as input, locates specified objects within the
image frame and creates bounding boxes around them,
and then produces a list of coordinates of the detected
bounding boxes. In order to train an object detection
model, a pretrained ImageNet recognition neural network
model such as AlexNet or GoogLeNet is first used, in
which the training images contain bounding box
coordinate labels.3

Expanding upon the simple image classification provided
by imageNet, detectNet not only identifies multiple types
of objects in an image, it also locates and provides their
coordinates. This enables a colored bounding box to be
drawn over each object of a specified type. Bounding
boxes will even track moving objects in a video or live
stream, and will appear and disappear as objects enter
and leave the field of view. The ability to identify and
locate multiple different types of objects within a single
image provides increased potential capability compared
to simply classifying an entire image as probably being
one object or another.

Nvidia offers pre-trained detectNet models for several
types of objects, including pedestrians, bags or luggage,
faces, airplanes, liquid container bottles, chairs, and
dogs. Unfortunately, no readily available or open source
libraries for detecting small spacecraft exist. For
practice, we first experimented with the pedestrian and
luggage pre-trained models. From the third floor of the
COSMIAC research lab, the TX1 was able to detect two
pedestrians and a backpack, as seen in Figures 12 and 13:

Figure 12: Nick Buonaiuto (holding backpack) and
Casey Ottesen in the COSMIAC parking lot

demonstrating pedestrian and luggage detection;
photo credit: Brian Zufelt.

Buonaiuto 8 SmallSat 2017
 Small Satellite Conference, Logan UT

Figure 13: NVIDIA Jetson TX1 development board
demonstrating pedestrian detection at COSMIAC.

The Jetson board is housed within a clear protective
case, and the fan and heatsink of the TX1 SoC can be

seen just below the monitor stand; photo credit:
Brian Zufelt.

Training a customized detectNet model to locate 3U-
sized CubeSats took approximately 19 hours, and
involved feeding several hundred images through the
neural network. This length of time could be shortened
by utilizing more powerful GPU hardware with increased
VRAM. Detection of 3U-sized CubeSats can be seen in
Figures 14 and 15. The localization of the two CubeSats,
however, is not perfect: at greater distances, the model is
not able to draw separate bounding boxes around each
object, as seen in Figure 15. Correcting this would be a
matter of increased training using more images, and
would ideally be accomplished using the aforementioned
powerful GPU with 8Gb+ of video memory in order to
reduce processing time.

Figure 14: Close-up of two 3U-sized CubeSats

following NanoRacks deployment; photo credit:
NanoRacks.

Figure 15: Two 3U-sized CubeSats just after

NanoRacks deployment from the International Space
Station (ISS). Notice at greater distance the model
does not distinguish two separate objects; photo

credit: NanoRacks.

The third and final image processing task consisted of
image segmentation with segNet. The segNet package
takes an image, identifies different object types based on
a customizable list, and highlights objects of each type in
different colors. Segmentation is similar to recognition
and detection in that different objects are identified and
located within a field of view. However, this
classification occurs “at the pixel level as opposed to
classifying entire images as with image recognition” or
to locating a given set of objects within an image as with
detection.3 Segmentation, therefore, allows for the
possibility of every unique object or surface within an
image to be separately identified and located. This can be
as simple as a flying drone separating ground from sky,
or as complex as a driverless automobile safely
navigating through a crowded urban environment.

As with imageNet and detectNet, the interface for
training segNet models is DIGITS, via either command-

Buonaiuto 9 SmallSat 2017
 Small Satellite Conference, Logan UT

line or web browser. Utilizing segNet essentially requires
three data items: The first item is an image or stream of
images in which to locate and separate objects. The
second item is a text file containing the names of the
object types being separated—these names are
equivalent to the labels for object classification. The
third item is another text file containing Red-Green-Blue
(RGB) values to associate with the label of each object.

