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ABSTRACT 

To enable communication between spacecraft operating in a formation or small constellation, a mesh network 

architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The 

network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration 

between small spacecraft. The system uses a peer-to-peer topology with no central router, removing the possibility 

of a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of 

new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system 

(UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove out mesh network 

performance. The mesh network was primarily devised to provide low latency, high frequency communication but is 

flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The 

network includes a relay functionality that extends the maximum range between spacecraft in the network by 

relaying data from node to node. The mesh network control is implemented completely in software making it 

hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms.

INTRODUCTION 

As the use of cubesats and other small satellites 

continues to grow, communicating with the larger 

numbers of on-orbit assets will start to stress ground 

communications capabilities.  In addition to single 

satellite missions, multiple organizations have begun to 

develop and deploy constellations of satellites and more 

are planned in the near future.  To help relieve the 

demands being placed on ground stations and to enable 

communication between satellites, a TDMA-based 

mesh network communication system was developed.  

This system uses a peer-to-peer architecture and does 

not require a central master node or router.  This 

eliminates the possibility of single-point failures due to 

the loss of the network master.   

The designed mesh network allows a small formation of 

satellites to collaborate and exchange data to enable 

their mission and reduce ground communication 

requirements.  By exchanging data directly with other 

satellites in the formation, the formation can function 

more autonomously with less ground intervention 

required.  The communication system was designed to 

be reconfigurable for different applications.  Some of 

the driving design goals were to have low latency, to 

allow for addition and removal of communication 

nodes in the network without interruption, to relay data 

across the network, and to make the communication 

architecture hardware agnostic, not requiring it to be 

dependent on a specific hardware implementation.  

NETWORK DESCRIPTION 

The mesh network functions by assigning time blocks 

to individual network nodes.  A node is any entity 

communicating using the mesh network protocol.  The 

time allocations are determined using a time division 

multiple access-based architecture.  This architecture is 

illustrated in Figure 1.  Time is sliced in segments 

called Frames.  A Frame consists of the Cycle and the 

Sleep periods.  Primary communication across the 

network is performed during the Cycle.  The Cycle is 

broken down into Slots, where a Slot is the portion of 

time provided to each node to perform its outgoing 

communication on the network.  The Frame, Cycle, and 

Slot lengths are all configurable parameters. 

During a Slot, only one node is transmitting, and all 

other nodes are listening.  To ensure data integrity and 

accommodate some variation of clock times across the 

network, delay periods are built into the communication 

protocol.  As shown in the figure, this pattern of delays 

is designed to ensure that receiving nodes are listening 

for the entirety of the transmitting node’s transmission.  

Once a node is done transmitting, it will change over 

into receive mode and prepare to listen to other 

transmitting nodes.  The lengths of the sub-periods 

within the slot are configurable, so as to make the 

network architecture flexible for specific applications. 

Once all slots are completed, the Cycle ends and a 

Sleep period begins for the remaining time in the 

Frame.  During the Sleep, all nodes are nominally 
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quiescent, allowing for power-savings when 

communication is not necessary.  The Sleep period 

could also be used for aperiodic communications or 

network administration such as reconfiguring the 

parameters of the mesh network protocol. 

 

Figure 1.  Mesh Network TDMA Frame 

To function without a master node, the nodes in the 

network require a common time source to maintain the 

integrity of the TDMA architecture.  The system is not 

dependent on a specific method of synchronizing time, 

but the reference design was developed and tested 

assuming the individual node clocks are synced using 

time received from the Global Positioning System 

(GPS).  Since GPS is widely used already by spacecraft 

for orbital position and other data, it is a convenient, 

readily available, and reliable time source. 

Network Topology and Data Relay 

The network topology employed is a simple point-to-

point design, as illustrated in Figure 2.  When nodes 

broadcast, all other nodes in range receive the data.  

Any nodes not in range of a broadcasting node will not 

receive its data directly during the initial transmission.   

