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Summary

The main objective of this study was to investigate whether dynamically downscaled high
resolution (4-km) climate data from the Weather Research and Forecasting (WRF) model
provide physically meaningful additional information for reference evapotranspiration (E)
calculation compared to the recently published GridET framework that uses interpolation from
coarser-scale simulations run at 32-km resolution. The analysis focuses on complex terrain of
Utah in the western United States for years 1985-2010, and comparisons were made statewide
with supplemental analyses specifically for regions with irrigated agriculture. E was calculated
using the standardized equation and procedures proposed by the American Society of Civil
Engineers from hourly data, and climate inputs from WRF and GridET were debiased relative to
the same set of observations. For annual mean values, E from WRF (Ew) and E from GridET (Eg)
both agreed well with E derived from observations (r* = 0.95, bias < 2 mm). Domain-wide, Ew
and Eg were well correlated spatially (r* = 0.89), however local differences AE = Ey, — Eg were
as large as +439 mm year'1 (+26%) in some locations, and AE averaged +36 mm year'l. After

linearly removing the effects of contrasts in solar radiation and wind speed, which are
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characteristically less reliable under downscaling in complex terrain, approximately half the
residual variance was accounted for by contrasts in temperature and humidity between GridET
and WRF. These contrasts stemmed from GridET interpolating using an assumed lapse rate of
r=6.5 K km™, whereas WRF produced a thermodynamically-driven lapse rate closer to 5 K km™
as observed in mountainous terrain. The primary conclusions are that observed lapse rates in
complex terrain differ markedly from the commonly assumed /=6.5 K km™, these lapse rates
can be realistically resolved via dynamical downscaling, and use of constant I produces

differences in E of order as large as 10> mm year™.

Key words: Reference evapotranspiration; sensitivity; bias; dynamically downscaled; climatic

variables; hydrologic process
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1 Introduction

Evapotranspiration is one of the key components of the hydrological cycle, and its accurate
estimation is important for a variety of applications including regional water and energy budget
analyses, water resources management, water demand analysis for agricultural systems, and
ecosystem services. Reference evapotranspiration (E) refers to the atmospheric evaporative
demand for a hypothetical grass reference crop with specific characteristics (Allen et al., 1998;
Jensen et al.,, 1990), and should not be confused with potential evapotranspiration (e.g.,
McVicar et al., 2012). In estimation of agricultural crop evapotranspiration and crop water
requirements, E can be multiplied by tabulated coefficients which are specific to a given crop
during its initial, mid-season, and end of late season growth stages. However, accurate
estimation of evapotranspiration in any location is difficult and challenging due to multiple
factors controlling E (e.g., air temperature, solar radiation, wind speed, relative humidity),
variability and interaction among controlling factors, and often insufficient data (Allen et al.,

2011; Estévez et al., 2016; Hobbins, 2016).

Several methods have been developed worldwide to estimate actual evapotranspiration from
different climatic variables, and McMahon et al. (2013) provide an excellent review. These
methods vary in data requirements from very simple, empirically based or simplified equations
requiring only monthly average air temperatures (e.g., Blaney and Criddle, 1962; Hargreaves
and Samani, 1985; Jensen and Haise, 1963; Thornthwaite, 1948) to complex, more physically
based equations requiring daily or hourly data such as Penman-Monteith method (e.g.,

Monteith, 1965). Some methods are only valid for specific climatic and agronomic conditions
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and are not applicable to conditions different from those under which they were originally
developed (Allen et al., 1998), although recent research has provided more generalized,
physically based methods to estimate potential evapotranspiration (Donohue et al., 2010) and

pan evaporation (Roderick et al., 2007).

For crop applications specifically, the American Society of Civil Engineers (ASCE) recommends a
Standardized Reference Evapotranspiration Equation (ASCE-ET) to ensure consistency of
methods and achieve unity of transferability of crop coefficients from one location to another.
The ASCE-ET was derived from the Penman-Monteith equation (ASCE-PM method) by
simplifying several terms within that equation and standardizing computational procedures
(ASCE-ET) (Allen et al., 2005). The two standardized E surface types considered in establishing
uniformity in evapotranspiration estimation and transferable crop coefficients are: (1) a short
crop with an approximate height of 0.12 m — similar to clipped, cool-season grass, and (2) a tall
crop with an approximate height of 0.50 m — similar to full-cover alfalfa. We focus on this
formulation here principally because we are interested in direct comparison to the recently
developed GridET framework (GridET, 2015; Lewis and Allen, 2016), and we additionally note
that this formulation is widely used and offers flexibility with respect to a large suite of specific

crops.

Several researchers have analyzed the sensitivity of the ASCE-ET equation to climatic variables
in various climatic conditions. Irmak et al. (2006) analyzed sensitivity of the ASCE-ET equation to
wind speed, maximum and minimum air temperature, vapor pressure deficit, and solar

radiation in the various climatic regions of the United States (i.e., semiarid and semi humid,
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Mediterranean-type, coastal humid, inland humid, and island). The sensitivity of E to climate
variables was found to exhibit significant variations between the locations. E was in general
most sensitive to vapor pressure deficit at all locations, wind speed in semiarid regions, and
solar radiation in humid locations. Gavilan et al. (2008) applied the ASCE-ET equation to a
region of Spain and found that accuracy of the equation was affected by annual average wind
speed and daily temperature range (i.e., difference between daily maximum and minimum air
temperature). Estévez et al. (2009) analyzed the sensitivity of E to air temperature, relative
humidity, solar radiation, and wind speed in semi-arid regions of southern Spain. Their results
highlighted significant spatial variability of E, and their uncertainty analysis showed that effects

from introduced random errors were larger than those of systematic errors.

