Initial Results from the TechnoSat in-Orbit Demonstration Mission

Content

- TU Berlin’s satellites
- TechnoSat mission
- TechnoSat’s platform
- TechnoSat’s payloads
- Conclusions
• 12 missions - 16 S/C up until today
• 5 future missions are currently being developed
TechnoSat Mission

Technology demonstration of 7 payloads and the TUBiX20 platform

- Launched on July, 14th 2017 with a Soyuz 2.1a Fregat from Baikonur
- 600 km SSO (LTAN 11.50 a.m.)
- 1 year design lifetime
- 20 kg S/C mass
- Dimensions (without antennas) 465 x 465 x 305 mm
- UHF communication, 3-axis stabilized
TechnoSat - System Architecture
TechnoSat’s Payloads

- Fluid Dynamic Actuator (FDA) – [TU Berlin]
- Reaction wheels – [TU Berlin]
- Solar Generator based Impact Detector (SOLID) - [DLR Bremen]
- S band transmitter HiSPiCO – [IQ wireless, TU Berlin]
- Star tracker STELLA – [University Würzburg]
- Laser retro reflectors – [TU Berlin, GFZ, ÖAW, GSOC]
- CMOS camera – [TU Berlin]
HiSPiCO

- S band transmitter
- Ground station at TU Berlin
- Satellite can send payload and bus telemetry via HiSPiCO
- HiSPiCO is feed data directly by TechnoSat‘s PDH node
- Downlinked over 70 Mbyte of payload data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.263</td>
<td>MHz</td>
</tr>
<tr>
<td>Data rate (nominal)</td>
<td>1.02</td>
<td>Mbps</td>
</tr>
<tr>
<td>Data rate (extended)</td>
<td>0.68 and 1.39</td>
<td>Mbps</td>
</tr>
<tr>
<td>RF Power Output</td>
<td>+27</td>
<td>dBm</td>
</tr>
<tr>
<td>Power consumption</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>Antenna type</td>
<td>patch</td>
<td>-</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>6</td>
<td>dBi</td>
</tr>
<tr>
<td>Antenna opening angle</td>
<td>85</td>
<td>degree</td>
</tr>
</tbody>
</table>
Reaction Wheel System

- 4 reaction wheels in tetrahedron configuration
- Torque or wheel rates are controlled by TechnoSat’s ADCS node
 - Via the satellite’s CAN bus
- Integrated rate sensor for satellite rate mode
- Pressurized housing for use of COTS lubricants
Reaction Wheel System - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>280…315 g</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>65 x 65 x 55 mm³</td>
<td></td>
</tr>
<tr>
<td>Operation temperature range</td>
<td>-20…+50 °C</td>
<td></td>
</tr>
<tr>
<td>Angular momentum (6000 rpm)</td>
<td>up to 45 mNm s</td>
<td></td>
</tr>
<tr>
<td>Max. rotation speed (steady state)</td>
<td>6000 rpm</td>
<td></td>
</tr>
<tr>
<td>Nominal torque (ramp mode)</td>
<td>0.1 mNm</td>
<td></td>
</tr>
<tr>
<td>Moment of inertia (rot. mass)</td>
<td>up to 730 gcm²</td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>12 V</td>
<td></td>
</tr>
<tr>
<td>Standby power</td>
<td>220 mW</td>
<td></td>
</tr>
<tr>
<td>Power at max. rotation speed</td>
<td>1.35 W</td>
<td></td>
</tr>
<tr>
<td>Max. power</td>
<td>< 20 W</td>
<td></td>
</tr>
</tbody>
</table>

Reaction wheel assembly
Satellite Laser Ranging

• COTS Corner Cube Reflectors
 • 10 mm diameter
 • Tested and verified by Helmholtz Centre in Potsdam
• Used for precise orbit determination & attitude and attitude motion detection
 • Different arrangement of up to 4 reflectors per satellite face

Corner cube reflector with 1 Euro coin
Satellite Laser Ranging

- COTS Corner Cube Reflectors
 - 10 mm diameter
 - Tested and verified by Helmholtz Centre in Potsdam
- Used for precise orbit determination & attitude and attitude motion detection
 - Different arrangement of up to 4 reflectors per satellite face
Satellite Laser Ranging - Simulation

![Graph showing distance vs rotation angle](image-url)
Satellite Laser Ranging - in-orbit results
Fluid Dynamic Actuator

- One axis attitude actuator
- Uses a fluid as rotational mass
- Electromagnetic pump
- No moving parts - except the fluid

TechnoSat with Fluid Dynamic Actuator depicted red
Fluid Dynamic Actuator - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular momentum capacity (at 12 V)</td>
<td>0.035 Nms</td>
</tr>
<tr>
<td>Max. torque (at 12 V)</td>
<td>0.100 Nm</td>
</tr>
<tr>
<td>Max. power consumption (at 12 V)</td>
<td>5 W</td>
</tr>
<tr>
<td>Working medium</td>
<td>Ga-In-Sn</td>
</tr>
<tr>
<td>Loop diameter</td>
<td>300 mm</td>
</tr>
<tr>
<td>Total mass</td>
<td>1085 g</td>
</tr>
<tr>
<td>Data interface</td>
<td>CAN 2.0 (1 Mbit/s)</td>
</tr>
</tbody>
</table>
Fluid Dynamic Actuator - 20 step manoeuvre

Graph showing angular rate on the z-axis from 00:11:29 to 00:15:39, with values ranging from -2 to 1.5 degrees per second, and time marked in hh:mm:ss format.

9th November 2017
Fluid Dynamic Actuator - 20 step manoeuvre

- 5V mode
- 0.75 W
- 2 Hz rate telemetry
- 2.3 °/s in one second → ~ 40 mNm
Camera

- COTS camera connected to TechnoSat’s PDH via I²C
- Picture data can be downloaded via S Band and UHF
- Used for outreach purposes and ADCS verification

Photographs taken by TechnoSat
Camera

- COTS camera connected to TechnoSat’s PDH via I²C
- Picture data can be downloaded via S Band and UHF
- Used for outreach purposes and ADCS verification

Moonset over Chile - photographed by TechnoSat
Conclusions

• Every payload and the platform have been successfully commissioned
• Experiments are undertaken regularly
• Due to TUBiX20 platform, TechnoSat software development and operations are benefitting the preparations for the upcoming TUBIN mission
Acknowledgements

The TechnoSat mission is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) through the German Aerospace Center (DLR) on the basis of a decision of the German Bundestag (Grant No. 50RM1219).

We acknowledge the support of the International Laser Ranging Service (ILRS) that is tracking the TechnoSat spacecraft.
Thank you for your Attention!

Merlin F. Barschke, Philipp Werner, Karsten Gordon, Marc Lehmann, Walter Frese, Daniel Noack
Ludwig Grunwaldt
Georg Kirchner, Peiyuan Wang
Benjamin Schlepp