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ABSTRACT

NovaSAR is a&ommercialS-band Synthetic Aperture Radar (SAR) small satellitélt and operated by SSTL in the
UK. One of its primary mission objectives is to carrymatritimesurveillance and moniting for security andiefence
applications An investigation was carried outto comparing and contrastingbnventiond and new methods to
perform automated ship detection in NovaSAR imadédwe outcome of this investigation could show the potential
effectiveness of ship detection using spaceborhar®l SARfor Maritime Domain Avareness (MDA)

Theconventionabpproachs to apply a suitable distribution modelcharacterise sea surface clyttedowed by the
implementation of dixed threshold,Constant False Alarm Rate (CFAR) detection algoritirmcomparison, a
RetinaNetbasedconvolutional neural networlCNN) solutionwas developed and traithen anopensourceC-band
datasetin order to determine the validity of applyingmpative training data to-Band imagery. The detection
performance was thelmmpared with the CFAR technique, finditi@tfor two selected test acquisitioa€NN-based
ship detection algorithm was able to outperforrfixad threshold, CFAR-based methodh the absence of native
training dataCNN ship @tection grformance was further improved agplying transfer learning @ native Sband
NovaSAR image dataset.

INTRODUCTION 1 Sea ice monitoring and shallow bathymetry to aid
safe transit

NovaSAR Mission f  Supporting overseas evacuation operations of

NovaSAR is a small (430kgcommercial S-band British citizens

Synthetic Aperture Radar (SAR) satellite, bbitSSTL 1 Seach and rescue

in the UK and launched in September 2018. It is capable ) _

of acquiring images with up to 6m resolution in StripmapThe contemporaneous collection of both SAR images
mode, and also features a Maritime mode with a 400kr@nd AIS signals over maritime areas provides two
swath. In addition, the sellite hosts an Automatic COomplementary streams of geospatteklligence that
Identification System (AIS) receiveto aid ship Ccan be applied to the above problems. AlS information
identification The main focusf the mission is to serve IS not considered reliable enoughits own for a number

as ademonstrator ofow costspacebased SAROne of ~ Of reasonsincluding

the primary objetives is to demonstratdlaritime )

Domain Awareness NIDA) for security applications, 1 AIS transponders can be switched off

including the prevention of illegal fishing. The global T  Information broadcasiuch as locatiovessel name
economic impact of illegal and unreported fishing losses ~ OF unique identifiecan befabricated

has previously been estimated at betw&i®-235 1 Low probability of detection by satellite recers
billion annually. British maritime protected areas are over congested are&s

distributed across the globe, and are therefore diffioult
monitor without spacbkased Erth bservation(EO)
assets. Other objectives for the UK government in thi$hips present a highly reflective cresection to radar,
domain thaspacebased EQnay be able toontribute to  with multiple opportunities for doubleounce

Ship Detection

couldinclude backscattering They therefore tend to appear bright in
_ ) _ SAR images in comparison to the relatively dark sea
1 Deterringarms and narcotics smuggling background, and are theoretically easy to detect.

I Countering terrorism and courgiracy operations  However, in ports or rough sea conditions there can be a
1 Monitoring movement of refugees and preventinglot of clutter present in the images, makitigs more

people trafficking difficult. Conventionalautomated detection techniques

1 Protecting vital maritime trade, including energy have operated on the basis of masking out the land and
transportatiomoutes modelling the sea surface clutter according to one of a

1 Protecting the integrity of UK and British Overseas number of statistical distributions, with a Constant False
Territories marine areas Alarm Rate CFAR) detection algrithm®. In recent

f  Marine pollution detection and attribution years, methods including the Generalised Likelihood