Recently, Lewis et al. (2014) studied the sensitivity of E to climatic parameters at a regional
scale over the western United States. They found that hourly wind speeds exhibited the lowest
correlation to station observations in the Southern parts of California, Arizona, and much of the
Rocky Mountains. Hobbins (2016) analytically derived expression of the sensitivity of daily
ASCE-ET to each of the drivers and, contrary to a commonly invoked assumption, found that
temperature is not the most significant driver of temporal variability in reference
evapotranspiration for all regions and seasons. Summarizing more than 30 studies, McVicar et
al. (2012) found that wind speed was commonly in the top two dominant drivers of historical
downward trends in atmospheric evaporative demand. Other studies on the sensitivity of E to
climatic variables is available elsewhere as summarized in Table 1. For example, sensitivity of £
to changes in humidity, wind speed, and maximum temperature in Spain (Vicente-Serrano et

al.,, 2014); sensitivities of the FAO56 Penman—Monteith equation to climate variables in 668
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stations of China from 1960 to 2009 (Zheng and Wang, 2015); sensitivity of evapotranspiration
to climatic change in four types of climates (i.e., humid, cold semi-arid, warm semi-arid and
arid) in lran (Tabari and Talaee, 2014); and findings on the spatial and temporal variability of £

in the Haihe River Basin in present and future stages (Xing et al., 2014).

Despite substantial advances in atmospheric modeling and accessibility of higher resolution
meteorological data, the majority of recent studies on E analysis are based on coarser scale
remote sensing or relatively sparse station-based climate data. Examples include studies based
on climatic data derived from satellite remote sensing (e.g., Allen et al., 2007; Kalma et al.,
2008, and references therein; Tadesse et al., 2015; Valipour, 2015), data recorded from ground-
based weather stations (e.g., Estévez et al., 2016; Irmak et al., 2006; Zheng and Wang, 2015),

and climatic data downscaled from coarse resolution regional climate models (Hobbins, 2016).

Many of the studies summarized above found substantial spatiotemporal variability of £, and
many recommended a comparative study using higher-resolution climate data. Several studies
have assessed the value of statistical downscaling for study of atmospheric evaporative demand
in complex terrain, often over Asia (e.g., Wang et al., 2013). Although statistical downscaling is
computationally efficient, it assumes a spatiotemporal generality of semi-empirical
relationships, potentially missing important details resolvable by physically based dynamical
downscaling techniques (Gutmann et al., 2012). The value added by dynamical downscaling in
complex terrain has been studied for monsoonal and winter precipitation dynamics over Asia
(Bhatt et al., 2014; Horvath et al., 2012; Norris et al., 2015) and western North America (Meyer

and Jin, 2016; Rasmussen et al., 2011), but comparatively little is known about the value of
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dynamical downscaling for evaporative demand specifically for agricultural applications.
Evaluating the potential of estimating E using data downscaled by the Pennsylvania State
University — National Center for Atmospheric Research (PSU/NCAR) mesoscale modeling system
5 (MMS5; Haagenson et al., 1994), Ishak et al. (2010) found that downscaling generally improved
the quality of input variables, except wind speed which exceeded observations by as much as

400%.

The overarching goal of this study was to investigate whether high-resolution dynamically
downscaled meteorological data provide physically meaningful additional information for E
calculation compared to interpolated and coarser-resolution climate data in complex terrain
similar to the state of Utah in the western parts of the United States. The study was motivated
by the recently published GridET framework which is an open source software package (GridET,
2015) that estimates gridded E via the ASCE-ET equation at a user-defined horizontal resolution
based on climate inputs from a flexible suite of hourly forcing data sets. We have two specific
objectives to support the overarching goal. Objective 1 is to compare E results generated by
two climactic data sets with differing horizontal resolution, with GridET using climate input
variables which are coarser than our dynamically downscaled climate fields. Objective 2 is to
determine what fraction of the differences uncovered in Objective 1 are linearly attributable to
differences in the input climate fields. In analyzing the sensitivity of the ASCE-ET equation to
differences in climate input variables for Objective 2, we are especially interested in effects of
lapse rate (change of temperature with altitude) for which GridET assumes a constant value

versus a physically resolved value in the dynamical downscaling. These two specific objectives
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provide the structural sub-headings used in the Methods and Results sections of the

manuscript.

2 Data and Methods

2.1Compare E in GridET to higher resolution dynamical downscaling

We used the Weather Research & Forecasting (WRF) model (Skamarock et al., 2005) to
dynamically downscale climate drivers of E to 4-km horizontal resolution covering Utah for the
period from 1985 to 2010. The results were compared with E from the GridET software package
(GridET, 2015; Lewis and Allen, 2016) which uses climate drivers from the North American Land
Data Assimilation System (Mitchell et al., 2004). NLDAS data are provided at 10-14 km
horizontal resolution and are derived from the North American Regional Reanalysis simulations

performed at 32-km horizontal resolution.