For example, first-person perspective video taken from a
flying aerial drone will consist of a stream of images that
could be said to contain two basic types of objects: land
(terrain) and sky, as seen in Figure 16. A text file for
labels would be created containing the lines “terrain” and
“sky”. Another text file for colors would be created
containing RBG color values corresponding to the labels:
“0 255 0” is green for terrain and “0 0 255” is blue for
sky.

 Figure 16: Example of aerial drone sky vs. ground
segmentation with segNet; this example model finds
“terrain” and “sky” and colors those regions green

and blue, respectively.3

Our experiments replicated the ground and sky
segmentation using the provided segNet pre-trained
model to separate terrain and sky, seen in Figure 16, but
with original aerial drone footage taken by COSMIAC,
seen in Figure 17. Notice the segmentation is not perfect,

and portions of land are being classified as sky. This can
be solved with increased training using a more robust
database of labelled training images.

Figure 17: Aerial drone picture of COSMIAC team in
New Mexico, with segmentation of sky (blue) vs.
terrain (green), although some portions of ground are
incorrectly classified as sky; source photo credit:
COSMIAC.

Though it is quite forward-thinking, image segmentation
as applied by driverless road vehicles could theoretically
be applied to direct traffic for pilotless space vehicles
(e.g. satellites). In an orbital environment, image
segmentation could be performed to separate planets or
other objects from space or from each other, as seen in
Figure 18. The example in Figure 18 uses an image of
the Earth and Moon in space (image created at
COSMIAC) and the same classification model as the
aerial drone image in Figure 17 (which segments terrain
and sky). Even though the model provided by segNet is
nominally trained for “terrain” and “sky”, it is still able
to segment the different types of objects in Figure 18, i.e.
space vs. Earth and Moon. This classification occurs
with an interesting reversal, in that the Earth and Moon
objects are technically classified as “sky” and space is
classified as “terrain”. However, the Earth object in
frame is comprised of blue ocean and white clouds—
very similar in appearance to sky. Furthermore, the view

Buonaiuto 10 SmallSat 2017
 Small Satellite Conference, Logan UT

of the Earth and Moon from space could be considered to
be a view of their skies. In any event, the object
segmentation is sound, and it is possible to solve away
these errors with longer training times using more
images and better-optimized neural networks, or by
simply reassigning the labels and colors in the text files.

Figure 18: Segmentation of the Earth and Moon
(blue), and space (green) using a source image created
at COSMIAC. Notice that although terrain and sky
are nominally labelled incorrectly, the segmentation
of object types is rather good, and could be improved
simply by editing the associated label and color text
files; source photo credit: Brian Zufelt.

IV. TECHNICAL CHALLENGES AND
PROGRESS

Running on the TX1 simulates potentially running on
board of a small satellite. Challenges naturally include
the volume of space and the distances between objects—
higher resolution images are more difficult to obtain at
greater distances. Objects moving very fast also makes it
difficult to obtain clear high-resolution images. In
addition, the lack of a large and robust image database of
spacecraft that can be used for model training limits
much of what can be accomplished.

The challenge to fast and accurate models that is most
able to be influenced by the user is the hardware
implemented for training. But even with advanced
hardware, model training times can become intractable if
the training database grows exponentially large—adding
one item to an image database means adding at least
several dozen (if not hundreds or thousands) of
individual images of that object. Each individual image
is more work (i.e. more tensor objects) for the
convolutional neural network. The most important
hardware to consider is the GPU, with the GPU’s amount
of VRAM being the most important specification.
Maximizing processing power is difficult because GPU
hardware, and especially Nvidia GPU hardware, tends to
be very financially expensive for units containing more
than 8Gb of VRAM. Fortunately, the proliferation of
virtual reality technology, which theoretically requires
twice as much VRAM to render separate image frames
for each eye, is having an enabling effect on deep
learning with GPUs—as VR applications become more
commonplace, so does the hardware required to run
them. Prices for GPUs with 8Gb of VRAM are now
lowering to match GPUs that had 4Gb of VRAM just
two years ago.