Ratio Test (GLRT) as well as deep learning/computer
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vision techniques including Convolutional Neural Predictions can be described as True Positives (TP),
Networks (CNN)have demonstrated improvedtdction  False Negatives (FN) or False Positives (FP), determined
performance over CFAR. by their loU value. If the loU of a predicted bounding
box is above the threshold thétas been set, the
Previousstudies in this area have, however, utilisedprediction is a true positive. If the loi$ below this
either Sentinel (C-band), Gaofer8 (Cband) or threshold then the prediction is a false positive; there is
TerraSARX (X-band) SAR images, and the application not sufficient overlap between the prediction that has
of Sband data to this problem ielieved to be a new peen made and the ground truth. This may occur when
area of researcht is unknown whether or not a CNN  the object is present, but has not been bounded correctly,
based methodology outperforms a CFARsed one for or when theres no object present. A false negative
Sband images. Additionally, the impact of applying occurs when the object is et but no prediction is
training datasets made up of imagery of differentmade.
band/resolution to the testing dataset has not previously
been investigated in depth. This investigatisms Precision is defined as the number of true positives out

designed to determine, forland SAR imagery: of the total number of positive predictions:
i. Whether a CNMNoased ship detection i 0&Qi —0&t )
methodology could outperform a CFAfased
one Qualitatively, this may be thought of as the proportion of

ii. The impact on detection perfoamce of predictionsmade thatvere correct.

training this CNN on ¢band imagery,

compared with training on a nativebnd  Recall is defined as the number of true positives out of

datase the total number of true positives and false negatives,

. . equivalent to the total number of ground truths:
Performance Metrics and Terminology
In the object detection fieldor CNNs success is 'YQ G 6 o—&— 3)
measured interms of Intersection over union (lo))
precision, mean average precisigmAP) and recall  Qualitatively, this may be thought of as the proportién
CFAR methodologyisesprobability of false alarn{Ps) objects which were detected.
and probability of detection (§).
The R score is often used to combine pséain and recall

Intersection over UniorlgU), alsoknown as the Jaccard scores into a single metric, defined astthemonic mean
index0, measures the overliyetween the true bounding of the precision and recall:
box 0 of an object in animage and the predicted

boundng boxd, as shown idrigurel. 0 @)

This simplifies to:

0 ¢o0—2> (5)

Intersection

Average precision (AP) is the precisianeraged across

all recall values. Mean average precision (mAP) takes all
AP values for the classes and loU thresholds coresider
and finds the mean of thedeor a simple ship detection
Figure 1: Intersection (overlapping red area on the (rather than classification) system, there is only one class
left) and Union (combined red area on the right) of  to consder (ship) and therefore the mAP for a given loU
two bounding boxesA and B. is simply the average precision across all test images.

loU is given by the equation:

Reducing the loU threshold required for a detection, or

\ s. s in the context of a CFAR detectoajsing the false alarm

bom s s (1) rate, would be expected to leadao increased number
of both true ad false positives. Thiwill in general have

The intersectior®, 0sis the overlapping region, and the effect of increasing the recall whilst loweritige

the union® *  Gsis the total areaf the combined region precision, and vice versa if the IoU threshold or false

formed. alarm rate is raised.
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CNN Training and Challenges Several methods have been used to land mask SAR
images, the simplest of which is to simply overlay a
shoreline shape file or DEM model over the GeoTIFF
image. This reagires the geolocation accuracy of the
sensor to be relatively accurate and therefore does not
work for TIFF SAR imagethat have not been accurately
Once theneural network has been trained, typically 9eoreferenced Another quick method ppmsed by
beginning from a set of prteained weights, the resiiy ~ Kefend' is to down sample thimage until the largest
model may be used for inference. In the wider objecV€SSels occupy a single pixel. Then apply a median filter
detection field, training datasets can range into thd® eliminate ships from the lovesolution image. Then a
millions of imagesfor problems involving multiple 2-threshold histogramhased segmentation method is
classes of objectsHowever for ship detection, used to_remove prlght regions. This method onl_y works
thousands of image tibcan besufficient toobtain high well for images Wlth relatively calm sea g:tate as it works
levels of detection performanielassification between ©n the assumption that the land regions are always
types of ships is not required. brighter.

Full-size SARimages will often contaimmore than
10000 pixels. It is usualo segment the imagmto

smaller submage tiles for training and detection
purposes.

