Making The Invisible Visible

Precision RF-Emitter Geolocation from Space By The HawkEye 360 Pathfinder Mission

Karan Sarda (SFL)

Niels Roth (SFL)
Dan CaJacob (HE360)
Nathan Orr (DSI)
Robert E. Zee (SFL)
HawkEye 360
Geolocation of Terrestrial & Aerial RF Emitters from Space
RF Geo-location: Applications

- Communication Interference Detection
- Spectrum Mapping
- Emergency Response
- Transportation Activity Tracking
Application Case: AIS

• AIS data is not universally reliable
• Pirates or illegal fishing fleets “spoon” AIS emissions or “go dark”
• HE360: Demonstrate independent geolocation of vessels, either via AIS emissions, or other well-known emissions of ships
The Team

Payload & Algorithms

‘COMET’ Propulsion

‘NEMO’ Microsatellite

HawkEye³⁶⁰

DSI

UTIAS SFL
Space Flight Laboratory
The Mission

Basis of Geo-location: RF Signal Time & Frequency Difference of Arrival (TDOA & FDOA)

Ground footprint of each spacecraft
The Payload

- Identical payloads on all Hawks
- SDR + RF Front-End
- Frequency Range:
 - VHF (AIS)
 - UHF (TETRA, EPIRB, FRS)
 - L-band (ADS-B, SatCom)
 - S-band (Marine radar)
 - X-band (Marine radar)
 - Ka-band (VSAT)
The Platform

• HE360 Pathfinder Employs SFL’s NEMO (Next-generation Earth Monitoring and Observation) microsatellite platform
• 20cm x 27cm x 44cm, 13.4kg
The Platform: External

- Platform T&C: 4kbps UHF Rx, 2Mbps S-band Tx
- Payload T&C: 2Mbps S-band Rx, 50Mbps X-band Tx
- Inter-satellite Link: 4kbps S-band
The Platform: Internal

- Dual-tray design
- Magnesium structure
- Significant payload volume allocation
The Platform: Propulsion

- Water-fueled
- $182\text{s } \text{i}_{\text{sp}}$
- 18mN thrust
- $96\text{m/s } \Delta V$
The Platform: Avionics

Power:
- Modular Power System
- 27W Peak Power @ EOL WCH

C&DH:
- HKC & ADCC
- Dual-redundant

AOCS:
- L1/L2 GPS Rx
- Coarse Pointing (2σ): 2.1° (on-orbit result)
The Formation

- HE360 Pathfinder leverages SFL’s pioneering experience in low-cost, nano/microsat precision formation flying
The Formation: Geometry

- Target orbit: 575km, 10:30 LTDN SSO
- 125km in-track & 20km peak-to-peak cross-track separation
- Required formation Control: 5km (1\(\sigma\))
- Two deputy (controlled) and one chief (uncontrolled, reference) satellite
The Formation: Implementation

• Ground-based custom Matlab software suite.
• Absolute and relative state estimation and prediction using GPS L1-only or GPS L1+L2 with Kalman filtering / smoothing.
• Formation initialization and station keeping using differential mean orbital elements and optimal control concepts for path planning and maneuver positioning, including thrust timing constraints.
• Designed to minimize fuel consumption, and maximize commercial operations up time.
• Only 17m/s fuel (>80% fuel margin) expended over 2-year mission.
• Please attend the Student Competition for more details!!
The Future

• Launch: Nov 2018, SpaceX
• First ‘Pathfinder’, then Full Commercial Constellation
 • 18 Satellites
 • Three planes (97°, 63.5°, 44°)
 • Two clusters of three satellites per plane, separated 180° in phase

18-satellite constellation re-visit rate