
Contributors

Nicholas Franconi¹,², Sebastian Sabogal¹,², Alan George¹, Munther Hassouneh², Jason Mitchell², Christopher Wilson²

¹University of Pittsburgh, Pittsburgh, PA, USA
²NASA Goddard Space Flight Center, Greenbelt, MD, USA
Overview

- Motivations
- Architectures
- Proposed Architecture
- Developed Approach
- FPGA Resilience
- Conclusions
Motivations

- Rapid growth of SmallSat and CubeSat missions has necessitated re-evaluation of large satellite RF architectures.

- Slow adoption of new technology has limited Software-Defined Radio (SDR) for space applications where commercial world has seen widespread adoption:
 - 4G/5G cellular networks
 - Internet of Things
 - Remote sensing

- Robust, reliable, high-performance, and efficient radios have been specifically identified as enabling NASA technology for future development:
 - Small Satellite Missions for Planetary Science
 - Visions and Voyages planetary science decadal
 - 2015 Technology Roadmap & 2020 Technology Taxonomy
Large satellites have complicated bus architectures with high power requirements resulting from multiple payloads, long mission durations, and internal redundancy.

Communication and remote-sensing systems share common functionality but are designed independently due to disaggregated architecture that leads to sub-optimal SWaP-C.
SmallSat Architectures

- Rapid growth of SmallSat and CubeSat missions has necessitated re-evaluation of large satellite systems.

- Single-Board Computers (SBC) enable substantial computing resources to service multiple functions within CubeSat:
 - S-band and X-band communication
 - Remote Sensing
 - Navigation and Ranging
 - Beamforming Applications

- RF systems can be replaced by software-defined radio (SDR) modules and provide comparable functionality and performance.

- Modular Architecture for Resilient Extensible SmallSats (MARES) developed at NASA Goddard:
 - Highly reliable and flexible architecture to support 3U, 6U and 12U bus configurations
 - Cornerstone is large Xilinx Kintex UltraScale FPGA for instrument processing, communication, and navigation.
Hybrid Space Processors

- Removing on-board processors and FPGAs from individual subsystems allows for **hardware-agnostic designs**

- FPGA partial reconfiguration provides single interface between front-end RF systems and enable broad range of applications

- Enables optimal SDR layout without complications resulting from onboard processor
 - Noisy Regulators
 - Increased Power Efficiency
 - Higher Reliability Components

- Spacecraft designers can fine tune accompanying SBC to best meet mission requirements
 - Multi-card backplane interface
 - Onboard FMC interface

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>Connectivity</th>
<th>Power</th>
<th>Cost</th>
<th>Reconfigurability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3U SpaceVPX</td>
<td>Backplane / FMC+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>CubeSat Card</td>
<td>Backplane</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Standard (CS2)</td>
<td>Lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1U</td>
<td>Backplane</td>
<td></td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

- 48 GB
- 32 GB
- 4 GB
- 4 GB DDR3
- 2 GB DDR3
- 1 GB
- Quad ARM Cortex-A53
- MicroBlaze / RISC-V
- Dual ARM Cortex-A9
- 40 Lanes (12.5 Gbps / Lane)
- 12 Lanes (12.5 Gbps / Lane)
- 8 Lanes (10 Gbps / Lane)

Benefits
- Removing on-board processors and FPGAs from individual subsystems allows for hardware-agnostic designs.
- FPGA partial reconfiguration provides single interface between front-end RF systems and enables broad range of applications.
- Enables optimal SDR layout without complications resulting from onboard processor:
 - Noisy Regulators
 - Increased Power Efficiency
 - Higher Reliability Components
- Spacecraft designers can fine-tune accompanying SBC to best meet mission requirements:
 - Multi-card backplane interface
 - Onboard FMC interface

Features
- Form Factor: 3U SpaceVPX, CubeSat Card Standard (CS2), 1U
- Storage: 48 GB, 32 GB, 4 GB
- Memory: 4 GB DDR3, 2 GB DDR3, 1 GB
- Processor: Quad ARM Cortex-A53, MicroBlaze / RISC-V, Dual ARM Cortex-A9
- MGTs: 40 Lanes (12.5 Gbps / Lane), 12 Lanes (12.5 Gbps / Lane), 8 Lanes (10 Gbps / Lane)
- Connectivity: Backplane / FMC+, Backplane, Backplane
- Reconfigurability: ++++, ++, +
- Power: ++++, ++, +
- Cost: ++++, ++, +
Evaluating SDRs and Radios

- Industry has adopted disaggregated communication architecture
 - Many SDRs not suitable outside LEO orbit or have non-optimal noise performance
 - Radios provide higher reliability with limited reprogrammability

