NASA Electronic Parts and Packaging (NEPP) Program –
Resources for SmallSats on EEE Parts

Kenneth A. LaBel, Jonathan A. Pellish
NASA Goddard Space Flight Center
Greenbelt, MD 20771
Kenneth.A.LaBel@nasa.gov, Jonathan.A.Pellish@nasa.gov

Peter J. Majewicz
NASA Langley Research Center
Hampton, VA 23666
Peter.Majewicz@nasa.gov

Abstract

• From the outside looking in, the NEPP program supports NASA’s traditional approach to providing electrical, electronic, and electromechanical (EEE) assurance for space missions. Standards (military and commercial) for EEE parts are based on risk averse methodologies, drive higher costs and schedules, and, in general, provide devices that significantly lag behind commercial devices in performance aspects (speed, power efficiency, etc…). This is NOT the model most small missions realistically can use.

• However, when you look behind the curtain, NEPP has been considering the risk trade space for small missions for over five years and has consistently provided resources that the small mission regime would find useful. In this paper, we provide a brief overview of these resources as well as NEPP’s current research/development efforts that are relevant. While we’ll primarily discuss radiation assurance related issues such as data availability and usage, assurances processes for not only the radiation effects side, but also the EEE parts reliability will be touched upon.
Acronym List

• Bayesian Networks (BN)
• Complementary Metal Oxide Semiconductor (CMOS)
• Commercial Off-the-Shelf (COTS)
• Cosmic Ray Effects on Micro-Electronics (CRÈME)
• Electrical, Electronic, and Electromechanical (EEE)
• Goal Structuring Notation (GSN)
• Model-Based Mission Assurance (MBMA)
• National Aeronautics and Space Administration (NASA)
• NASA Electronic Parts and Packaging (NEPP) Program
• Radiation Hardness Assurance (RHA)
• Single-Event Effect (SEE)
• Single-Event Upset (SEU)
• System Modeling Language (SysML)
• Military/Aerospace
• NASA Small Spacecraft Systems Virtual Institute (S3VI)
• Double Data Rate
• IEEE Radiation Effects Data Workshop (REDW)
Outline

• What’s NEPP?
 – Traditional missions versus small missions

• NEPP and Small Mission resources
 – Philosophy and approaches
 – Guidance
 – Tools
 – Data

• Summary
NEPP:
NASA’s Independent Guidance on Electrical, Electronic, and Electromechanical (EEE) Parts

• NEPP has been in existence for ~30 years with the prime responsible of leading the Agency’s guidance for assurance of EEE parts
 – We are an Agency-wide initiative
• From the simple viewpoint, NEPP has a few main areas:
 – Agency leadership in standards, guidelines, etc. for NASA documents and those from industry and collaboratively with other government agencies
 • NASA policies and standards as well as SAE (MIL/AERO) and JEDEC documents are examples
 – Working day-to-day “problems” that may have impacts across the Agency
 – Evaluation of new technologies and devices with the goal of gap analysis, determining usability and test guidance
• But what does this have to do with Small Missions?

NEPP and Small Missions

• While NEPP has always supported small missions, it’s only in the last five years that we’ve been formalizing our support

• This includes:
 – Thinking beyond mission class on EEE parts choice, test, and risk profiles based on environment exposure, lifetime, and function criticality/risk
 – Looking at means of providing “right-size” mission requirements, test and risk profiles, system validation, etc…
 • Radiation Hardness Assurance (RHA) for the future
 – Working with Model-Based Mission Assurance (MBMA) approaches for radiation assurance (joint with NASA MBMA program)
 • Moving from document-based approaches to model-based approaches
 – Developing partnerships and increasing data availability

NEPP – Beyond Mission Class

<table>
<thead>
<tr>
<th>Criticality</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>COTS upscreening/testing optional. Do no harm (to others)</td>
<td>COTS upscreening/testing recommended. Fault-tolerance suggested. Do no harm (to others)</td>
<td>Rad hard suggested. COTS upscreening/testing recommended. Fault tolerance recommended</td>
</tr>
<tr>
<td>Medium</td>
<td>COTS upscreening/testing recommended. Fault-tolerance suggested</td>
<td>COTS upscreening/testing recommended. Fault-tolerance recommended</td>
<td>MIL/Aero EEE parts, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
</tr>
<tr>
<td>High</td>
<td>MIL/Aero EEE parts suggested. COTS upscreening/testing recommended. Fault tolerant designs for COTS.</td>
<td>MIL/Aero EEE parts, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
<td>MIL/Aero EEE parts, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
</tr>
</tbody>
</table>
Integration of tools, knowledge, and processes

NEPP Future Approaches – Radiation Hardness Assurance (RHA) Example

- **Requirements and environment definition and development**
- **Standard radiation tools (ex., CREAM96)**
- **New assurance approaches (ex., MBMA)**
- **Emerging assurance concepts (ex., Bayesians, confidence, and SEU reliability)**
- **Validation (device and system)**
- **Test approach standards and guidelines**
- **Data sharing, analysis, and dissemination (ex., “big” data, repositories, etc...)**

NEPP Keys

- **Key 1:** Define “success” for your mission and risk posture
- **Key 2:** Identify highest “bang for the buck” tests and analyses using model-based flows that meet mission success criteria
- **Key 3:** Provide accessible infrastructure for tools, data sharing, etc.