2.1.1 Study Region

Utah features complex terrain representative of much of the western US (Fig. 1) and other arid
mountainous regions of the world. Although largely arid, regions of orographic precipitation
provide a water supply that supports agriculture. The highest precipitation rates occur in the
mountains where streams begin and groundwater recharge occurs. Historically, approximately
90 percent of Utah’s fresh water diversions are for irrigation with proportions of about 80
percent (varies annually based on precipitation and water supply) for agriculture irrigation
(Maupin et al., 2014) and about 10 percent for urban irrigation (Utah Department of Natural
Resources, 2010). Correspondingly, evapotranspiration of irrigated landscapes and crops plays a

critical role in water management. Utah’s irrigated agriculture area covers 4,590 km” or
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approximately 2.1 percent of the state’s area (USDA, 2014). Water diversions in 2005 from
surface water and groundwater were 82 percent and 18 percent, respectively (Maupin et al.,

2014).
< Figure 1 here please>

2.1.2 Reference evapotranspiration (E) formulation

We used the ASCE-ET equation (Allen et al., 2005) for our calculations, detailing its formulations
here for completeness and to establish notation. Derived from the ASCE Penman-Montieth

formulation, the equation for hourly reference evapotranspiration can be written

C
w¥P(R,—G) +y=—2-=5V(e; — e,)
. n T+273 6~ €a 1)

Y+ y(1+CaV) '

where w = 0.408 m? mm M]~1, R, is net radiation (MJ m?2h™), G is soil heat flux density at the
soil surface (MJ m? h™), y = 6.65x1073p is the psychrometric constant (kPa K™) for station
pressure p (kPa), es is saturation vapor pressure (kPa), e, is actual vapor pressure (kPa), ¥ =
des/ AT (kPa K), and the following parameters were used to correspond to hourly calculation
for a tall reference crop such as alfalfa: C, = 66Kmms3®h™1, C4 = 0.25sm™?! for daytime,
and Cq = 1.7 sm™1 for nighttime. In our application, four meteorological variables were used
to derive the input quantities (e.g., R,) required for the ASCE-ET formula: 2-meter air
temperature (T'), 2-meter relative humidity (RH) or specific humidity (q), 2-meter wind speed
(V), and downward solar radiation at the surface (S). For consistency with GridET, the formulas
used to derive the input quantities from these four meteorological variables follow (Allen et al.,

2005).
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Several studies indicate that the ASCE-ET equation may overestimate E under conditions where
wind speeds are large or highly variable (Hill et al., 2011). For consistency with GridET, hourly V
in the WRF output was limited to 2.5 m s™ following (Lewis and Allen, 2016). As detailed by
Lewis and Allen (2016), the rationale for capping the wind speed was based on prior

observational analyses using the ASCE-ET equation in this study region.

2.1.3 GridET

GridET is an open source software package (GridET, 2015) that estimates gridded E by the ASCE-
ET and other equations at a user-defined horizontal resolution based on meteorological inputs
from hourly NLDAS (Mitchell et al., 2004) forcing data set (T, g, surface air pressure, 10-meter
wind speed, and bias-corrected S). In addition, GridET calculates daily potential
evapotranspiration by the crop coefficient method (Allen et al., 1998) and determines net
potential evapotranspiration by subtracting interpolated effective precipitation from the 1-km
DAYMET data set (Thornton et al., 2012). A lapse rate of ' = — 9 T/0z = 6.5 Kkm™! was used
to produce near surface elevation dependence (NSED,McVicar et al., 2007) in T and hence e;.
Constant I' was used for consistency with (Lewis and Allen, 2016) and the GridET framework
(GridET, 2015), and the underlying rationale was to replicate NLDAS procedures in downscaling
from the North American Regional Reanalysis (Cosgrove et al., 2003; Mesinger et al., 2006). RH
was computed from NLDAS T, g, and p and then bilinearly interpolated to determine e,. NLDAS
V fields were also bilinearly interpolated, resolved to a magnitude, and limited to 2.5 m s™ as
noted in Section 2.1.2. For S, NLDAS downward solar radiation was adjusted for aspect and
slope following (Allen et al., 2006). Lewis and Allen (2016) provide further details and

observational validation of GridET, including development of the E input variables on a 0.54-km

10
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resolution grid covering the state of Utah following methodology validated against 704

agriculturally-situated weather stations (Lewis et al., 2014).

2.1.4 Regional climate simulation using WRF

We used the Weather Research & Forecasting (WRF) model (Skamarock et al., 2005) to
dynamically downscale climate drivers of E to a 4-km horizontal resolution domain covering
Utah for years 1985-2010. Initial and lateral boundary conditions were derived from 6-hourly
Climate Forecast System Reanalysis (CFSR; Saha et al., 2010) data at 38-km horizontal
resolution. We used a nested domain configuration with an outer 36-km resolution domain
(d01) receiving lateral boundary conditions from CFSR, with a 12-km resolution nested domain
(d02) covering the western US, and an innermost 4-km domain (d03) covering Utah (Fig. 1). The
framework included a thermodynamic slab model of the Great Salt Lake with salinity
adjustments to saturation vapor pressure over the lake (Strong et al., 2014). Additional
configuration details and historical validation can be found in (Scalzitti et al., 2016). Although
some of the input fields for £ were available directly in the WRF output (e.g., net radiation), we
used only T, V, p, S, and RH based on the water vapor mixing ratio from WRF, and derived the
remaining variables as outlined in the ASCE-ET equation. This provided consistency with GridET
and allowed more direct comparison to observationally-based calculations of E. Also for
consistency with GridET, the horizontal wind speeds from WRF were capped at 2.5 m s to
avoid a systematic positive bias of WRF relative to GridET which would confound discovery and

analysis of temperature and humidity effects.