 

Figure 2.  Mesh Network Topology 

However, using the data relay capability in the network, 

nodes will transmit not only their own data, but also 

data received from other nodes.  The relay functionality 

is performed in a single repeat manner, meaning that 

nodes will only rebroadcast unique data once.  For 

example, for the network shown in Figure 2, Node 2 

would receive data from Nodes 1 and 4 directly.  When 

Node 2 enters its transmission period, it would pass its 

own data and any data received from Node 1 back out 

to be received by Nodes 1 and 4.  When Node 1 

receives this transmission from Node 2, it will 

recognize the portion of the message that it originally 

transmitted.  The next time that Node 1 transmits, it will 

not retransmit that portion of the data again.  This 

prevents data that was previously sent from being 

relayed back and forth across the network endlessly. 

Because there is no master node, the network will 

continue to function regardless of what specific nodes 

are currently present in the network.  Any node present 

will transmit during its allotted Slot and receive data 

from other nodes during their Slots.  If a previously 

present node drops out of the network, the other nodes 

will notice the data dropout during the lost node’s Slot, 

but the network will remain intact for usage by the 

remaining nodes.  Since the network topology is point-

to-point, any node that couldn’t communicate directly 

with other network nodes without going through the 

lost node will become isolated.  For example, if Node 1 

dropped out of the network, Nodes 3 and 6 would also 

lose communication with the network in Figure 2. 

DEVELOPMENT 

The mesh network architecture was developed in stages 

over the course of several years.  Initial development 

began in Fiscal Year 2014 (October 2013-September 

2014) with initial basic functionality depending on 

commercial of the shelf (COTS) systems.  In the 

following years, new features were added to expand the 

capabilities of the network and the test hardware 

implementation was altered to enable these features. 

This iterative development approach involved both 

software development of the mesh network architecture 

as well as hardware implementations used as testbeds 

for the network.  The software and hardware 

development is described in the following two sections. 

Software 

Because of the full Linux development environment 

afforded by the BeagleBone Black used in the hardware 

implementations described in the following section, 

primary software development was performed in 

Python.  This afforded the developers with a flexible 

software development environment to quickly create, 

adapt, and test new features.  The software was 

developed with modularity in mind, so that it could be 

modified for use with a wide variety of radios and 

hardware implementations.  The software was designed 
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using object-oriented processes allowing hardware 

specific code to inherit from the generic codebase. 

Network configuration for a specific application is 

performed using a JSON-based configuration file that 

contains configurable parameter values used during 

execution of the mesh network code. Configuration 

parameters can also include flight vehicle specific 

parameters such as radio interfaces and settings. By 

placing configuration settings in an easily modified 

human-readable file, this allows for quick 

reconfiguration of the software without having to 

modify the source code.  This reconfigurability allows 

the network performance and behavior to be catered for 

specific applications, such as modifying the network to 

prioritize data throughput over low latency for science 

operations that generate a large amount of data. 

For the current generation of hardware which uses an 

FPGA (field-programmable gate array), the Python 

mesh network logic was ported into VHDL (VHSIC 

Hardware Description Language).  This included the 

mesh network control itself as well as the time 

synchronization functions, specifically the interface to 

the GPS.  Initial development of a C++ implementation 

that would be more suitable for actual flight code usage 

has also been created.  

Hardware 

The hardware implementations described below were 

developed to function separately from the main vehicle 

flight computer with their own independent hardware 

and software for modularity purposes, but the mesh 

network software could also be deployed to run directly 

on the host vehicle's flight computer.  The reference 

hardware systems described in the following 

subsections used standalone radios, but existing radios 

on the host platform could also be used assuming the 

necessary bandwidth was available and the radios were 

suitable for providing the required coordination and 

timing. 

First Generation 

Preliminary mesh network development began by 

exploring available options for the communications 

link.  Initial options were explored based on their 

suitability for immediate testing and not necessarily 

their applicability for the final design.  Network layer 

options explored included WiFi and existing COTS 

personal area network technologies such as ZigBee.  

Because of its simplicity, wide availability, and inter-

operability with other existing test equipment, initial 

design studies converged on the use of XBee radios. 

