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AC 

 AC operation has the advantage of lock-in signal processing, which results in higher 

sensitivity, stability, and resolution than DC methods. In this mode of operation, a modulated 

heating current is passed to the thermoresistive probe. For DC+AC excitation, the resulting 

voltage across the probe has three primary harmonic components including 1ω, 2ω, and 3ω. With 

pure AC current, only the 1ω and 3ω components are contained in the voltage signal. The 

resulting amplitude and phase of the harmonic components are measured with a lock-in amplifier. 

A brief explanation follows regarding the relationship of measured voltage and temperature. For 

an applied harmonic current, iω ∝ exp(iωt), the power generated through a resistance is 

proportional to the second harmonic, which will also be proportional to the change of 

temperature, P ∝ ΔT ∝ exp(i2ωt). Due to temperature dependence of resistance, ΔR ∝ exp(i2ωt). 

The resulting resistance change therefore generates higher harmonics, ΔV = iωΔR ∝ exp(i3ωt) 

 The third harmonic is directly proportional to the AC temperature rise in the sample. 

When it is used as the measured signal, the technique is termed 3ω SThM. As is common for DC 

operation, in AC mode the probe is placed in a Wheatstone bridge configuration in order to 
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Fig. 4.6. Schematic of typical configurations for SThM measurements in DC mode. The feedback 

loop is for constant temperature operation while the dashed lines connected to the lock-in 

amplifier are for AC operation. 
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apex would imply a theoretical dynamic range → ∞. The more localized the temperature sensor is 

to the probe apex, the greater the dynamic range of the measurement.   

4.2.3.5. Modeling Approaches 

 Proper modeling of the heat transfer in a thermal probe is crucial for extracting 

quantitative information. Several models have been derived in the literature and should be 

discussed in context of the probe type as well as whether excitation is DC or AC. In general, most 

approaches follow the well-known theory of hot-wire anemometry. Common modeling 

approaches are 1-D fin analysis [61, 124, 125], lumped model [126-128] and numerical 

approaches [126, 129].  
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6.1.3.3. Thin-Film Probe Measurements 

 The first probe experimented with the irradiated ZrC sample was the thin-film probe in 

contact mode. This probe type has the smallest contact radius of all the probes tested in this work 

with an estimated contact radius of ~20 μm. The study performed with this probe focused on 

obtaining a calibration of the probe signal on several reference materials using DC and AC 

measurements. While several measurements were made on the irradiated ZrC sample, no thermal 

conductivity profile related to proton degradation was detected. At that stage, the damage layer 

thickness was unknown and estimated to be <40 μm (from numerical prediction from TRIM). 

Therefore, in retrospect, the transition zone of damaged-to-undamaged material was not explored 

with enough care. An example of a 3ω thermal image is presented in Fig. 6.9. The configuration 

of the measurement is shown in Fig. 4.6. The thermal image corresponds to the measured 

amplitude of the third harmonic of the heating frequency, which was set as 169 Hz. The lock-in 

amplifier used a 3 ms time constant and the AFM was scanned at a rate of 0.18 Hz. The location 

of the shown image is closest to the transition region. Different than other images presented in 

this work, the right side of the image is the proton-damaged zone. No noticeable difference is 

shown in the image to distinguish the two zones.  

Thermal

Topography Thermal
 

Fig. 6.8. Topography and thermal images in constant current mode on irradiated ZrC from a 

glass-pipette thermoresistive probe using tuning form feedback. The thermal image shows no 

contrast between the damaged (left) and undamaged (right) zones.  

 



69 
 

 

 A DC constant temperature result is presented in Fig. 6.10. Unknown at the time, these 

measurements are far from the boundary of transition (~50 μm depth) from damaged to 

undamaged ZrC. The maximum x-y range of the Park Systems AFM is 40 μm. No interesting 

thermal conductivity profile is observed.  

6.1.3.4. Summary 

 The foregoing sections presented a sample of many results obtained in the process of 

using SThM to extract the in-depth thermal conductivity profile in irradiated ZrC. These results 

demonstrate that obtaining such a measurement is not trivial and is dependent on many factors 

that require patience, care, and can be helped by a “good” probe. In all, many measurements were 

performed on a variety of samples with a variety of probes to explore individual probe 

Thermal (AC)

3ω AmplitudeTopography
 

Fig. 6.9. Topography and 3ω amplitude (AC) thermal image of irradiated ZrC measured with a 

1ω probe current frequency of 169 Hz. No observable transition between damaged and 

undamaged zones is observed. 