2.1.5 Debiasing

11
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For GridET, NLDAS climate fields were debiased relative to agriculturally-situated Electronic
Weather Station (EWS) data following procedures in (Lewis and Allen, 2016; Lewis et al., 2014).
In these prior studies, EWS datasets were selected by fitness of location in representing E
calculations from 7 different networks in the study area totaling 48 locations. Emphasis was
given to deletion of any suspect records over correction with an annual time span being
required for inclusion resulting in variable histories from 1986-2010 at each EWS location (8671
total years). An analogous debiasing was performed on the WRF data here. Specifically, WRF T
and RH were bilinearly interpolated to the locations of the EWS data (gray circles, Fig. 2a), and
hourly biases by, ; were calculated for each variable, where 0 <t < 364 is day of year,
0<h<24ishour,and i € {1,2,...,33} is a station index. A statistical model of the bias was

written

2t 2th
b; = ay + a,cos (ﬁ — <|>1) + a,cos (ﬂ — (1)2) + azgen + €, (2)

where g4, is the value of the variable being debiased, €, is a residual term, and the coefficients

aj,j = 1,2,3 were calculated to minimize the domain-wide sum of squared residuals. Note that

(2) varies in time but not space as in (Lewis and Allen, 2016).
< Figure 2 here please >

2.1.6 Comparison of WRF and GridET

GridET and WRF data are shown in their native resolutions when mapped. Where comparisons
between GridET and WRF were made, the 0.54-km GridET data were coarsened to the 4-km

WRF grid by spatial averaging. To accomplish the averaging, for each of the 863,214 points in

12
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the GridET data, we determined the index of the closest point on the WRF grid. The overlapping
spatial domain had 1,301 grid points where fluxes associated with WRF’s specialized treatment
of fluxes over lakes, urban areas, and barren regions such as the Bonneville Salt Flats (Fig. 2c)
generated climate inputs with expectedly large differences from NLDAS fields. These grid
points, amounting to 4% of WRF’'s d03 domain had minimal overlap with irrigated agriculture
(compare Fig. 2b,c), and results are sometimes mapped at these locations and always excluded
from statistical analyses. Also, the excluded lake regions were dilated one pixel in each
direction to account for modification of near-surface temperature and humidity by lake effects

(e.g., due to diurnal lake breezes).

2.2 Analysis of linear effects

2.2.1 Linear statistical model

We use Eg to denote the spatial vector of long-term mean E from GridET, and Ey to denote the
spatial vector of long-term mean E from WRF dynamical downscaling (these vectors have 1,301
components, each corresponding to one location of the overlapping grid). The variance in AE =

Ew — Eg was analyzed using the linear statistical model

AE = B1AV + B,AS + B3AT + B4ATy + €, (3)
where the 3 terms are multiple linear regression coefficients and € denotes residuals. Use of a
linear model is supported by nonlinearity being mild in the ASCE-ET equation (Hobbins, 2016).
Insight into AE is available by linearly removing the effects of one or two climate inputs at a
time. We first remove the effects of AS and AV to isolate and focus analysis on the effects of

differences in humidity and temperature. Our rationale is that AS and AV represent weaker
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impacts for most of the study region (Hobbins, 2016), especially considering the wind speed cap
noted above. Moreover, we have relatively low confidence in the physical meaningfulness of AS
and AV given several studies concluding that dynamical downscaling in complex terrain does
not necessarily improve observational validation of wind speed (e.g., Cheng and Steenburgh,
2005; Jiménez and Dudhia, 2012; Shimada et al., 2011) or solar radiation (e.g., Ruiz-Arias et al.,
2016). Temperature and humidity, although subject to bias, often have more favorable

outcomes from downscaling in complex terrain (e.g., Heikkila et al., 2011).

2.2.2 Lapse rate effects

To establish observational lapse rates for comparison to WRF and GridET, we used National
Oceanic and Atmospheric Administration (NOAA) monthly climate normals corresponding to
1981-2010 (Arguez et al., 2012), and compared them to normal from our 1985-2010 simulation
period. Stations used in the analysis spanned elevations from 1,310 to 2,664 m to capture

changes from near valley floor up into the Wasatch Range.

3 Results

3.1Comparison between E from GridET and E from dynamical downscaling

3.1.1 Debiasing results

Averaged across EWS stations for all available observation times (~40,000 observations at each
of 33 stations), WRF prior to debiasing had a 0.5°C warm bias, and a dry bias of -5.6% in relative
humidity. Although a thorough investigation of the sources of these biases is beyond the scope
of this study, our results seem to confirm some of the findings of Coniglio et al. (2013). Their

analysis showed that the Mellor-Yamada-Janji¢ planetary boundary layer scheme (Janji¢, 2002)
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utilized in our downscaling configuration tends to underestimate vertical mixing and
overestimate surface temperatures. Relative humidity is temperature dependent (i.e.,
decreases as the temperature increases for a constant mass of moisture in the air), so too high
surface temperature leads to too low relative humidity, which may partially explain the dry
model bias. The biases may also be attributed to cooling and increased humidity from irrigated
crop evapotranspiration, which is not explicitly treated in WRF. For solar radiation, WRF had a
tendency to overestimate S, possibly because of its deficiency in accurate representation of the
cloud coverage and the radiative effects of cumulus clouds (Ruiz-Arias et al., 2016). Also, the
absence of cumulus parameterization in our convection-permitting 4-km d03 domain could
result in an underestimation of solar shading by convective clouds which are too small to be
resolved on the model grid. In order to compensate for these deficiencies, the WRF simulated S
was debiased based on NLDAS data which were bias-corrected relative to observations (Berg et
al., 2003), meaning a monthly mean domain-wide bias (WRF minus NLDAS) averaging 40 W m™
was subtracted from the S values produced by WRF. Not removing this difference in S would
have yielded E values approximately 10% larger in WRF compared to GridET. As noted in
Section 2.1.3, we capped the wind speeds at 2.5 m s™* for consistency with GridET. Domain-wide
for the analysis period, 61% of the hourly wind speed observations required application of the
cap. The percentage of hourly wind speed observations that were capped exhibited a strong
elevational dependence, with the highest local capping percentages occurring at the highest
elevations, as we would expect from wind speed climatology in complex terrain. Without the
wind speed cap, long-term mean E from WRF would have increased by an average of 12% on

