Design and Development of AOBA VELOX-IV nanosatellite for future Lunar Horizon Glow mission

presented by

Vu Bui
Project Manager
School of EEE, Nanyang Technological University, Singapore

5th August 2018
Content

- Introduction
 - Satellite Research Centre
 - AOBA VELOX-IV

- Satellite
 - Specifications
 - Architecture
 - Power Budget

- Innovation

- Design
 - Deployment Mechanism
 - Power Inhibits

- Development

- Testing
 - Overview
 - TVAC, TC, Vibration/Shock Tests
 - Other Tests
Satellite Research Centre (SaRC)
AOBA VELOX-IV

- Technology demonstration of attitude and orbit control by pulsed plasma thruster (PPT) and low-light camera for future Lunar Horizon Glow observation mission

- Success criteria
 - Momentum dumping of 0.0001 Nms for short axis in 1 hour
 - Orbit maneuvering of $\Delta V=60\text{m/s}$ by PPT in 1 year
 - Capturing images of Earth horizon while entering eclipse, and Earth at night
 - Capturing the Earth-rim image with upper-atmosphere luminous phenomena
 - Obtaining new science data from the captured images

<table>
<thead>
<tr>
<th>SCHEDULE</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and analysis</td>
<td></td>
</tr>
<tr>
<td>PDR</td>
<td></td>
</tr>
<tr>
<td>FlatSat integration</td>
<td></td>
</tr>
<tr>
<td>STM integration and testing</td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td></td>
</tr>
<tr>
<td>PFM integration</td>
<td></td>
</tr>
<tr>
<td>PFM qualification</td>
<td></td>
</tr>
<tr>
<td>FRR</td>
<td></td>
</tr>
<tr>
<td>PFM delivery</td>
<td></td>
</tr>
<tr>
<td>Safety review</td>
<td>P0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

32nd Annual AIAA/USU Conference on Small Satellites
Satellite (1/3) – Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Sun-synchronous 500-km orbit</td>
</tr>
<tr>
<td>Design lifetime</td>
<td>1 year in LEO</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Launch: 113 x 113 x 227 mm³</td>
</tr>
<tr>
<td>Mass</td>
<td>2520 grams</td>
</tr>
<tr>
<td>AOCS</td>
<td>3-axis gyro, 2 fine sun sensors each with 120°-FOV, 6 coarse sun sensors, 3 reaction wheels, 1 PPT</td>
</tr>
<tr>
<td>Data handling</td>
<td>OBC with 2GB storage, I²C and UART interfaces</td>
</tr>
<tr>
<td>Communication</td>
<td>UHF half duplex 4800bps GMSK downlink/uplink, dipole antenna</td>
</tr>
<tr>
<td>Power</td>
<td>4 deployable and 2 body-mounted solar panels for 18W peak BOL 5.8 Ah Li-Ion battery at 7.2 V nominal</td>
</tr>
<tr>
<td>Structure</td>
<td>Al. 7075-T7351 chassis with stainless steel load bearing parts</td>
</tr>
<tr>
<td>Thermal control</td>
<td>Battery heaters</td>
</tr>
<tr>
<td>Payloads</td>
<td>Low-light camera, four-head PPT</td>
</tr>
</tbody>
</table>
Satellite (3/3) – Power Budget

<table>
<thead>
<tr>
<th>Per Orbit</th>
<th>Sun tracking</th>
<th>Flight path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy from SP</td>
<td>17.82 Wh</td>
<td>17.82 Wh</td>
</tr>
<tr>
<td>Energy to Battery (sys. efficiency 64%)</td>
<td>11.40 Wh</td>
<td>11.40 Wh</td>
</tr>
<tr>
<td>COM</td>
<td>0.97 Wh</td>
<td>0.31 Wh</td>
</tr>
<tr>
<td>OBC.AOCS</td>
<td>3.78 Wh</td>
<td>3.78 Wh</td>
</tr>
<tr>
<td>EPS</td>
<td>2.45 Wh</td>
<td>2.45 Wh</td>
</tr>
<tr>
<td>Camera & PPT</td>
<td>0.00 Wh</td>
<td>0.00 Wh</td>
</tr>
<tr>
<td>Energy used</td>
<td>7.19 Wh</td>
<td>6.54 Wh</td>
</tr>
<tr>
<td>Energy gain/loss</td>
<td>3.54 Wh</td>
<td>4.20 Wh</td>
</tr>
<tr>
<td>∆ SOC (BOL)</td>
<td>8.84%</td>
<td>10.05%</td>
</tr>
</tbody>
</table>

Note: Orbit duration 96 minutes, in sunlight 60 minutes
Innovation

- AOCS suite for lunar orbit operation
 - Miniature PPT for orbit maintenance, attitude control, and momentum dumping
 - Low-light camera for horizon sensing
 - Synchronized ground stations to locate satellite using downlink signals

- Miniature four-head PPT
 - Based on proven dual-axis PPT of AOBA VELOX-III
 - 0.5U volume, 5.72 g Teflon each head, power 2.25 W, I_{bit} 25.2 μNs, and I_{sp} 676 s
Design (1/2) – Deployment Mechanism

- Two inhibits required to prevent accidental deployment during launch
- Deployable Solar Panels (DSP)
 - Two-fold panel with 2 retaining lines and 2 thermal knives
 - Load on each line is 1.33N (135 gf) max
 - Dyneema line with 75.5 N strength, melting at 144°C
- Antenna
 - In-built deployment mechanism bypassed
 - Two elements held down by DSP which has two inhibits
Design (2/2) – Power Inhibits

- Three inhibits required to keep satellite power off during launch
- Revised EPS
 - Three deployment switches (DS) SW2, SW3, SW4 to cut off battery
 - DS SW1 to disconnect solar panels
 - RBF kill switches SW5a/b and SW6a/b to keep satellite off during handling
Development

- Flat Satellite + Structural Thermal Model (STM) → Proto-Flight Model (PFM)
Testing (1/3) – Overview

- Environmental requirements by JAXA for Epsilon launch vehicle
- STM qualification and PFM acceptance

FlatSat
- Interface check
- Functional test
- Mission simulation

STM
- Functional test
- Vibration/shock test
- TVAC + Depl. / TCT
- Functional test
- RF test
- EMI/EMC
- HIL AOCS test

PFM
- Functional test
- TVAC + Deployment
- Vibration/shock test
- Functional test
- Adapter fit check
- End-to-end test
Testing (2/3) – TVAC, TC, Vibration

- **Thermal Vacuum Test in NTU**
 - 4 Cycles, 1E-5 Pa, 2-hour dwellings, -10°C to 60°C (QT) and -10°C to 50°C (AT)
 - Deployment at -10°C, thermal knives on each panel ON for 60 seconds

- **Thermal Cycle Test in NTU for STM**
 - 4 Cycles, 2-hour dwellings, -10°C to 45°C
 - Deployment at 45°C
 - RF tests with mobile ground station

- **Vibration/Shock Test in Kyutech**
 - Stiffness required: 1st mode > 113 Hz
 - Only 1 retaining wire for each solar panel to simulate worse case (QT)
 - Inhibits remain & satellite stays off during tests, confirmed by Reset count
Testing (3/3) – Other Tests

- Deployment tests in clean room at ambient temperature
 - Record movement of solar panels and antennas
- Delay tests – No deployment and transmission allowed during first 200s
- Inhibit check – Satellite turns off when any switch pressed or RBF pin inserted
- Battery capacity tests for PFM before & after vibration/shock tests
- Hardware in the loop AOCS algorithm test
 - Detumbling of each axis
 - Sun tracking
Thank you!

Q & A