The first generation node hardware consisted of a 

BeagleBone Black (BBB) single-board computer, two 

XBee Pro 2.4GHz radios, and a custom BBB interface 

board called a “cape” (Figure 3).  The XBee radios are 

attached to headers on the cape which in turn mate to 

the headers on the BBB.  The first generation network 

design used two independent mesh networks operating 

on different frequencies to provide redundancy. 

 

Figure 3. First Generation Node Stack 

This first generation network was based on a 

proprietary XBee networking protocol.1  This protocol 

was responsible for coordinating and controlling 

communication across the network.  The TDMA mesh 

network scheme that is the primary topic of this paper 

had not yet been developed.  By leveraging existing 

technology, we were able to quickly create an initial 

functioning system and concentrate on developing our 

testing architecture.  This initial generation also did not 

yet employ relay functionality, requiring all nodes to be 

in direct communication with all other nodes to ensure 

network integrity. 

The BBB in the hardware node stack interfaced with 

the test vehicle’s flight computer via an RS-232 serial 

UART (Universal Asynchronous 

Receiver/Transmitter).  Python scripts were developed 

and run on the BBB to interface with both the flight 

computer and the radios and to compile and process 

data for passing over the communication network.  All 

data was transmitted over both redundant networks with 

duplicate data being parsed and discarded by the 

receiving nodes. 

Second Generation 

The second generation system was designed to make 

the communication system hardware independent, so 

that it would not be dependent on a particular model or 

brand of radio to function.  To enable this, a custom 

TDMA scheme was developed to control the 

sequencing of communication on the network (Figure 

1).  This contrasts with the first generation system 
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which did not have any software-based communication 

control scheme but instead relied on the XBee radios to 

provide this function.  By moving this function into 

software, the system is not only more hardware-

independent, but the TDMA scheme also helps cut 

down on power requirements by allowing the radio 

receiver and transmitter to be powered off when not in 

use. 

 

Figure 4. Second Generation Xbee Node Stack 

 

Figure 5. Second Generation AstroDev Li-1 Node 

Stack 

To further reduce power requirements as well as mass, 

only one network is employed therefore only requiring 

one radio.  To showcase the capabilities of the system 

and to demonstrate deployment on a wide range of 

hardware, a relatively simple radio with minimum 

complexity was desired.  The radio hardware 

requirements were also simplified by moving the 

collision and other communication control logic into 

the mesh network communication system software.  

The second generation system also added data relaying 

to allow nodes to communicate and pass data and 

commands between all vehicles without requiring direct 

communication between all nodes.  Relaying allows 

commands and data to propagate along the mesh 

network to any desired destination node, allowing a 

node that has no direct communication path to a 

particular node to still receive that node’s data. 

Implementation of the TDMA scheme also required 

precise timing, so a method had to be provided to 

synchronize the clocks of all nodes in the system.  

Because of its existing widespread use as a vehicle 

navigation source by many vehicle types, GPS was 

chosen as the time synchronization source.  The time 

broadcast by the GPS constellation and a pulse per 

second (PPS) signal from a GPS receiver are used to 

provide time synchronization within 1 millisecond or 

better across the network nodes.  However the 

communication system is not dependent on this 

particular time source, so any other external time 

synchronization method implemented by the host 

platform would be sufficient provided it meets the time 

accuracy requirements. 

The new TDMA scheme was tested on two different 

hardware implementations.  The first was a 

modification of the first generation XBee stack but 

removing the second radio and adding a GPS interface 

(Figure 4).  To show that the mesh network would 

function using a flight-ready radio, a hardware 

implementation using the AstroDev Li-1 UHF radio 

was also tested (Figure 5). 

Current Generation 

During development of the current generation of the 

network, the primary goal was to further improve 

network timing to ensure the most efficient usage of 

available communication bandwidth.  To facilitate 

improved timing accuracy, an FPGA was added into the 

hardware implementation.  By moving the network 

timing and control logic onto the embedded FPGA, 

time critical events, such as the start of each individual 

time segment of the TDMA Frame architecture, could 

rely on the more precise, repeatable execution afforded 

by the FPGA versus running it on a general purpose 

microprocessor such as the vehicle’s flight computer.  

