An Ionosphere Exploring Microsat

William Evonosky
INSPIRE Program and Organization

- **International Satellite Program in Research and Education**
- Nine partnering institutions ranging from first space involvement to developing several smallsats at once
- Four spacecraft currently under development
- Unique challenges and solutions to developing a spacecraft through an international cooperation
INSPIRE Program and Organization Continued

- Communication channels organized in a horizontal to vertical structure across institutions
- PM/SE students meet over telecon once a week and report up and disseminate action items down
- Summer workshop held in Boulder for 10 weeks for rapid development and design review checkpoints
- Google drive used for version control of documentation and central repository
- Slack used for instantaneous communications

INSPIRESat-1
Critical Design Review July 25, 2018
INSPIRESat-1 Introduction

- Microsat slated for launch in November 2019 with the Indian Space Research Organization
- Expected orbit of 500 km and 45° inclination
- Carrying the Compact Ionosphere Probe (CIP)
 - Ion Density
 - Ion Drift Velocity
 - Ion and Electron Temperature
 - Ion Composition
- Engineering structure at LASP or NTU tables during conference
INSPIRESat-1 Testing Status

- All subsystems have been tested and version two of EPS, CDH, and Interface have either been designed or are already on order.
- Successfully sent known bit stream from software defined radio to UHF and received correct bits at C&DH.
- Next steps include full flat sat tests with fully integrated flight software, as well as communications test with LASP UHF ground station.
INSPIRESat-1 Testing Status

- All subsystems have been tested and version two of EPS, CDH, and Interface have either been designed or already on order.
- Successfully sent known bit stream from software defined radio to UHF and received correct bits at C&DH.
- Next steps include full flat sat tests with fully integrated flight software, as well as communications test with LASP UHF ground station.

For more engineering, software, and testing information please see Ankit Verma and Duann Yi at their poster SSC18-PII-03 on August 8th.
INSPIRESat-1 Science Motivation

Science Traceability Matrix

<table>
<thead>
<tr>
<th>Science Objective</th>
<th>Measurements</th>
<th>Instrument</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| 1) What are the occurrence rates and characteristics of plasma irregularities at low and mid latitudes? | Ion Density, Ion Velocity | Ion Trap Retarding Potential Analyzer, Ion Drift Meter | 10^3 to 10^6 cm$^{-3}$ ± 2.5 km s$^{-1}$
7.5 ± 1 km s$^{-1}$ (ram) |
| 2) What are the spatial and temporal variations of the midnight temperature maximum (MTM)? | Ion Temperature | Retarding Potential Analyzer | 500 to 5000 K (Ti) |
| 3) What is the morphology of ion density and electric field in the nighttime ionosphere? | Ion Density, Ion Velocity | Ion Trap Retarding Potential Analyzer, Ion Drift Meter | 10^3 to 10^6 cm$^{-3}$ ± 2.5 km s$^{-1}$
7.5 ± 1 km s$^{-1}$ (ram) |
INSPIRESat-1 Science Objective 1

Plasma Irregularities

- Plasma bubbles form around the magnetic equator in the early evening and propagate along magnetic field lines extending far from their initiation site (Kil, 2015).
- Bubbles can be hundreds of kilometers across and extend hundreds of kilometers up in altitude above the F-layer (>150 km) (Kil, 2015)

[Kil and Heelis, JGR, 1998]

Different types of irregularities

CNOFS/CINDI March 2, 2009
INSPIRESat-1 Science Objective 2
Midnight Temperature Maximum

• Around midnight at F region heights, the MTM is a neutral temperature increase which varies in season and solar activity

• Only a few models accurately capture the MTM including the coupled Whole Atmosphere Model (WAM) with the Global Ionosphere Plasmasphere (GIP) model.

• The MTM shows some seasonal variability in which it tends to maximize in the summer and weaken in the winter (Niranjan et al, 2006)

• The MTM is an understudied essential physics process that represents ion-neutral coupling

Fang et al, 2016
Akmaev et al, 2009
INSPIRESat-1 Science Objective 3
Nighttime Ionospheric Morphology

Global coverage by the INSPIRESat-1 will allow for the study of background ionospheric states and their impact on science objectives 1 and 2.

[Kil et al., JGR, 2009]
INSPIRESat-1 Science Objective 3

Coordinated Measurements
References

QUESTIONS?
william.evonosky@lasp.colorado.edu