 

Thermal (DC)

Constant TTopography
 

Fig. 6.10. Topography and constant temperature thermal images of irradiated ZrC. Location of 

measurement is in the irradiation-damaged region near the edge corresponding to the irradiated 

surface. Damaged-layer transition occurs ~50 μm to the left (out of view). Dark region in both 

images corresponds to epoxy mount. 
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  2)1(  irrirr eiZ , (7.8) 

meaning that the amplitude is  f -1/2 and the phase is -45°. The only accessible parameter is eirr, 

via the amplitude. There is no influence from the bulk layer. Equation (7.8) is applicable for the 

spatial-scanning PTR on very shallow depths. It allows measuring relative effusivity variations 

over the sample cross-section. 

 Depending on boundary conditions, a layer manifests either its capacitive impedance 

component ZC (like Eq. (7.6)) under quasi-isothermal conditions, or rather its resistive component 

R = L/k under temperature gradients between the two faces. In the quadrupole formalism the two 

components appear in parallel. As long as ZC >> Rth, ZC can be neglected and L can be set to zero. 

In a multilayer system, such a layer can be replaced by an interfacial thermal resistance Rth having 

the same value as R. Note that the condition for this equivalence depends on frequency. In 

Section 7.2.3.2 it will be shown that this condition is fulfilled in the present study. 

7.2.2. Sensitivity Analysis 

 From the theoretical model presented above, the dependence of the complex impedance 

to ω is a function of five independent parameters: Lirrαirr
-1/2, LZrCαZrC

-1/2, eirr, eZrC, and Rth. The 

parameters related to the virgin material are measured independently so that the independent 

parameters to be determined are Lirrαirr
-1/2, eirr, and Rth. To ensure unique fitting results, the 

relative sensitivity of the thermal parameters to be fitted has been studied. The relative sensitivity 

of a function, F(p), to parameter “p” is defined as 
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 In the case of complex quantities, F=Ampexp(iψ), it can be shown that Sp=SAmp,p+iSψ,p 

where Sψ,p = ψ/(ln p) [61]. A value SA,p = -1 implies Fp-1. The relative sensitivities for A and 

ψ to the three parameters related to the irradiated layer are plotted in Fig. 7.4. Their sensitivity 
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reported by Snead et al. [79] (C/Zr = 0.87, irradiated at higher temperatures).  The SThM-

measured kZrC showed relatively more variability that was attributed to both decreased sensitivity 

and the localized measurement, not capturing longer scale effects such as grain boundaries (grain 

size ≈ 24 μm). However in the irradiated zone the dominant mechanism of thermal transport 

degradation is a high concentration of nanometer-sized Frank loops that would be manifest in 

both SThM and PTR. Grain boundaries were not found in the irradiated zone of the ZrC sample 

[78]. 

 Clarke [140] developed a model to estimate the minimum k for a material in an 

amorphous state at high temperatures. The model only accounts for acoustic phonon modes and is 

formulated based on expressions for minimum phonon mean free path and mean phonon 

velocities. The mean free path is formulated from the cube root of the volume of a molecule. 

Using this expression, the minimum calculated thermal conductivity, kmin, of ZrC is 1.6 W∙m-1∙K-

1. Snead et al. found little change of electrical resistivity in ZrC resulting from fast neutron 

irradiation. The small changes of thermal conductivity were then attributed to phonon scattering 

from irradiation-induced defects [79].  While no measurements of electrical resistivity were made 

in this work for comparison, assuming the change of the electronic contribution to k is relatively 

small as is common in ceramic material [26], the measured kirr compared to the electronic 

contribution calculated in Section 7.2.3.1 evidences a drastic reduction of the phonon contribution 

of k, to the order of kmin.  

 From Rth and an approximate thickness for the secondary layer as 5 μm from the TRIM 

profile, k for such a layer would be approximately L/Rth = 3.2 W∙m-1∙K-1
, comparable to what 

others have found for k of regions of peak damage [83, 87]. On the other hand, the capacitive 

impedance ZC of the same layer satisfies the condition ZC >> Rth for frequencies up to 8.3 kHz. 