Bottom line goal:
Provide appropriate and stream-lined approaches for flight projects (of all sizes)

Is Model-Based Mission Assurance the Future of NASA SMA?

NOVEMBER 09, 2015 // RELIABILITY AND MAINTAINABILITY, RELIABILITY AND MAINTAINABILITY

Share Like 1

Model Based Mission Assurance (MBMA): NASA’s Assurance Future

John Evans, PhD, NASA OSMA
Steven Comford, PhD, JPL
Martin S. Feather, PhD, JPL

Key Words: Assurance, Model Based Systems Engineering

SUMMARY & CONCLUSIONS

Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASA’s missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)?

Simultaneously, NASA’s Office of Safety and Mission Assurance (OSMA) is evaluating a new objective-based approach to standards to ensure that the Space and environments. For these reasons and more, it is anticipated MBSE will enable more capable missions without sacrificing cost-effectiveness despite increase in complexity. Because of its growing adoption in the aerospace industry and because it is imperative that there is also no sacrifice of safety and mission success, NASA’s OSMA has initiated a roadmapping effort to pave the way for full integration of mission assurance into this model-based world – “Model Based Mission Assurance.”
MBMA and RHA

Image Credit: MBSE Connects the Dots (U.S. Army)

Austin, NEPP ETW 2018
It’s All About the Data and Partnering

• NEPP has been a leader in sharing data since its inception
 – NEPP’s Goddard hosted websites
 – Tasks related to data scraping and metadata analysis
 • Ways of digging into the data for determining risk of usage or test needs
 – Collaborations on wider data availability
 • Partnering with NASA Small Spacecraft Systems Virtual Institute (S3VI) – visit their booth!
 • Working with other agencies on data sharing standards and increasing overall data access
Table V: Summary of SEE Test Results

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer</th>
<th>LDC or Wafer#, (REAG ID#)</th>
<th>Device Function</th>
<th>Technology</th>
<th>Particle: (Facility/Year/Month) P.I.</th>
<th>Test Results: (\text{LET}_{\text{th}}) in MeV·cm(^2)/mg, (\sigma) in cm(^2)/device, unless otherwise specified</th>
<th>Supply Voltage</th>
<th>Sample Size (Number Tested)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Devices:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS008MA12A</td>
<td>Avalanche Technology</td>
<td>5216 (17-011)</td>
<td>Non-Volatile Memory</td>
<td>CMOS, MRAM</td>
<td>H: (TAMU2017Mar) DC; (TAMU2017Oct) TW</td>
<td>(\text{SEL LET}{\text{th}} > 85.4); (\text{SEU LET}{\text{th}} > 120.7); (1.3 < \text{SEFI LET}_{\text{th}} < 1.84); (\text{SEFI} \sigma 3.2 \times 10^{5} \text{ cm}^{2} [17-011])</td>
<td>1.8 and 2.0 V</td>
<td>2</td>
</tr>
<tr>
<td>MT46V128M8P</td>
<td>Micron</td>
<td>0930 (16-019), 1012 (16-020)</td>
<td>DDR SDRAM</td>
<td>CMOS</td>
<td>H: (TAMU2017June) MJC</td>
<td>(\text{SEL LET}{\text{th}} > 34.9); (\text{SEFI LET}{\text{th}} < 1.3); (\text{SEFI} \sigma 5 \times 10^{4} \text{ cm}^{2} [16-019])</td>
<td>2.5 V</td>
<td>2</td>
</tr>
<tr>
<td>MT29F128G08AJAA</td>
<td>Micron</td>
<td>1504 (16-013)</td>
<td>Flash</td>
<td>CMOS</td>
<td>H: (TAMU2017Mar) MJC</td>
<td>Page Program Failure (\text{LET} < 3.5)</td>
<td>3.3 V</td>
<td>5</td>
</tr>
<tr>
<td>MT29F4G08ABADA</td>
<td>Micron</td>
<td>1644 (17-012 or 17-040)</td>
<td>Flash</td>
<td>CMOS</td>
<td>H: (TAMU2017Mar) MJC</td>
<td>(\text{SEU} \sigma < 2.8); (\text{SEU} \sigma 2 \times 10^{10} \text{ cm}^{2}/bit); (\text{SEFI LET}_{\text{th}} < 2.8); (\text{SEFI} \sigma 5 \times 10^{5} \text{ cm}^{2})</td>
<td>3.3 V</td>
<td>3</td>
</tr>
</tbody>
</table>

Other NEPP Tasks Underway on RHA

• Provide guidance for Small Mission RHA
 – Notional RHA methods
 – Detailed RHA Small Mission Guideline

• New methods of viewing risk for single-event effects (SEEs)
 – Putting SEUs into the reliability domain as opposed to a SEU rate

• COTS radiation testing
 – Processors, memories, power devices, and more!
 – Data made available via IEEE Radiation Effects Data Workshop (REDW) records as well as hosted on NEPP websites
 • As stated earlier, working on more universal data sharing approaches and hosting options

Summary

• The future learns from the past, but charts a new course
• Utilize newer engineering methods to streamline decision processes and connect the dots between mission success and the steps for radiation assurance
• Ensure data and new tools are available for the greater good of the community