
Becker 1 31st Annual AIAA/USU

 Conference on Small Satellites

SSC17-VII-10

Mesh Network Architecture for Enabling Inter-Spacecraft Communication

Christopher Becker, Garrick Merrill

NASA Marshall Space Flight Center

Mail Stop EV42, Huntsville, AL 35812

chris.becker@nasa.gov

ABSTRACT

To enable communication between spacecraft operating in a formation or small constellation, a mesh network

architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The

network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration

between small spacecraft. The system uses a peer-to-peer topology with no central router, removing the possibility

of a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of

new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system

(UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove out mesh network

performance. The mesh network was primarily devised to provide low latency, high frequency communication but is

flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The

network includes a relay functionality that extends the maximum range between spacecraft in the network by

relaying data from node to node. The mesh network control is implemented completely in software making it

hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms.

INTRODUCTION

As the use of cubesats and other small satellites

continues to grow, communicating with the larger

numbers of on-orbit assets will start to stress ground

communications capabilities. In addition to single

satellite missions, multiple organizations have begun to

develop and deploy constellations of satellites and more

are planned in the near future. To help relieve the

demands being placed on ground stations and to enable

communication between satellites, a TDMA-based

mesh network communication system was developed.

This system uses a peer-to-peer architecture and does

not require a central master node or router. This

eliminates the possibility of single-point failures due to

the loss of the network master.

The designed mesh network allows a small formation of

satellites to collaborate and exchange data to enable

their mission and reduce ground communication

requirements. By exchanging data directly with other

satellites in the formation, the formation can function

more autonomously with less ground intervention

required. The communication system was designed to

be reconfigurable for different applications. Some of

the driving design goals were to have low latency, to

allow for addition and removal of communication

nodes in the network without interruption, to relay data

across the network, and to make the communication

architecture hardware agnostic, not requiring it to be

dependent on a specific hardware implementation.

NETWORK DESCRIPTION

The mesh network functions by assigning time blocks

to individual network nodes. A node is any entity

communicating using the mesh network protocol. The

time allocations are determined using a time division

multiple access-based architecture. This architecture is

illustrated in Figure 1. Time is sliced in segments

called Frames. A Frame consists of the Cycle and the

Sleep periods. Primary communication across the

network is performed during the Cycle. The Cycle is

broken down into Slots, where a Slot is the portion of

time provided to each node to perform its outgoing

communication on the network. The Frame, Cycle, and

Slot lengths are all configurable parameters.

During a Slot, only one node is transmitting, and all

other nodes are listening. To ensure data integrity and

accommodate some variation of clock times across the

network, delay periods are built into the communication

protocol. As shown in the figure, this pattern of delays

is designed to ensure that receiving nodes are listening

for the entirety of the transmitting node’s transmission.

Once a node is done transmitting, it will change over

into receive mode and prepare to listen to other

transmitting nodes. The lengths of the sub-periods

within the slot are configurable, so as to make the

network architecture flexible for specific applications.

Once all slots are completed, the Cycle ends and a

Sleep period begins for the remaining time in the

Frame. During the Sleep, all nodes are nominally

Becker 2 31st Annual AIAA/USU

 Conference on Small Satellites

quiescent, allowing for power-savings when

communication is not necessary. The Sleep period

could also be used for aperiodic communications or

network administration such as reconfiguring the

parameters of the mesh network protocol.

Figure 1. Mesh Network TDMA Frame

To function without a master node, the nodes in the

network require a common time source to maintain the

integrity of the TDMA architecture. The system is not

dependent on a specific method of synchronizing time,

but the reference design was developed and tested

assuming the individual node clocks are synced using

time received from the Global Positioning System

(GPS). Since GPS is widely used already by spacecraft

for orbital position and other data, it is a convenient,

readily available, and reliable time source.

Network Topology and Data Relay

The network topology employed is a simple point-to-

point design, as illustrated in Figure 2. When nodes

broadcast, all other nodes in range receive the data.

Any nodes not in range of a broadcasting node will not

receive its data directly during the initial transmission.