The sensitivity of PTR method to Rth is situated below this frequency limit and therefore the 

effect of Rth is indistinguishable from that of an equivalent 5 μm thick layer (Section 7.2.2). With 
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the other methods, the spatial profiles made of the irradiation-damaged profile reveal no evidence 

of a region of peak damage (sharp degradation of k). Although in such a configuration, the 

excitation thermal gradients are oriented primarily parallel to the interface, which is unfavorable 

for the detection of Rth. Yet, from the frequency-based FD-PTR measurements, the shape of the 

profiles shows the existence of a strong resistance at the rear of the irradiated layer. One theory to 

explain this resistance is that it may not actually be due to the damaged microstructure as 

suggested by the TRIM results. Instead, evidence supports the possibility of small voids in the 

material that have been pushed by the proton irradiation to congregate at the backside of the 

damaged zone.  

 An optical micrograph of the sample cross-section is shown in Fig. 7.6; in which, the 

damaged layer is apparent. In the micrograph, the polished sample has many “defect” structures 

(void space based on topographic measurements from SThM) that appear as dark regions. The 

irradiated layer is clearly visible due to less defects and a higher concentration of defects at the 

rear of the layer. In some regions, “crack”-like structures are visible, running primarily 
~
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Fig. 7.6. Optical micrograph of irradiated-ZrC cross section. Irradiated layer has ~50μm 

thickness. "Cracks" are clearly visible, terminating at depth of irradiation penetration. In some 

locations, showing evidence of having been pushed by proton front to form a boundary between 

the two zones. 
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perpendicular to the irradiated surface. All of these “cracks” (appear to be aligned void space, 

originating from the material formation process), terminate at the backside of the irradiated zone. 

For some, they have the appearance of being bent into the plane of the backside of the irradiated 

layer. In the extreme case, the irradiated layer completely delaminated off the bulk layer when 

mechanical stress was applied to the sample during the procedures of sample preparation. 

 Similar effects were documented in a study of proton-irradiated ZrN, where they 

hypothesized that voids in the material had been moved through the material by the proton beam 

front and coalesced at the peak of the damage profile [141]. The result was transgranular cracking 

with void surfaces having silicon rich oxides. No composition analysis was performed on the ZrC 

sample studied here. Although, the SThM measurements found the defect regions to be of lower 

thermal conductance, even though,  such “hole”-like regions would typically increase contact 

surface area with the thermal probe, indicative of lower conductivity material such as oxides. 

 Further support of the non-existence of a region of peak damage of the material 

microstructure as seen in the TRIM results can be inferred from molecular dynamics simulations 

done by Brutzel et al. [142]. Their simulations of collision cascades found that point defects are 

primarily created while no amorphization was observed. For the given conditions, the damage 

level in the ZrC may be saturated through proton-damaged zone. Yang et al. showed consistent 

findings with this ZrC sample in an experimental study, with no evidence of amorphization, but 

high concentrations of nanometer-sized Frank loops [78]. The primary contribution to the 

degradation of kirr is attributed to these loop defects acting as phonon scattering sites. 
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CHAPTER 8 

 

8. CONCLUSIONS 

 

  

 For the first time, the in-depth thermal conductivity profile of an ion-irradiated material 

was directly measured. The primary objectives of this work were met through a multi-

measurement approach to characterizing the thermal property changes in proton-irradiated ZrC.  

8.1. Multi-Measurement Approach 

 Multiple, high-resolution thermal measurement techniques were used to map the thermal 

conductivity, k, profile of a cross section of a proton-irradiated ZrC sample. Each of the 

measurement techniques employed were able to capture the thermal property profile induced by 

the irradiation damage. However each method comes with its own advantages and disadvantages. 

Also for the first time such methodology has been applied to an irradiated sample. The methods 

complement and validate each other 

 Frequency scanning provides more straightforward thermophysical quantification but 

requires knowledge of the in-depth profile. 

 SThM profiling provides good resolution for estimating irradiation penetration depth and 

relative characteristics of the profile. 