This still presents a problefor new systemduring their ~ Martin-deNicolag provides a comparison of several
first months or years of operational life, since a trainingSégmentation based techniques for land masking
dataset must first be accumulatidough hundreds of ncluding Canny edge detection, wavetigngorm
acquisitions These acquisitions should ideally featureP@sed edge detection, mean shift algorithm and
globally distributedocationsin a variety of sea statgs ~ clustering  based segmentation techniques. Edge

order to maxinse the robustness of the network anddétection methods measure the intensity gradient across
ensurdits geogeneralisability. pixels to identify land sea boundaries and edge

orientation. The Canny edge detection rhetf
The imagesnust then be individually haddbelledby ~ developed by John Canny convolve® timage pixel
an ana|ysbef0re a neural network cae trained in order gradient with a two dimensional Gaussian first derivative
to start to make predictions with a useful degree of 'O distribution model to identify the peak intensity and
accuracyHowever, if ground truth data in the form of peak gradient as a smoothed step would demonstrate a
either accompanying optical imagery or AlSal&s not  low edge strength iine with the edge and a strong
available, this process can be challenging since mangradient normald the edge. The directional magnitude
objects thatbackscatter brightly can appear similar to can be described by:

ships

02 Q@ 9 'O»*F'Cs (6)
The training process itself is also tirnensuming, with . ] . ] )
models takig days or even weeks to be fully trained Where'ds the image intensity. When selecting the edges
dependent on hardve size of the training dataset and that correctly define the boundary between landsazd
number of epochs (number of times the network sees tHEis critical to apply the appropriate threshold values. A
entire training dataset). Any changes in configuration ofouble threshold is required for this method as a single
the network require retrainirig full before they can be threshold does not reflect theariation of coastline
tested which drastically lengthens the timescal contours, which will have areas sbfter edges that

necessary to find the optimal configuration. would subsequently cause seveeeak points in the
detection. A range of acceptable thresholds enables the
LITERATURE REVIEW boundary to be defined as a solid line but also risks

marking noise edges if the range is too large.
Land Masking

It can be difficult to find ships in littoral regions of an Clutter Modelling

image due to the highly reflective coastal and landThe next critical step in determining the presence of
regions that can make the surrounding areas quite noigfes®ls in the maritime environment is to model the sea
andsometimes obscure maritimegions due to specular State accurately. This is an incredibly complex problem
reflections It is therefore dtical to mask these regions and does not have a single solution. The sea clutter can
in order to detect vessels or offshore objects accurateje modelled byanalysingthe histogram of the land
using afixed thresholdCFAR basedmethod. Ensuring masked image. Rough sea statestendtoml uce O6spi ke
all the land is correctly maskediso ensures that there are tail features in the histogram that can be difficult to
no false alarms generated from reflective surfaces omodel. Several papers use a number of distributions to
land. attempt to model sea states. Sea clutter tends to display

an underlying mean intensity with a modulatingde
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componerit The K distribution is the most widely threshold in regions of the image with héey or lower
accepted model for SAR imagéryThe K distribution — averageintensitiest®* The 0  for an ideal threshold is
probability density function (PDF) isery similar in  given by

shape to the Weibull distribution. It is the compound

formulation of the K @tribution which is importafit b wQw (10)
Jian Sutf uses a Gamma, Weibull, Nakagami, Log

Normal, Rayleigh and K distribution across a number ofyhere the threshold varies along the distribution. This
wavelengths and found that a K distribution provided thecan be particularly useful for large images with non
best parameters to fitthe test data. Sebastien yniform backscatter properties. For a uniform
Angelliaume used K+ noise (KN), Parete noise (PN),  baclscatter, a single threshold can be calculated by
K + Rayleigh (KR) and trimodal discrete (3MD) setting the false alarm to a ual usually 16 to 106 2,
distributions®. His results showed that the KR and 3MD The PDF of the celaveraged threshold o is taken as
model providedte bett er 06goodnes teduh of Mindefend®Ralldigh Gistribubeddmpleés.

S band NetRAD dataset. 3MD had the best performancg ¢ is given by

at the cost of a greater number of parameters.