The accuracy of the recognition, detection, and
segmentation being performed could always stand to be
improved. Even with the aforementioned lengthy training
times, models can still makes mistakes, e.g. imageNet
could still classify images incorrectly, detectNet could
still fail to correctly locate objects, and segNet could still
incorrectly draw boundary lines when separating objects.
However, even these mistakes are sometimes able to be
interpreted, which helps with optimizing the types of
images required for efficient training. For example,
notice that in Figure 19, almost the entire Earth along
with the majority of the moon are being classified as the
same object type. The fact that this object type is
nominally classified as “sky” and assigned the color
“blue” is merely a preprocessing decision that can be
adjusted. Similarly, while space and the darker portion of
the Moon (as well as slivers of the Earth containing
clouds) are being classified as “terrain” and colored
green, this can be adjusted as well.

Buonaiuto 11 SmallSat 2017
 Small Satellite Conference, Logan UT

 Figure 19: Layered images from Figure 18,
highlighting that even imperfect segmentation is
somewhat able to be interpreted; photo credit: Brian
Zufelt.

Improving model accuracy could occur in two ways:
First, image classification accuracy could be improved
via the brute-force method of simply spending more time
training with larger databases of more objects and
increased numbers of labelled training images.
Eventually, models would see enough examples of
objects from every angle and in every lighting condition
so that any possible future image of the same object type
would be recognized. Well-trained models could be
based on databases of images for every object in the
dictionary, for example. Second, classification accuracy
could be also be improved by utilizing different and
better neural network models than AlexNet and
GoogLeNet (such as customized or proprietary models),
though this goes beyond the scope of this experiment.

The primary progress would be deploying increasingly
autonomous systems on more types of satellites, and
Nvidia’s TX1 hardware goes to great lengths to show
that capability. The TX1 is not limited to image
processing, and is a fully capable system on a chip that
provides both central and graphics processing. Image
processing tasks lend themselves easily to GPU
hardware, but really any data-intensive deep learning
task is well-suited to the parallel scalability of GPU
processing.

V. SUMMARY

The Nvidia Corporation is making great effort to provide
data scientists and engineers with the tools required to
perform efficient deep learning tasks using off-the-shelf
hardware and open-source software. Powerful processing
capability in a small package such as the TX1 enables
this learning to occur onboard the data-collecting
instruments—rather than transmitting raw data to the

ground, satellites could send processed intelligence.
Similarly, instead of waiting to receive an update
package from the ground, a satellite could process its
own data and apply corrections automatically. This level
of increased space situational awareness is the goal of
applying Nvidia GPU technology to data collected by
satellites.

The three image processing tasks of recognition,
detection, and segmentation can be applied to any type of
image. On-ground experiments training models to
recognize, detect, and separate two different sizes of
cube satellites were successful using both images and
live 3D-print models. However, this does not guarantee
the process can be exactly replicated in space. Further
training and testing using images obtained from space
would be a beneficial step on the way to conducting
actual tests in orbit.

The onboard processing capability enabled by Nvidia
hardware and software can reduce data requirements for
missions and expand the types of missions that small
satellites and CubeSats are used for. An example space
situational awareness application of onboard satellite image
processing would be the ability for a spacecraft to point out
areas of interest, identify and locate objects it determines
may be relevant, and then execute an autonomous course of
action, rather than downloading massive arrays of images
for post-processing on the ground.

VI. FUTURE WORK

For future work, both COSMIAC and SGT are currently
involved in nanosatellite projects with organizations such as
the Air Force Research Laboratory (AFRL) and the
National Aeronautics and Space Administration (NASA).
This has caused teams of scientists, engineers, and students
to become well-versed in a wide variety of different satellite
configurations and missions. Current activities are also
underway at COSMIAC and SGT in the areas of machine
learning and big data analytics. The big data aspects
incorporate a multitude of open source software
technologies that have made data processing and mining
faster and more efficient than ever before. Additionally,
with cloud computing becoming increasingly prevalent and
inexpensive, the capability to acquire virtual hardware for
model training is almost limitless.

For long term activities, the team at COSMIAC would be
interested in building and flying a payload imager upon the
International Space Station for future studies of model
deployment.