Figure 2. Mesh Network Topology

However, using the data relay capability in the network,

nodes will transmit not only their own data, but also

data received from other nodes. The relay functionality

is performed in a single repeat manner, meaning that

nodes will only rebroadcast unique data once. For

example, for the network shown in Figure 2, Node 2

would receive data from Nodes 1 and 4 directly. When

Node 2 enters its transmission period, it would pass its

own data and any data received from Node 1 back out

to be received by Nodes 1 and 4. When Node 1

receives this transmission from Node 2, it will

recognize the portion of the message that it originally

transmitted. The next time that Node 1 transmits, it will

not retransmit that portion of the data again. This

prevents data that was previously sent from being

relayed back and forth across the network endlessly.

Because there is no master node, the network will

continue to function regardless of what specific nodes

are currently present in the network. Any node present

will transmit during its allotted Slot and receive data

from other nodes during their Slots. If a previously

present node drops out of the network, the other nodes

will notice the data dropout during the lost node’s Slot,

but the network will remain intact for usage by the

remaining nodes. Since the network topology is point-

to-point, any node that couldn’t communicate directly

with other network nodes without going through the

lost node will become isolated. For example, if Node 1

dropped out of the network, Nodes 3 and 6 would also

lose communication with the network in Figure 2.

DEVELOPMENT

The mesh network architecture was developed in stages

over the course of several years. Initial development

began in Fiscal Year 2014 (October 2013-September

2014) with initial basic functionality depending on

commercial of the shelf (COTS) systems. In the

following years, new features were added to expand the

capabilities of the network and the test hardware

implementation was altered to enable these features.

This iterative development approach involved both

software development of the mesh network architecture

as well as hardware implementations used as testbeds

for the network. The software and hardware

development is described in the following two sections.

Software

Because of the full Linux development environment

afforded by the BeagleBone Black used in the hardware

implementations described in the following section,

primary software development was performed in

Python. This afforded the developers with a flexible

software development environment to quickly create,

adapt, and test new features. The software was

developed with modularity in mind, so that it could be

modified for use with a wide variety of radios and

hardware implementations. The software was designed

Becker 3 31st Annual AIAA/USU

 Conference on Small Satellites

using object-oriented processes allowing hardware

specific code to inherit from the generic codebase.

Network configuration for a specific application is

performed using a JSON-based configuration file that

contains configurable parameter values used during

execution of the mesh network code. Configuration

parameters can also include flight vehicle specific

parameters such as radio interfaces and settings. By

placing configuration settings in an easily modified

human-readable file, this allows for quick

reconfiguration of the software without having to

modify the source code. This reconfigurability allows

the network performance and behavior to be catered for

specific applications, such as modifying the network to

prioritize data throughput over low latency for science

operations that generate a large amount of data.

For the current generation of hardware which uses an

FPGA (field-programmable gate array), the Python

mesh network logic was ported into VHDL (VHSIC

Hardware Description Language). This included the

mesh network control itself as well as the time

synchronization functions, specifically the interface to

the GPS. Initial development of a C++ implementation

that would be more suitable for actual flight code usage

has also been created.

Hardware

The hardware implementations described below were

developed to function separately from the main vehicle

flight computer with their own independent hardware

and software for modularity purposes, but the mesh

network software could also be deployed to run directly

on the host vehicle's flight computer. The reference

hardware systems described in the following

subsections used standalone radios, but existing radios

on the host platform could also be used assuming the

necessary bandwidth was available and the radios were

suitable for providing the required coordination and

timing.

First Generation

Preliminary mesh network development began by

exploring available options for the communications

link. Initial options were explored based on their

suitability for immediate testing and not necessarily

their applicability for the final design. Network layer

options explored included WiFi and existing COTS

personal area network technologies such as ZigBee.

Because of its simplicity, wide availability, and inter-

operability with other existing test equipment, initial

design studies converged on the use of XBee radios.