the overlapping analysis domain.
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3.1.2 Agreement with observationally-derived E

Here, we examine how E from WRF (Ew) and E from GridET (Eg) compare with values of E
derived from the electronic weather stations whose locations are indicated in Fig. 2a. We would
expect good agreement because the inputs to Ew and Eg were debiased relative to data from
these stations. The purpose of presenting this comparison is thus to verify the efficacy of the
debiasing procedure, not to pose or fit a statistical model. As shown in Fig. 3, monthly ET from
each framework yielded values correlated with station-based E at 72 = 0.95, and each had a
small bias (-0.3 mm for GridET and 1.1 mm for WRF). Ensuring that the two frameworks have
similar agreement with station-based values after identical debiasing procedure enables us to

meaningfully investigate how the frameworks differ away from the debiasing stations.

< Figure 3 here please>

3.1.3 Annual mean comparison

Mean annual E generally increased toward southern portions of the state where temperatures
and solar radiation were higher, but was strongly influenced by Utah’s complex terrain in both
GridET and WRF, with a tendency for higher values at lower elevations (Fig. 4a,b; elevation
shown in Fig. 2a). The larger magnitude differences in the map of AE = Ew - Eg were
predominantly positive except toward the northern portion of the analysis domain (Fig. 4c).
Long-term mean values of E at each grid point were well correlated spatially between WRF and
GridET (r*=0.89, Fig. 5a). Ew tended to be larger for large values of £ and smaller for small values
of E (compare data and one-to-one line, Fig. 5a), and the spatial average of the long-term mean

E (i.e., the mean of the data in Fig. 5a) was 36 mm year™ (2%) larger in WRF than in GridET
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[1,509 mm year'1 versus 1,473 mm; root mean square deviation (RMSD) was 89 mm year'l].
The spatial average of the temporal variance of E (i.e., the variance of the data in Fig. 5a) was
1.6 times larger in WRF than in GridET (51,224 mm? year versus 32,605 mm?year). Restricting
to grid points with irrigated agriculture (dark gray data, Fig. 5a), and to seasons (Fig. 5d) did not

change these overall tendencies.

< Figure 4 here please >

< Figure 5 here please >

3.2Linear effects

3.2.1 Comparison of climate input variables

We now consider differences in the climate input variables obtained from WRF and GridET,
noting that approximately half of the variance in AE can be linearly modeled by these
differences (shown below in Section 3.3). Annual mean T in WRF (T},) was highly spatially
correlated (r? = 0.94; RMSD = 1.2°C) with annual mean T in GridET (T;) (Fig. 4d,e and Fig.
5b). The difference AT = Ty, — T; had an elevational dependence, with a tendency for positive
values in higher terrain and negative values in lower terrain (compare Fig. 4f to Fig. 2a). The
associated scatterplot indicated that positive AT was equivalently associated with locations
that were overall cooler (and negative AT with locations that were overall warmer) (Fig. 5b),
and this tendency persisted when restricting to grid points with irrigated agriculture (compare
data and one-to-one line, Fig. 5b), and also when restricting to seasons (Fig. 5e). For annual

data, WRF had a higher mean temperature (8.0°C versus 7.5°C) and a smaller variance (7.3°C?
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versus 12.0°C%). These AT results stemmed largely from the lapse rate used for interpolation in

GridET being larger than the lapse rate resolved by WRF as shown below in Section 3.4.

The overall spatial correlation of dew point temperature in WRF (T;y,) and in GridET (T;4)
was high (r? = 0.92 with RMSD=1.5°C, Fig. 4g,h; Fig. 5c). The strongest contrasts in T; were
predominantly positive when mapped as AT; = T, — T, indicating a tendency for higher
dewpoints in WRF, especially at higher elevations (Fig. 4i). This tendency persisted when
restricting to grid points with irrigated agriculture (compare dark gray points and one-to-one
line, Fig. 5¢), and also when restricting to seasons (Fig. 5f). These contrasts stemmed from the
stronger GridET lapse rate noted above projecting onto the recovery of T; from RH. To
illustrate this projection, the approximate formula (Lawrence, 2005) T4 =T - (100-RH)/5 shows
that a larger lapse rate yielding a lower temperature at high elevations in GridET would produce
a lower dewpoint for the same RH. For annual data over the study domain, WRF had a higher
overall T; (-1.2°C versus -2.3°C), and the variance in WRF was substantially smaller (2.3°C

versus 5.7°C?).

