The Story of a High Strain Composite Tip-Rolled De-Orbit Sail

Bruce Davis, Ph.D.
August 9th, 2018
The Orbital Debris Problem

The severity of this problem is only growing

https://www.orbitaldebris.jsc.nasa.gov
Existing De-Orbit Systems

1. Propulsion
2. Drag Devices
3. Others

- Chemical / Electric
 - Membrane Sails
 - Tethers
 - Electrodynamic
- Inflatables
 - Spacecraft Body
 - Wrapped Boom
 - Root Rolled Boom
 - Root Articulated Boom

- Others
 - MMA: Dragnet
 - AFRL: FURL
 - NASA: ECHO
 - Canfield/SSTL: TechDemoSat-1
 - JAXA: IKAROS
 - Spin Deployed (No Booms)
Origin of ROC-FALL

• Roccor was approached to design and implement a de-orbit system
 » 140kg ESPA class spacecraft, BOL ~750km
 » Deploy 4m² of projected surface area
 » Interface with a mature spacecraft system,
 - Little leeway for envelope changes

• Drag Sail Strategy:
 » Has to be low risk:
 - Utilize COTS / legacy hardware
 - Minimize moving parts
 - Incorporate high sail robustness
 » Ensure a stand-alone system
 - Simply bolt hardware onto spacecraft
Roccor and High Strain Composite Materials

High Strain Composites (HSC)
Thin-gage flexible composites to replace traditional mechanical-based systems:

- Tailored mechanical properties meeting deployed-state requirements
- Substantially reduced-part count vs. traditional mechanical-based systems
- Low-cost manufacturing
The ROC-FALL System

• Utilize a co-wrapped boom and structural sheet

 » Strain energy deployment, HSC enables controlled roll-out
 » Restrained with a single release band, deployed via TiNi actuator
 » Rigid sail, no lateral support needed and robust to tearing
Existing De-Orbit Systems

1. Propulsion
2. Drag Devices
3. Others

- Tethers
- Inflatables
- Sheet Sails
 - Tip Rolled HSC Boom

Chemical / Electric

- Membrane Sails
- Spacecraft Body Wrapped Boom
- Spin Deployed (No Booms)

Root Rolled Boom
Root Articulated Boom

Tethers Unlimited Terminator Tape
NASA: ECHO
Roccor: ROC-FALL

AFRL: FURL
MMA: Dragnet
Canfield/SSTL: TechDemoSat-1
JAXA: IKAROS
Flight Build of ROC-FALL
Lessons Learned

• Demonstrated a simplistic deployable drag architecture
 » Design passed flight qualification testing, (vibe & thermal)
 » Two units currently integrated into spacecraft
 » Technology reviewed by FCC

• Working with High Strain Composites
 » Advanced a new space application for HSCs
 » System challenges identified:
 - Susceptibility to stress relaxation and need to fully characterize laminate arch.
 - Need for inspections to ensure clean bill of health
What’s Next?

• Lets keep mitigating space debris!
 » Please consider the ROC-FALL architecture in future de-orbit mitigation trades

• One fundamental solution to orbital debris mitigation is ensuring a robust portfolio of viable drag systems

Roccor: ROC-FALL, 4m²

Roccor: Root Rolled 1000m² Sail (under dev.)