The first generation node hardware consisted of a

BeagleBone Black (BBB) single-board computer, two

XBee Pro 2.4GHz radios, and a custom BBB interface

board called a “cape” (Figure 3). The XBee radios are

attached to headers on the cape which in turn mate to

the headers on the BBB. The first generation network

design used two independent mesh networks operating

on different frequencies to provide redundancy.

Figure 3. First Generation Node Stack

This first generation network was based on a

proprietary XBee networking protocol.1 This protocol

was responsible for coordinating and controlling

communication across the network. The TDMA mesh

network scheme that is the primary topic of this paper

had not yet been developed. By leveraging existing

technology, we were able to quickly create an initial

functioning system and concentrate on developing our

testing architecture. This initial generation also did not

yet employ relay functionality, requiring all nodes to be

in direct communication with all other nodes to ensure

network integrity.

The BBB in the hardware node stack interfaced with

the test vehicle’s flight computer via an RS-232 serial

UART (Universal Asynchronous

Receiver/Transmitter). Python scripts were developed

and run on the BBB to interface with both the flight

computer and the radios and to compile and process

data for passing over the communication network. All

data was transmitted over both redundant networks with

duplicate data being parsed and discarded by the

receiving nodes.

Second Generation

The second generation system was designed to make

the communication system hardware independent, so

that it would not be dependent on a particular model or

brand of radio to function. To enable this, a custom

TDMA scheme was developed to control the

sequencing of communication on the network (Figure

1). This contrasts with the first generation system

Becker 4 31st Annual AIAA/USU

 Conference on Small Satellites

which did not have any software-based communication

control scheme but instead relied on the XBee radios to

provide this function. By moving this function into

software, the system is not only more hardware-

independent, but the TDMA scheme also helps cut

down on power requirements by allowing the radio

receiver and transmitter to be powered off when not in

use.

Figure 4. Second Generation Xbee Node Stack

Figure 5. Second Generation AstroDev Li-1 Node

Stack

To further reduce power requirements as well as mass,

only one network is employed therefore only requiring

one radio. To showcase the capabilities of the system

and to demonstrate deployment on a wide range of

hardware, a relatively simple radio with minimum

complexity was desired. The radio hardware

requirements were also simplified by moving the

collision and other communication control logic into

the mesh network communication system software.

The second generation system also added data relaying

to allow nodes to communicate and pass data and

commands between all vehicles without requiring direct

communication between all nodes. Relaying allows

commands and data to propagate along the mesh

network to any desired destination node, allowing a

node that has no direct communication path to a

particular node to still receive that node’s data.

Implementation of the TDMA scheme also required

precise timing, so a method had to be provided to

synchronize the clocks of all nodes in the system.

Because of its existing widespread use as a vehicle

navigation source by many vehicle types, GPS was

chosen as the time synchronization source. The time

broadcast by the GPS constellation and a pulse per

second (PPS) signal from a GPS receiver are used to

provide time synchronization within 1 millisecond or

better across the network nodes. However the

communication system is not dependent on this

particular time source, so any other external time

synchronization method implemented by the host

platform would be sufficient provided it meets the time

accuracy requirements.

The new TDMA scheme was tested on two different

hardware implementations. The first was a

modification of the first generation XBee stack but

removing the second radio and adding a GPS interface

(Figure 4). To show that the mesh network would

function using a flight-ready radio, a hardware

implementation using the AstroDev Li-1 UHF radio

was also tested (Figure 5).

Current Generation

During development of the current generation of the

network, the primary goal was to further improve

network timing to ensure the most efficient usage of

available communication bandwidth. To facilitate

improved timing accuracy, an FPGA was added into the

hardware implementation. By moving the network

timing and control logic onto the embedded FPGA,

time critical events, such as the start of each individual

time segment of the TDMA Frame architecture, could

rely on the more precise, repeatable execution afforded

by the FPGA versus running it on a general purpose

microprocessor such as the vehicle’s flight computer.

This precision then afforded to the option to reduce the

lengths of the delay periods introduced into the mesh

network architecture to account for less specific timing.