The spatial correlation between annual mean 2-meter wind speed in WRF (V},,) and in GridET
(V) was small (r? = 0.20), in part because V; was bilinearly interpolated from NLDAS data
which were based on 32-km horizontal NARR output (Fig. 4j), whereas V};, was simulated on
terrain resolved at 4-km horizontal resolution (Fig. 4k). AV was predominantly positive (Fig. 4l),
but averaged only 0.22 m s in magnitude in part because of the imposed wind speed cap

noted in Section 2.
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Annual mean S in WRF (Sy,) was moderately correlated (r? = 0.58) with annual mean S in
GridET (S;). Both S; and Sy, were pre-albedo values, so surface reflectivity (e.g., from snow
cover) exerted no direct effect on 4S. S; and Sy, both accounted for terrain effects by
calculating solar incidence angle based on slope and aspect (e.g., Garnier and Ohmura, 1968),
but some details of the GridET algorithms (Allen et al., 2006) differed from the radiation
scheme used in WRF (Barlage et al., 2010), potentially generating terrain-dependent effects
(Fig. 4m,n). Finally, there appeared to be a rectangular artifact in S; in the northwestern

portion of the state (Fig. 4m) that resulted in large positive 4S over the same region (Fig. 40).

3.2.2 Statistical model of linear effects
More than two-thirds of the variance in AE was accounted for by the linear statistical model
given by (3) as shown in Fig. 6a. AV and AS each accounted for approximately 20% of the

variance in AE (Fig. 6b,c), and the linear model combining their effects

AE = y;AV +v,AS + €, (4)

accounted for 33% of the variance in AE (Fig. 6d). We use the notation AE™ to denote AE with
the effects of AV and AS linearly removed [i.e., the residuals from the model given by equation
(4)], and AE™ is shown in map view in Fig. 7a. Removing the linear effects of AV and AS exposed
the dependence of AE on elevation (Fig. 7; Fig. 8a). Some of this elevational dependence of
AE* was due to the above-noted tendency for WRF to have higher dew points than GridET at
higher elevations (and thus lower E; Fig. 8b). AE* was negatively correlated with AT, (Fig. 8b)
with no significant relationship to AT (Fig. 8c). However, AT explained residual variance in

AE™ after linearly removing the effect of AT, and the model
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AE™ =y, ATy + v,AT + € (5)
accounted for slightly more than half of the AE™ variance (Fig. 8d). Standardizing the predictors
to facilitate comparison of the regression coefficients yields values (y; = —97.3; y, = 70.7)
consistent with physical reasoning. Specifically, higher dew points in WRF tended to yield
negative AE™ by reducing Eyy, whereas higher temperature in WRF tended to yield positive

AE™ by increasing Eyy.

< Figure 7 here please >

< Figure 8 here please >

3.2.3 Lapse rate effects

The AT and AT, patterns highlighted above are dependent on elevation, with WRF being
warmer and moister than GridET above approximately 1,500 m and cooler and drier than
GridET below (Figure 9a,b). These contrasts are consistent with GridET interpolating with a
lapse rate (I' = 6.5 K km™) which is larger than the lapse rate generated by WRF and also larger
than the lapse rates found from observational studies of monthly mean temperatures in
complex terrain [e.g., 3.9-5.2 K km™ (Minder et al., 2010)]. As context for these results, note
that WRF resolves a dynamic humidity profile based on water mass conservation, whereas

GridET determines T4 via spatial interpolation of relative humidity and an assumed constant I'.

< Figure 9 here please >

As noted in Section 2.2.2, we established observational lapse rates for comparison to WRF and

GridET using NOAA monthly climate normals corresponding to 1981-2010 (Arguez et al., 2012),
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and compared them to normal from our 1985-2010 simulation period. Stations used in the
analysis (filled circles on map in Fig. 10) spanned elevations from 1,310 to 2,664 m. For
locations labeled northwest on the map in Fig. 10, and considering fall (September-October) as
an example, the observationally-based lapse rate was I, = 5.8 + 1.5 K km™ (blue circles with
black regression line, Figure 9c). The WRF grid points within the latitude-longitude range of
these observation stations had a similar lapse rate of [y = 5.5+ 0.1 K km'l, whereas the
GridET lapse rate I = 7.0+ 0.1 K km™ was notably larger (Figure 9c). Similar results were
obtained using the west central locations, although few degrees of freedom inflate the
confidence bounds on the observed values (Figure 9d). Repeating this analysis for each month
of the year for five clusters of stations, we find overall closer agreement between WRF and
observations, each featuring a larger-amplitude annual cycle of lapse rates compared to GridET

(curves, Fig. 10) as well as a smaller annual mean lapse rate (horizontal lines, Fig. 10).

< Figure 10 here please >

4 Discussion

We compared and mapped the results of reference evapotranspiration (E) calculation covering
the state of Utah from year 1985 to 2010 based on the ASCE-ET equation and two sources of
climatic variables: those downscaled from the WRF model in a 4-km horizontal resolution and
those provided in the NLDAS model at ~14-km resolution (derived from NARR simulations at 32-
km). For annual mean values, E from WRF (Ew) and E from GridET (Eg) both agreed well with E
derived from observations (r? = 0.95, bias < 2 mm). Domain-wide, Ew and Eg were well

correlated spatially (r? = 0.89), however local differences AE = Ey, — E; were as large as
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+439 mm (+26%) in some locations, and AE spatially averaged +36 mm (+2%). Annual total Ew
was larger than Eg at higher values of E, and had had 1.6 times the variance. Linearly removing
the effects of contrasts in solar radiation and wind speed, which are characteristically less
reliable under downscaling in complex terrain, approximately half of the residual variance was
accounted for by contrasts in temperature and humidity between GridET and WRF. GridET
interpolated using an assumed lapse rate of 6.5 K km™, whereas WRF produced a
topographically-responsive lapse rate closer to 5 K km™ as observed in mountainous terrain.
WRF also resolved topographically-responsive vertical variations in humidity, whereas GridET

bilinearly interpolated RH from NLDAS to determine vapor pressure.