The probability density functiofPDF) for the lognormal Lo - AoD — (11)
distribution is defined as: B
Then theaveraga) is calculated using

000 ) — A @D 7 _ . .
ok v @ 0 . . 0wQw oQo (12

Where ,, is the scale parameter andis the shape . h . hat thé  bei d icall
parameter. The K distribution better captures the long! 'S WOrth noting that the) ~being set dynamically
spikey tail of the image distribution. It usually includes a@llows thev to be evaluated in a range of sea states due

gamma functions and fast fluctuating component that {0 Some SAR images such as strip map mode, covering
uses a modified Bessel function of the second kind large distances in azimuth. An acceptable false alarm rate

The hree parameter PDF is given by: can be determined based the situation. A trade off

must be made between a high false alarm rate with high
. e n T T —. robability of detections and a low false alarm late with
0 0" N —20 ¢z , ® (8) " {

the risk of missing many detections. A receive operating
characteristic (ROC) curve is useful for charasieg
Where' is the calculated mean of the image dété&  theperformance of the model using these metrics.

the number of looks andl is the shape paramet&rThe

gamma distribution is given by: CNN Ship Detection

.o . . Several CNNbased ship detection and classification
000 o® —o AZDW (9)  techniques have been proposed in the ladty@ars.
Somé* S have used CFAR in conjunction with a CNN
Where "Qis the scale parameter andis the shape in order to reduce falsalarm rate compared to a pure
parameter . Measuring t heCFARglotidnnSewerl>l’ohfive évent Had stiwess b e
accomplished in a number of ways, two of which are byclassifying different types of ships and other marine
using the Maximum likelihood estiation (MLE) or  objects such as wind turbines and oil platferosirg
threshold errdt. The threshold error is usually high resolution TerraSAKX and Gaofer8 imagery
calculated using the cumulative distribution function
(CDF). In this context it is also referred to as the Pure CNNbased methodapplied to both optical and
probability of false alarm and acts as @fus metric to ~ SAR imageryhave predominantly used eithero-stage
describe how far over or under estimate a CFARR-CNN derivative$ !9 (Fast RCNN?, Faster R
threshold would be set. CNN2Y) which are dependent ongien proposalsor
onestage regressiorbased detector§SF%2* (Single
Probability of False Alarm and Probability of Detection Shot Detectorpr YOLOv225 26(You Only Look Once)

Clutter can bedescribed in terms of its amplitude
dlstrlbL_mon with the prgbab_lllty of de_tect|on and MAP) when compared to Faster®NN with an order of
probalility of false alarmu ~ given for a fixed threshold magnitude reduction in detection execution time.

that does not vary spatially. To get a more dynamic o[ Ov3?’ introduced improvements ihounding box
threshold the mean amplitude across over local spatiglng clasprediction, as well as feature extraction, which
variations can be taken to provide a more accuratfcreased detection performance for small objéets

YOLOvV2 showed improved performance(90.05%
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comparison to YOLOv2 and SSDThe backbone introducing a focusing parameter T, defining focal
network developed for use with YOLOv3 is namedloss (FL) a&

Darknet53, since it contains 53 convolutional layers o

There hae not yet been arpublished studies evaluating "00n pn 11Ig (15

the use of YOLOV3 foship déection.
If | is near O, i.e. the example is misclassified, the

Recently, RetinaNét has also been appli€d?® *to p 1N factorisclose to 1 andO0 & OHowever as
ship detection in SAR imageslemonstratingy the 1 tendstowards 1, i.e. the example is classified correctly
highest precisioseen for any CNN withip to 97.56%  with high confidencethis factor tends towards 0. For
mAP. RetinaNetintroduces two keyadvances in ore [ ¢andf T@oas before]O0 18t T p ;71@O times
stage object detection: feature pyramid networks (FPN$maller than the CE loss, whereas for 1, "O0
for feature extractioh and focal loss for dense p& xonly 1.23 times smaller thameé CE lossThis has
sampling®. the effect ofdown weightingthe loss contribution from

easily classified examples, leading training to be focused
FPNS$'feedfeature mapsepresenting the inputimagé  towards the more difficult examples in order to reduce
different scales into an object detector, allowing for morahe overall loss.
accurate detectiorsnce objects may occupy a range of
different scalesCrucially, FPNs allow all of these scales For ship detection in satellite imagery, ieigpected that
to be evaluated as part dotalldsswél benheghiyrapplicableesince therkidadarge n h e r
structure with inceased resolution but without amount of background in comparison to the relatively
significant impact on processing time small objects to be detected. Ships in harbours or close

to other ships may also be more easily distinguished by
Focal loss aims to rectify the class imbalance introducegetinaNet compad to other networks since these harder
between easy and hard examples during training examples will be focused on more during training than
object detectiorfar morenegative samples are evaluated the easier examples single, bright ships in open water.
since the majority otandidate locationarein empty
background regionsand detectos thereforefocusthe ~ METHODOLOGY
majority of their efforts on learning to classifgeasy
background areas rather than the more difficult to detec
objects of interest.