The FPGA used was a Microsemi ProASIC3, chosen

because it provides a path towards space-quality

hardware. The BeagleBone Black platform was

retained as in the previous generations just with the new

interface board (Figure 6). The TDMA network logic

as well as the interface with the GPS was moved into

VHDL running on the FPGA. The data processing and

other interface functions, such as communicating with

Becker 5 31st Annual AIAA/USU

 Conference on Small Satellites

the flight computer, were retained as Python scripts

running on the BBB.

Figure 6. Third Generation XBee Node Stack

TESTING

Testing was performed in three phases. Testing began

with initial mesh network software development and

debugging in a lab environment. Figure 7 shows testing

of 8 second generation XBee nodes. The node stacks

are shown with their attached GPS receivers for time

synchronization purposes and interfaces to simulated

flight computers. In lab testing, the nodes were

interfaced to simulated vehicle flight computers, via

serial link, emulated by a desktop PC. This allowed

quick modeling of mesh network behavior in different

test scenarios.

Figure 7. Lap Test Setup

Upon completion of initial lab testing, network testing

then moved towards testing formation applications

involving two primary stages: a flight test program to

demonstrate the network’s capabilities in a realistic,

dynamic scenario and a simulation environment to test

spacecraft implementation specifics. To provide a

dynamic and stressing test environment for the mesh

network, small unmanned aerial systems (UAS) were

used as a flight test platform. Small consumer-grade

quadcopters were chosen because they were readily

available to the development engineers. Each

quadcopter carried the BBB node stack as a payload

(Figure 8). The quadcopters were operated in

formations with up to six vehicles in flight

simultaneously. The node stack interfaced with the

flight computer of the quadcopter via serial link to

provide vehicle state data for transmission over the

mesh network and to transmit vehicle control

commands to the flight computer.

The UAS test regime was comparatively more stressing

than a typical on-orbit spacecraft application and

required a network with low latency. With the UAS

moving quickly and in close proximity (within a couple

meters of one another), a UAS formation provided an

ideal test case for stressing the mesh network and

ensuring it was stable and robust.

Figure 8. Quadcopter Test Vehicle with Mesh

Network Payload

Flight Testing

Flight tests began with a single vehicle node and a

ground station that was also a node in the mesh

network. Single vehicle tests were used to show that

the mesh network could operate successfully in an

environment outside of the lab and also provided for

testing of the communication links to ensure necessary

range for the flight testing.

Testing then proceeded by gradually adding more and

more vehicles to the flight tests to increase the stress on

the mesh network. In parallel to the actual mesh

network software development, logic had to be

developed to control the UAS formation movement

itself. A formation control scheme was developed that

allowed the vehicles to safely and collaboratively move

in close proximity to one another while ensuring that

collisions would be avoided.

While the specifics of this scheme are not relevant to

the mesh network itself, it was a necessary element to

enable a realistic test environment and to flesh out

deficiencies in the mesh network implementation. The

Becker 6 31st Annual AIAA/USU

 Conference on Small Satellites

formation scheme developed allowed for safe flight of a

large number of vehicles (Figure 9), limited only in the

scope of these tests by the number of vehicles available.

Ultimately flights of up to six quadcopters were

achieved, and including the ground station, this

demonstrated the functionality of the designed mesh

network with seven total nodes. Video of a five-vehicle

flight can be found here:

https://www.youtube.com/watch?v=oH9C43To3Dk .

Figure 9. Five Vehicle Flight Test

For flight tests, the mesh network was operated with a

TDMA Frame of one second. The Frame was split into

equal Slot sizes for all seven nodes (six flight vehicles

plus the ground station). This Frame size was chosen to

reduce communication latency between the vehicles.

The short Frame length, combined with the relatively

low bandwidth of the radios under test (115200 baud

max), resulted in a small individual data throughput for

each node. However since all of the TDMA network

parameters are configurable, the network is easily

adaptable based on the requirements of the specific

application. If total data throughput is a higher priority,

the data to be transmitted could either be broken into

smaller pieces for transmission, or the Frame length

could simply be lengthened allowing more contiguous

data transmission. Likewise a higher bandwidth radio

could be chosen.