- Next generation of SmallSat missions require both reprogrammability and reliability

<table>
<thead>
<tr>
<th>SDR/Radio</th>
<th>Frequency</th>
<th>Bandwidth</th>
<th>Resolution</th>
<th>MIMO TX × RX</th>
<th>Radiation (Estimated)</th>
<th>Processor</th>
<th>Size / Weight</th>
<th>Peak Power RF Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOMspace NanoCom</td>
<td>70 MHz - 6.0 GHz</td>
<td>56 MHz</td>
<td>TX: 12-bit</td>
<td>4 × 4</td>
<td>20 krad</td>
<td>Zynq 7030</td>
<td>9.0 × 6.6 × 3.1 cm³</td>
<td>15.1 W 8 dBm</td>
</tr>
<tr>
<td>Rincon AstroSDR</td>
<td>70 MHz - 6.0 GHz</td>
<td>56 MHz</td>
<td>TX: 12-bit</td>
<td>2 × 2</td>
<td>25 – 50 krad</td>
<td>Zynq 7045</td>
<td>9.0 × 9.0 × 1.6 cm³</td>
<td>30 W 8 dBm</td>
</tr>
<tr>
<td>Cesium SDR-1001</td>
<td>300 MHz - 6.0 GHz</td>
<td>100 MHz</td>
<td>TX: 14-bit</td>
<td>4 × 4</td>
<td>20 krad</td>
<td>Not Listed (FPGA)</td>
<td>8.7 × 5.0 × 1.3 cm³</td>
<td>14.0 W 7 dBm</td>
</tr>
<tr>
<td>SpaceMicro µSDR-C</td>
<td>150 MHz - 6.0 GHz</td>
<td>56 MHz</td>
<td>TX: 12-bit</td>
<td>1 × 1</td>
<td>50 / 100 krad</td>
<td>Zynq 7020</td>
<td>10.0 × 10.0 × 5.0 cm³</td>
<td>15.5 W 8 dBm</td>
</tr>
<tr>
<td>JPL Iris V2.1</td>
<td>X-band</td>
<td>TX: 256 kbps</td>
<td>3 × 2</td>
<td>5 krad / 15 krad</td>
<td>Virtex 6 (LEON3)</td>
<td>10.0 × 10.0 × 5.6 cm³</td>
<td>35 W 36 dBm</td>
<td></td>
</tr>
<tr>
<td>IQ SpaceCOM X-Link</td>
<td>X-band</td>
<td>TX: 25 Mbps</td>
<td>2 × 2</td>
<td>-</td>
<td>-</td>
<td>9.5 × 6.5 × 2.8 cm³</td>
<td>15 W 27 dBm</td>
<td></td>
</tr>
<tr>
<td>Vulcan NSR-SDR-S/S</td>
<td>S-band</td>
<td>TX: 2 Mbps</td>
<td>1 × 1</td>
<td>-</td>
<td>-</td>
<td>9.2 × 8.2 × 3.4 cm³</td>
<td>15 W 36 dBm</td>
<td></td>
</tr>
<tr>
<td>SDL Cadet Plus</td>
<td>S-band</td>
<td>TX: 3.2Mbps</td>
<td>1 × 1</td>
<td>-</td>
<td>-</td>
<td>10.0 × 10.0 × 2.8 cm³</td>
<td>8 W 33 dBm</td>
<td></td>
</tr>
</tbody>
</table>

- Industry has adopted disaggregated communication architecture
 - Many SDRs not suitable outside LEO orbit or have non-optimal noise performance
 - Radios provide higher reliability with limited reprogrammability

- Next generation of SmallSat missions require both reprogrammability and reliability
Approach
SDR Specifications

- Dual phase-synchronized Analog AD9361
 - Internal, on-board, and external wideband fractional-N PLL synthesizer
 - 4 × 4 MIMO configuration and simultaneous control of individual channels

- Operating frequency from 70 MHz to 6 GHz
 - 12-bit ADC and DACs
 - Up to 56 MHz channel bandwidth

- High-efficiency noise-optimized power system
 - Remote Sensing: 12W
 - Communication: 5W

- 1U CubeSat Card Standard (CS²) form-factor
 - FMC and backplane connector options
 - Modular capability with wide range of processors

- High-reliability component selection and extensive TID and SEL radiation testing
SDR and Synthesizers

- **Hybrid SDR Architecture**
 - 4×4 MIMO architecture with baluns and SMAs with RF loopback for phase coherence
 - Communication to each AD9361 through 18 LVDS pairs providing highest throughput