Buonaiuto 12 SmallSat 2017
 Small Satellite Conference, Logan UT

REFERENCES

[1] K.G. Santhanam, “The Anatomy of Deep Learning
Frameworks,” in KD Nuggets Blog, February 2017.
Retrieved from:
http://www.kdnuggets.com/2017/02/anatomy-deep-
learning-frameworks.html

[2] NVIDIA, “Jetson Embedded Platform”, NVIDIA
Corporation 2017. Retrieved from:
http://www.nvidia.com/object/embedded-systems-
dev-kits-modules.html

[3] D. Franklin. “Guide to Deploying Deep-Learning
Inference Networks and Deep Vision Primitives
with TensorRT and Jetson TX1/TX2.” NVIDIA
Corporation, 2017. Retrieved from:
https://github.com/dusty-nv/jetson-inference

[4] NVIDIA, “DIGITS Interactive Deep Learning GPU
Training System,” NVIDIA Corporation 2017.
Retrieved from: https://developer.nvidia.com/digits

[5] NVIDIA, “Jetson TX1 Developer Kit,” NVIDIA
Corporation 2017. Retrieved from:
https://developer.nvidia.com/embedded/buy/jetson-
tx1-devkit

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L.
Fei-Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” in IEEE Computer Vision and
Pattern Recognition (CVPR), 2009. Retrieved from:
http://www.image-
net.org/papers/imagenet_cvpr09.pdf

[7] A. Krizhevsky, I. Sutskever, G.E. Hinton. “ImageNet
Classification with Deep Convolutional Neural
Networks,” in Advances in Neural Information
Processing Systems 25 (NIPS 2012). Retrieved
from: https://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich, “Going Deeper with Convolutions,” in
IEEE Computer Vision and Pattern Recognition
(CVPR), 2015. Retrieved from:
http://www.cvfoundation.org/openaccess
/content_cvpr_2015/papers/Szegedy_Going_Deepe
r_With_2015_CVPR_paper.pdf

[9] NVIDIA, “JetPack,” NVIDIA Corporation 2017.
Retrieved from:
https://developer.nvidia.com/embedded/jetpack

[10] Y. Jia, E. Shelhamer, “Caffe Deep Learning
Framework,” Berkeley Vision 2014. Retrieved
from: http://caffe.berkeleyvision.org/

[11] R.G. Gomez-Ol, “Deep Learning frameworks: a
review before finishing 2016,” Medium.com 2016.
Retrieved from:
https://medium.com/@ricardo.guerrero deep-
learning-frameworks-a-review-before-finishing-
2016-5b3ab4010b06

 [12] M. Rumanek, T. Danek, and A. Lesniak, “High
Performance Image Processing of Satellite Images
Using Graphics Processing Units,” in Geoscience
and Remote Sensing Symposium (IGARSS), 2011
IEEE International, 2011, pp. 559-561. Retrieved
from: http://ieeexplore.ieee.org/document/6049189/

[13] NVIDIA, “cuDNN GPU Accelerated Deep
Learning,” NVIDIA Corporation 2017. Retrieved
from: https://developer.nvidia.com/cudnn

[14] NVIDIA, “TensorRT Deep Learning Inference
Optimizer and Runtime Engine,” NVIDIA
Corporation 2017. Retrieved from:
https://developer.nvidia.com/tensorrt

[15] G.J. Scott, K. Backus, D.T. Anderson, “A
Multilevel Parallel and Scalable Single-Host GPU
Cluster Framework for Large-Scale Geospatial
Data Processing,” in Geoscience and Remote
Sensing Symposium (IGARSS) 2014 IEEE
International, pp. 2475-2478, July 2014. Retrieved
from:
http://ieeexplore.ieee.org/document/7325718/refere
nces?ctx=references

	Satellite Identification Imaging for Small Satellites Using NVIDIA
	ABSTRACT
	I. bACKGROUND
	II. Introduction and EXPERIMENTAL Configuration