This precision then afforded to the option to reduce the 

lengths of the delay periods introduced into the mesh 

network architecture to account for less specific timing.  

The FPGA used was a Microsemi ProASIC3, chosen 

because it provides a path towards space-quality 

hardware.  The BeagleBone Black platform was 

retained as in the previous generations just with the new 

interface board (Figure 6).  The TDMA network logic 

as well as the interface with the GPS was moved into 

VHDL running on the FPGA.  The data processing and 

other interface functions, such as communicating with 
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the flight computer, were retained as Python scripts 

running on the BBB.  

 

Figure 6. Third Generation XBee Node Stack 

TESTING 

Testing was performed in three phases.  Testing began 

with initial mesh network software development and 

debugging in a lab environment.  Figure 7 shows testing 

of 8 second generation XBee nodes.  The node stacks 

are shown with their attached GPS receivers for time 

synchronization purposes and interfaces to simulated 

flight computers.  In lab testing, the nodes were 

interfaced to simulated vehicle flight computers, via 

serial link, emulated by a desktop PC.  This allowed 

quick modeling of mesh network behavior in different 

test scenarios.  

 

Figure 7. Lap Test Setup 

Upon completion of initial lab testing, network testing 

then moved towards testing formation applications 

involving two primary stages:  a flight test program to 

demonstrate the network’s capabilities in a realistic, 

dynamic scenario and a simulation environment to test 

spacecraft implementation specifics.  To provide a 

dynamic and stressing test environment for the mesh 

network, small unmanned aerial systems (UAS) were 

used as a flight test platform.  Small consumer-grade 

quadcopters were chosen because they were readily 

available to the development engineers.  Each 

quadcopter carried the BBB node stack as a payload 

(Figure 8).  The quadcopters were operated in 

formations with up to six vehicles in flight 

simultaneously.  The node stack interfaced with the 

flight computer of the quadcopter via serial link to 

provide vehicle state data for transmission over the 

mesh network and to transmit vehicle control 

commands to the flight computer.   

The UAS test regime was comparatively more stressing 

than a typical on-orbit spacecraft application and 

required a network with low latency.  With the UAS 

moving quickly and in close proximity (within a couple 

meters of one another), a UAS formation provided an 

ideal test case for stressing the mesh network and 

ensuring it was stable and robust. 

 

Figure 8. Quadcopter Test Vehicle with Mesh 

Network Payload 

Flight Testing   

Flight tests began with a single vehicle node and a 

ground station that was also a node in the mesh 

network.  Single vehicle tests were used to show that 

the mesh network could operate successfully in an 

environment outside of the lab and also provided for 

testing of the communication links to ensure necessary 

range for the flight testing.   

Testing then proceeded by gradually adding more and 

more vehicles to the flight tests to increase the stress on 

the mesh network.  In parallel to the actual mesh 

network software development, logic had to be 

developed to control the UAS formation movement 

itself.  A formation control scheme was developed that 

allowed the vehicles to safely and collaboratively move 

in close proximity to one another while ensuring that 

collisions would be avoided.   

While the specifics of this scheme are not relevant to 

the mesh network itself, it was a necessary element to 

enable a realistic test environment and to flesh out 

deficiencies in the mesh network implementation.  The 
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formation scheme developed allowed for safe flight of a 

large number of vehicles (Figure 9), limited only in the 

scope of these tests by the number of vehicles available.  

Ultimately flights of up to six quadcopters were 

achieved, and including the ground station, this 

demonstrated the functionality of the designed mesh 

network with seven total nodes.  Video of a five-vehicle 

flight can be found here: 

https://www.youtube.com/watch?v=oH9C43To3Dk . 

 

Figure 9. Five Vehicle Flight Test 

For flight tests, the mesh network was operated with a 

TDMA Frame of one second.  The Frame was split into 

equal Slot sizes for all seven nodes (six flight vehicles 

plus the ground station).  This Frame size was chosen to 

reduce communication latency between the vehicles.  