Values of E would optimally be based on observed inputs alone, but this is generally not
feasible due to the scarcity of suitable station data. Some method of infilling between
observations is necessary drawing on interpolation techniques, remotely sensed data, or
regional modeling, and associated biases must be accounted for in all methods. GridET was
shown in prior work to compare well with station-based reference ET after debiasing. Here,
applying analogous debiasing to WRF, we found reasonable overall agreement with GridET, but
with some large local contrasts. GridET’s ability to resolve effects in complex terrain is
ultimately limited by the native 32 km resolution of the NARR data that inform NLDAS, and
GridET downscales to higher-resolution temperature and hence humidity fields by using an
assumed lapse rate in conjunction with high-resolution terrain maps. Likewise, it achieves
higher-resolution solar fields by combining solar angle formulations with high-resolution slope
and aspect data. Overall, these terrain-based methods for downscaling the NLDAS fields yield
values for E that correlate well spatially with the values based on dynamically downscaled 4-km
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WREF fields, although there were large local differences in magnitude where substantial vertical

interpolation away from observation stations was necessary.

Prior research summarized in Table 1 strongly emphasizes the importance of quality
meteorological inputs for reliable estimates of E, and highlights potential pitfalls such as
inadequate sampling in space or time (Estévez et al., 2016; Hupet and Vanclooster, 2001).
Based on comparison of downscaling to interpolation assumptions, the present study indicates
that lack of spatial sampling of temperature in complex terrain can yield errors in E order 10
mm year . Although atmospheric evaporative demand is highly responsive to spatial and
temporal variations in temperature (e.g., Vicente-Serrano et al., 2014; Xing et al., 2014), many
studies emphasize regionally strong dependencies on humidity and solar radiation (Irmak et al.,
2005; Tabari and Talaee, 2014; Zheng and Wang, 2015), and downward global trends in
evaporative demand have been conclusively linked to wind speed trends (McVicar et al., 2012).
Our results support the finding that downscaling methods can improve the quality of
meteorological inputs (Ishak et al., 2010), but detailed attention is needed to associated biases
which can be quite large for variables that depend on parameterization schemes (e.g., solar

radiation depends on semi-empirical cloud fraction algorithms).

Reliable calculations of E are essential for decision making by state water managers, and there
is substantial interest in extending E calculations into the future to assess how climate change
and population growth will affect water availability (USBR, 2012). Additionally, many existing
river compacts (e.g. Bear River and Colorado River) rely upon estimated consumptive use for

water administration and allocation (Utah Code, 2016). This temporal extension introduces
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two additional challenges. First, without observational guidance, future calculations depend
entirely on model output, underscoring the importance of assessing and observationally
validating various downscaling techniques within the historical record. Second, models in
general exhibit a bias under historical validation, and use of a model in the future requires a
debiasing scheme that typically assumes the historical bias appears unchanged in the future
simulation which may not be true (this applies to the regional model itself and lateral boundary

conditions drawn from one or more global climate models).

5 Conclusion

We conclude that the terrain-responsive dynamical downscaling provided by WRF provides
meaningful temperature and humidity information beyond lapse rate-based interpolation of
coarser scale fields as applied in GridET. Observed lapse rates in complex terrain differ
markedly in space and time from the commonly assumed =6.5 K km™, these lapse rates can be
realistically resolved via dynamical downscaling, and use of constant I produces differences in E
of order 10> mm year™. Nonetheless, the computational expense of WRF is substantial, and the
ability to achieve comparable results with readily available, coarser-scale NLDAS fields makes
the GridET methodology attractive, especially if results are restricted to elevations where
observations are available to inform debiasing. Considering the strong dependence of E on
temperature, if lower resolution data are to be used for estimation of E, dynamical or
observational methods should be used to account for local and seasonal variations in lapse
rate. This is especially valid in cases where agriculture resides at elevations that require

substantial vertical extrapolation away from observation sites or coarse-scale model grid points.
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Regional climate simulation at high resolution or at coarse scale with interpolation from
appropriate lapse rates provide suitable methods for extension of reference ET analyses into

the future, and this is work the authors currently have underway.
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Table 1. Summary of findings on reference evapotranspiration with attention to complex
terrain effects and sensitivity to inputs variables. T is air temperature, V is wind speed, RH

represents relative humidity or dew point, and S is solar radiation.