- **Baseband and RF Synthesizer**
 - Baseband operation from 715 MHz to 1.43 GHz
 - Selectable internal and external synthesizer configurations to allow synchronization depending on mission requirements
Power and PCB

- **Power System**
 - SmallSat bus architecture must be considered in its entirety and commercially available bus architectures providing 12V, 5V, and 3.3V rails
 - Mixture of linear and point-of-load regulators provide efficient conversion and low-noise on supply voltages
 - **Selective regulator population** with rad-hard or rad-tolerant components enables variety of mission environments and cost constraints

- **CS² Standard and Connector**
 - **1U (10 cm × 10 cm) PCB** and connector pinout from CS² for modular system level design
 - Mechanical mount to chassis through either Wedge-Lok or Wedge-Tainer options
 - Class 3DS 22-layer PCB stackup with blind vias
 - Selective connector population for testing and flight capabilities on same hardware
 - FMC provides test-as-you-fly functionality to increase confidence in SW/HW stack
HW/SW Stack

- Operation of each AD9361 requires full hardware / software (HW/SW) stack
 - Integration of System-on-Chip (SoC) architecture provides required performance and reconfigurability
 - Development platforms based on Xilinx Zynq-7000 SoC and Zynq UltraScale+ MPSoC
 - FPGAs implementation through SW stack on softcore processor including MicroBlaze or RISC-V

- FPGA HW stack includes:
 - AXI bus for AD9361 control
 - ADC/DAC processing
 - Delay and TDD
 - Device status and control
 - ADC/DAC DMA, packing, and FIFOs
 - Configurable modulation schemes
FPGA Resilience

- FPGA mitigation of radiation effects
 - Apply **Triple-Modular Redundancy (TMR)** and configuration scrubbing to improve dependability of HW stack

- Procedure
 - Modify reference design to remove non-essential logic
 - Leverage BL-TMR tool for selectively replication of designs at post-synthesis stage to apply fine-grain TMR to modified design
 - Validate operation of SDR with TMR design

- Evaluation framework
 - Developing framework and methodology for evaluating FPGA-based SDR designs through fault-injection
 - Enables formulation of trade-space in terms of performance and dependability
 - Enables development of selective and adaptive strategies for efficient mitigation

Resource Utilization

<table>
<thead>
<tr>
<th></th>
<th>LUTs (218k)</th>
<th>FFs (437k)</th>
<th>BRAM (545)</th>
<th>DSPs (900)</th>
<th>CRAM (846k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10.32%</td>
<td>8.56%</td>
<td>1.83%</td>
<td>7.22%</td>
<td>6.47%</td>
</tr>
<tr>
<td>Modified</td>
<td>4.99%</td>
<td>4.98%</td>
<td>1.47%</td>
<td>4.44%</td>
<td>3.68%</td>
</tr>
<tr>
<td>TMR</td>
<td>21.87%</td>
<td>14.92%</td>
<td>4.40%</td>
<td>13.33%</td>
<td>13.23%</td>
</tr>
</tbody>
</table>

ZC706/FMCOMMS5 Reference Design

- Baseline
- Modified
- TMR

Related Logic
- TX
- RX
- DAC DMA
- ADC DMA
- RM
- TDD
- AD9361 AXI
Conclusions
Conclusions

- Rapid growth of SmallSat missions has necessitated **re-evaluation** of large satellite RF systems.

- Proposed SDR architecture leading to **new generation** of SmallSat missions with tightly integrated remote-sensing, communication and navigation capabilities.

- Presented SDR design framework for SWaP-C optimized SmallSat bus.

- Provides **reliability** for current missions and **performance** for future **AI systems**.
Acknowledgements

- Gary Crum, Robin Ripley, and Alessandro Geist
 - Science Data Processing Branch, NASA Goddard

- Javier Valle and Carlos Ventura
 - Space Power Group, Texas Instruments
Questions?

Nicholas Franconi, AST Engineer
NASA Goddard Space Flight Center (GSFC)
Science Data Processing Branch (Code 587)
8800 Greenbelt Rd, Building 23, Greenbelt, MD 20771
Email: Nicholas.Franconi@nasa.gov

Dr. Alan D. George, Department Chair, R&H Mickle Endowed Chair,
Professor of ECE, and NSF SHREC Center Director
NSF Center for Space, High-Performance, and Resilient Computing (SHREC)
ECE Department, University of Pittsburgh
1238D Benedum Hall, 3700 O’Hara Street Pittsburgh, PA 15261 412-624-9664
Email: alan.george@pitt.edu

www.nsf-shrec.org