The short Frame length, combined with the relatively 

low bandwidth of the radios under test (115200 baud 

max), resulted in a small individual data throughput for 

each node.  However since all of the TDMA network 

parameters are configurable, the network is easily 

adaptable based on the requirements of the specific 

application.  If total data throughput is a higher priority, 

the data to be transmitted could either be broken into 

smaller pieces for transmission, or the Frame length 

could simply be lengthened allowing more contiguous 

data transmission.  Likewise a higher bandwidth radio 

could be chosen. 

Spacecraft Simulation 

To test the usage of the mesh network in a scenario 

relevant to spacecraft applications, a spacecraft test 

simulation was developed.  The spacecraft simulation 

was performed in the lab without any modeling of 

communication latencies due to distance between 

network nodes.  The primary purpose of the satellite 

simulation was to show that the network was capable of 

transmitting the necessary types of data that would be 

required by a real spacecraft formation.  The formation 

modeled employed an eccentricity/inclination vector 

separation technique to control relative motion between 

a chief spacecraft and several deputy satellites.2  By 

exchanging information across the mesh network, the 

individual nodes were made aware of spacecraft 

position deviations from the ideal planned trajectory, 

due to environmental disturbance forces, and could 

correct for them. 

While the UAS test flights showed the ability of the 

network to react in a situation requiring low latency, the 

satellite simulations tested the longer term stability of 

the network.  Real-time simulations of up to 3 days 

were run to show that the communication links were 

maintained and the network remained stable using the 

TDMA architecture.  The simulated spacecraft were 

able to exchange data and maintain the desired 

formation spacing.  

FUTURE DEVELOPMENT 

Future development goals include expanding the 

capabilities of the network to self-adapt to changing 

network conditions and loss/addition of new network 

nodes.  Currently the network is highly configurable but 

relies on a priori knowledge of the expected size of the 

network and data throughput needs to create a 

configuration file used by all network nodes.  This file 

which is loaded by each node when it joins the network 

contains all the configuration parameters of the network 

such as Frame and Slot lengths.  By allowing the 

network nodes to change the specific TDMA timing 

settings dynamically, the network can make more 

efficient usage of the available bandwidth, in the case 

for example of the loss of a network node.  The lost 

network node’s Slot time could be reallocated allowing 

longer Slots for each of the remaining nodes.  While 

this can be achieved currently, it requires the current 

network to be dissolved and reinitiated.   

Other future efforts will include configuring the 

hardware implementation for flight, so that it could be 

available when a future cubesat or other small satellite 

opportunity becomes available.  This effort will include 

choosing hardware components that can survive the 

orbit environment as well as any customization required 

to interface with a specific mission’s components such 

as flight computer or radios.  Additionally, if the FPGA 

design is chosen for spaceflight testing, further ancillary 

logic currently being handled on the BeagleBone Black,  

such as interfacing with the flight computer and radios, 

will need to be moved into VHDL on the FPGA. 

CONCLUSION 

A mesh network architecture and implementation was 

developed and demonstrated that allows a formation or 

small constellation of spacecraft to communicate 

amongst themselves to achieve mission goals and 

reduce reliance on ground communication assets.  The 

first generation system demonstrated the basic network 

concept was viable and allowed exchange of relevant 

data between network nodes.  Generations two and 

three evolved the network design by moving it entirely 

https://www.youtube.com/watch?v=oH9C43To3Dk
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into software and/or firmware, allowing it to be 

independent of any specific hardware implementation.  

The network was tested, and it demonstrated low 

latency, reliable communication enabling flight tests of 

a small UAS formation.   

The mesh network was designed to be flexible and 

easily reconfigurable to meet the communication needs 

of a wide variety of spacecraft formations and 

applications.  The primary unique aspect of this mesh 

network is its lack of a master node or router. Instead 

the network nodes all function as peers, allowing the 

system to function even after the failure or loss of any 

node. 

The mesh network software and logic described in this 

paper (Python, VHDL, and C++) are available from the 

NASA software catalog, 

https://software.nasa.gov/software/MFS-33391-1, and 

NASA GitHub, https://github.com/nasa/meshNetwork.   
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