Study

Input data

Input resolution

Key findings

1. Allen et al. (1998)

station data

observation network

An improved ASCE-ET
formulation for E can be
scaled to represent variable
crop conditions

N

. Hupet and
Vanclooster (2001)

station data

customized field site

S and V are the most
sensitive to bias stemming
from inadequate temporal
sampling frequency

3. Irmak et al. (2005)

station data

observation network

E was most sensitive to
vapor pressure deficit across
a range of climate regions in
the US

4. Ishak et al. (2010)

MM5
regional
climate
model

1-km

downscaling generally
improved the quality of input
variables, except wind speed
which exceeded observations
by as much as 400%

5. McVicar et al.
(2012)

station data
from multiple
studies

observation network

V was commonly in the top
two dominant drivers of
reported downward trends in
atmospheric evaporative
demand

6. Vicente-Serrano et
al. (2014)

station data

observation network

observed drought in southern
Europe stemmed from T-
driven increases in
evaporative demand

7. Tabari and Talaee
(2014)

station data

observation network

sensitivity to V. and T in Iran
decreased from arid to humid
climate, whereas sensitivity
to S increased

8. Zheng and Wang
(2015)

station data

observation network

S most important driver
overall for China, but T and
RH locally more important
toward the north

9. Hobbins (2016)

NLDAS-2

NARR 32-km data
interpolated to

T is neither always nor
everywhere the most
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513

514

0.125° (13.9-km) for
NLDAS-2

significant driver of temporal
variability over the
continental US

10.Xing et al. (2014)

historical
station data;
future global

historical
observation
network; GCM ~3°

Increasing trend during 21°"
century over Haihe River
Basin mainly attributable to

climate (334-km) data projected increases in T
model interpolated to 1°
(GCM) data | (111-km)

11.Estévez et al.
(2016)

Station data

Observation network

Relative scarcity of S data
crucially impacts reliability of
E calculation in Argentina

12.Lewis and Allen NLDAS-2 NARR 32-km data | Interpolation from NLDAS
(2016) interpolated to yielded favorable agreement
0.125° (13.9-km) for | with estimates based on
NLDAS-2 agriculturally-situated
observations
13. This study WRF 4-km (WRF) Assumed lapse rates used
regional for interpolation of inputs
climate over complex terrain alter E
model by up to 26% on annual
compared to mean basis compared to
NLDAS-2 dynamical downscaling
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Fig. 1. Simulation domain for the WRF climate model. Rectangles indicate the nested structure
with 36-km resolution on domain d01, 12-km resolution on domain d02, and 4-km resolution

on the d03 encompassing Utah State. Shading indicates elevation in meters.
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Fig. 2. Observation station locations and surface properties. (a) The d03 domain from Fig. 1a
with gray circles indicating locations of Electronic Weather Station (EWS) sites used in
debiasing. Shading indicates elevation in meters with the Great Salt Lake shaded blue. (b) Indigo
shading indicates WRF grid boxes that contain irrigated agriculture. (c) WRF grid boxes that are
excluded from analysis because their WRF land use classification yielded anticipatable large
differences from NLDAS (purple indicates barren land such as the salt flats west of the Great

Salt Lake, blue indicates lake, and orange indicates urban).
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Fig. 5. Scatter plots of annual mean E and its input variables. (a) Annual reference
evapotranspiration from GridET (E;) versus reference evapotranspiration from WRF (Ey,).
Green symbols correspond to included grid points (i.e., locations not indicated as excluded in
Fig. 2c), and gray symbols correspond to grid points that contain irrigated agriculture as
indicated in Fig. 2b. Gray line is one-to-one. (b,c) Same as (a), but comparing 2-m air
temperature and 2-m dew point temperature, respectively. (d-f) Same as (a-c), but monthly
means are restricted to particular seasons as indicated by shading (summer is June-August, fall

is September-November, winter is December through February, and spring is March-May).
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from Fig. 4l, (c) AS from Fig. 40, and (d) the linear model given by equation (4). Green symbols

correspond to included grid points (i.e., locations not indicated as excluded in Fig. 2c), and gray

symbols correspond to grid points that contain irrigated agriculture as indicated in Fig. 2b. Black

lines indicate least squares linear regressions.
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Fig. 7. Differences in E with wind and solar effects removed. (a) Map of 4AE* which is AE with
the effects of AV and A4S linearly removed [i.e., the residuals from equation (4)]. Gray shading
indicates regions excluded because of their surface types according to Fig. 2c. (b) Contours
show two levels sets of AE™: +75 mm (red) and -75 mm (blue) from panel (a). Shading indicates

elevation in meters.
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Fig. 8. Linear dependencies of the difference in E with wind and solar effects removed. On the
ordinate of each panel, AE™ denotes AE with the effects of AV and AS linearly removed [i.e.,
the residuals from the model given by equation (4) shown in Fig. 6d]. On the abscissas are (a) Z
indicating elevation in meters, (b) AT, from Fig. 4i, (c) AT from Fig. 4f, and (d) the linear model
given by equation (5). Green symbols correspond to included grid points (i.e., locations not
indicated as excluded in Fig. 2c), and gray symbols correspond to grid points that contain

irrigated agriculture as indicated in Fig. 2b. Black lines indicate least squares linear regressions.
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Figure 9. Scatterplots illustrating contrasts in lapse rates. (a) Dependence of AT on elevation.
Green symbols correspond to included grid points (i.e., locations not indicated as excluded in
Fig. 2¢), and gray symbols correspond to grid points that contain irrigated agriculture as
indicated in Fig. 2b. Black lines indicate least squares linear regressions. (b) Same as (a) but for
AT, . (c) Blue circles are observed 1981-2010 fall (September-November) mean temperatures
from the NOAA climate normals stations labeled as northwest on the map in Fig. 10, and the
black line is a least squares linear regression for these points. The corresponding data for
GridET and WREF grid points within the latitude-longitude extent of the northwest climate
normal stations are shown with regression lines as indicated in the legend. (d) Same as (c) but

for the climate normal stations labeled as west central on the map in Fig. 10.
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map, lapse rate based on observed climate normal (blue curve), based on WRF (orange curve),
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