Spacecraft Simulation

To test the usage of the mesh network in a scenario

relevant to spacecraft applications, a spacecraft test

simulation was developed. The spacecraft simulation

was performed in the lab without any modeling of

communication latencies due to distance between

network nodes. The primary purpose of the satellite

simulation was to show that the network was capable of

transmitting the necessary types of data that would be

required by a real spacecraft formation. The formation

modeled employed an eccentricity/inclination vector

separation technique to control relative motion between

a chief spacecraft and several deputy satellites.2 By

exchanging information across the mesh network, the

individual nodes were made aware of spacecraft

position deviations from the ideal planned trajectory,

due to environmental disturbance forces, and could

correct for them.

While the UAS test flights showed the ability of the

network to react in a situation requiring low latency, the

satellite simulations tested the longer term stability of

the network. Real-time simulations of up to 3 days

were run to show that the communication links were

maintained and the network remained stable using the

TDMA architecture. The simulated spacecraft were

able to exchange data and maintain the desired

formation spacing.

FUTURE DEVELOPMENT

Future development goals include expanding the

capabilities of the network to self-adapt to changing

network conditions and loss/addition of new network

nodes. Currently the network is highly configurable but

relies on a priori knowledge of the expected size of the

network and data throughput needs to create a

configuration file used by all network nodes. This file

which is loaded by each node when it joins the network

contains all the configuration parameters of the network

such as Frame and Slot lengths. By allowing the

network nodes to change the specific TDMA timing

settings dynamically, the network can make more

efficient usage of the available bandwidth, in the case

for example of the loss of a network node. The lost

network node’s Slot time could be reallocated allowing

longer Slots for each of the remaining nodes. While

this can be achieved currently, it requires the current

network to be dissolved and reinitiated.

Other future efforts will include configuring the

hardware implementation for flight, so that it could be

available when a future cubesat or other small satellite

opportunity becomes available. This effort will include

choosing hardware components that can survive the

orbit environment as well as any customization required

to interface with a specific mission’s components such

as flight computer or radios. Additionally, if the FPGA

design is chosen for spaceflight testing, further ancillary

logic currently being handled on the BeagleBone Black,

such as interfacing with the flight computer and radios,

will need to be moved into VHDL on the FPGA.

CONCLUSION

A mesh network architecture and implementation was

developed and demonstrated that allows a formation or

small constellation of spacecraft to communicate

amongst themselves to achieve mission goals and

reduce reliance on ground communication assets. The

first generation system demonstrated the basic network

concept was viable and allowed exchange of relevant

data between network nodes. Generations two and

three evolved the network design by moving it entirely

https://www.youtube.com/watch?v=oH9C43To3Dk

Becker 7 31st Annual AIAA/USU

 Conference on Small Satellites

into software and/or firmware, allowing it to be

independent of any specific hardware implementation.

The network was tested, and it demonstrated low

latency, reliable communication enabling flight tests of

a small UAS formation.

The mesh network was designed to be flexible and

easily reconfigurable to meet the communication needs

of a wide variety of spacecraft formations and

applications. The primary unique aspect of this mesh

network is its lack of a master node or router. Instead

the network nodes all function as peers, allowing the

system to function even after the failure or loss of any

node.

The mesh network software and logic described in this

paper (Python, VHDL, and C++) are available from the

NASA software catalog,

https://software.nasa.gov/software/MFS-33391-1, and

NASA GitHub, https://github.com/nasa/meshNetwork.

References

1. “Digi XBee DigiMesh 2.4 Wireless Mesh

Networking RF Module,”

https://www.digi.com/products/xbee-rf-

solutions/embedded-rf-modules-modems/xbee-

digimesh-2-4, May 2017.

2. D’Amico, S. and O. Montenbruck, “Proximity

Operations of Formation-Flying Spacecraft Using

an Eccentricity/Inclination Vector Separation,”

Journal of Guidance, Control, & Dynamics, vol

29, No. 3, May-June 2006.

https://software.nasa.gov/software/MFS-33391-1
https://github.com/nasa/meshNetwork