 Possible artifact on Rth detection: the used spatial scanning methods involved excitation 

thermal gradients oriented parallel to the interface with Rth (unfavorable configuration for 

Rth detection); in the FD-PTR method, the Rth detection is based on the "reflection" of 

thermal waves traveling perpendicular to the interface with Rth (favorable configuration). 

 Spatial scanning PTR resolution is limited by heating spot size. Lock-in IRT is frequency 

limited, thus having thermal diffusion lengths too large for good spatial resolution, but has the 

advantage of quickly imaging the entire cross-section in a single measurement. SThM has the 

best resolution and gives a good approximation of the profile of thermal conductivity degradation. 
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However due to difficulties associated with exact reproducibility of tip-sample contact conditions, 

it requires careful interpretation of results. A summary of the characteristics of each of the 

measurement techniques used is found in Table 8.1. 

 Due to the complexity of experimental parameters, the uncertainty contributors of all the 

measured results are difficult to identify and quantify. One of the strengths of the approach 

developed in this work is the complementarity of the techniques used. The results of several 

independent measurements and measurement types corroborate and justify the reported findings 

from each measurement. 

8.2. Thermal Conductivity Degradation in Proton-Irradiated ZrC 

 The overall k profile shape is found to be consistent with numerical predictions being 

nearly constant over most of the damaged zone, with a thin transition zone to the non-irradiated 

material. In spite of imperfections in topography, the SThM measured profile is shown to be 

independent of topography. A calibration of the probe signal was made indicating greater than ≈ 

66% reduction of k between the damaged and undamaged material. In interpreting the results, it 

Table 8.1. Characteristics of thermal conductivity profiling methods used on proton-irradiated 

ZrC and measured degradation of thermal conductivity. 

Method 
Scanning 

Type 
Lateral 

Resolution Probing Depth 
kirr 

W∙m-1∙K-1 
kZrC 

W∙m-1∙K-1 

SThM Spatial 
~ contact radius  

(~ 1 μm) 

~contact radius 

(~1 μm) 
10±2.4 30±10 

Lock-in IR 

Thermography 
Spatial 

pixel size = 5 μm 

μ ~ 300 μm 
μ ~ 300 μm (2/3)∙kZrC - 

PTR Spatial 
heating spot size 

~50 μm 
μ ≈ 1-2 μm (1/4)∙kZrC - 

PTR Frequency 
measured spot size 

~1 mm 
μ ≈ 1 mm - 1 μm 11.9±0.5 26.7±1 
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should be remembered that SThM measurement occurs on a localized area of < 1 μm radius. The 

measured profiles should not reflect the larger thermal barriers such as grain boundaries found in 

the non-irradiated ZrC. The results from the spatial scans by PTR show ≈ 75% reduction of k, 

however they are somewhat less reliable due to measuring absolute values of thermal wave 

amplitude influenced by spatial variabilities of sample surface properties.   

 Spatial scanning techniques of cross-sections prove valuable when combined with 

tomographic frequency scanning techniques. Using the measured spatial profile, tomographic 

PTR results show 55% degradation of thermal conductivity (kirr = 11.9 W∙m-1∙K-1 and kZrC = 26.7 

W∙m-1∙K-1) in ZrC irradiated to 1.75 dpa @ 600°C by a 2.6 MeV proton beam.  

 The proton-irradiated ZrC has a damage profile lending itself well to a discrete layered 

approximation used in FD-PTR. The damaged layer is ~52±2 μm thick with a relatively uniform 

thermal profile. A rather sharp transition to the virgin material was found at the back side of the 

radiation damaged layer. However, as evidenced by visual study and the tomographic profiles, a 

thermal resistance exists in the transition zone. Evidence suggests that the thermal resistance is 

due to the coalescence of void space driven by the proton irradiation front. The existence of such 

an effect merits further study. 

 Although SEM images and optical observation provide no indication of grain boundary 

separation, no irradiation-induced amorphization has been observed in similar ZrC samples [78, 

143]. Study of ZrC irradiated after similar irradiation conditions has shown a high concentration 

of Frank (dislocation) loops in the damaged zone [78]. Therefore, degradation of thermal 

conductivity in the irradiation-damaged zone is primarily attributed to the presence of a high 

concentration of Frank loops that act to scatter phonon energy carriers.  
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