his section seeks to detail the unforeseen but necessary
teps involved in ensuring a high detection precision is
achieved. In order to mask the land regions in the image
a Canny edge detector was implemented, however its
performance was poor due to thghthnumber of noisy
edges detected in the original image. Some- pre
processing algorithms were used to improve the
performance. A Gaussian filter was useiially, as it
8 ‘O g (13) reduced the speck!e noise from the imgge and by moving
a kernel over the image onexel at a time, creating a
wherelog heredenotes the natural logarithm afdis ~ smoothing effect.
essentially the correctness of the prediction, formally:

Typical crossentropy (CE) loss nasures the
performance of a bimg classification model, penaiigy
predictions thaarewrong with a high loss valu€E loss
takes the following forr¥:

Land Mask
hho p The ima o led using th I
RSN . iy 14 ge waslownsampled using the average ce
L p nhl OE AOxEOA (19 value within the kernel. In addition to a reduction in false

edges being detected, this reduced the overall size of the

where p is the predicted confidence of the class bein herefor -
present, and y is the class label, equal to 1 if the class ?gage and thereforienproved pocessing speed

present o1 if not. A Canny edge detector upper and lower tholghvere

set manually to optimés its performance in detecting
land edges and ignoringofter edges detected in the
ocean In order to make sure any breakages in the edge
detection were properlyconnecéd the edges were

Therefore if the classifier predicts the probabilitytiod
class being preseig 0.9, and the class esent/)
m@oandd ‘O 1 11 (to 3 s.f.). f the class was not in fact
presentyj T ando O ¢& 1(to 3 s.f.).The further  gjaieq o close the gaps in the imagéhe land regions
the prediction divegesfrom reality, the higher the 10SS o+ touched the ends of the imageo needed to be

incurred. However even when negative examples argoseq off in order to fill the gaps. Once the gaps were
correctly classified (i.e. a low probability is predicted), filled, the land regions in the image were countgith

the total loss incurred is still significant since there are SQey features such as region centroids and areas extracted.
many of them. Focal loss addresses thisblera by | order to make sure any vessels evaot mistaken for
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small land masses, a percentage of the mean area of Rlobability of Detection
the land masses was taken. This required a manuglo

. i r a fixed threshold model, the probability of detection
percentage allocation for each image.

can be measured as a function of pixel power in dB. The

Finally, the land masked regions were converted to fim of this report is to compare the performance of a
]

binary array and scaled up to match the original imag xed threshold, CFAR .d.etector against the CNN
size. This created a small offset as it did not always sca poach, therefore precision and recall were calculated

to aninteger number of pixels. This offset was rectified y crossreferencingdetected rggigns with the labelled
using a dilation function oncegain. This loss in NovaSAR images for the acquisition.

shoreline details was seen as acceptable due to the mo%unding boxesvere drawn around regions that were

being aim_ed at open wa_te_r \_/essel detection rather th"’lﬂought to be detections. These were pixel positions
littoral regions. Upon revisit, it was found that the Offsetrather than Cartesian coordinates in order to compare

_problem when scaling up the ma_sk was e"mi”?ted i th%vith labelled images and calculate the loU. The
image wa not down sampled using cell averaging. ThIS(getections could be converted to georeferenced

In turn f:cnct_rea?ed _thel proces_s]pg time however prove oordinates for comparison with other sensor data e.g.
more effetive for single acquisttions. AIS, however this test has not been taken further in this

Distribution Fitting report.

The PDF of a lognormal, Gamma and K distribusion Model Sensitivity
were calculated for the image dataset. Basedhese

N . To hav ruly r | th le and n |
distributions the logCDF was calculated to find the 0 have a truly robust tool the subtle and not so subtle

S ) . variances in different types of SAR imagery must be
?llstrlbultlon ttr?at Etelg the emptlr;;zcayleqa_tta_ t”he b%stt.hThe considered. As mentioned in the land masking section of
false aacr‘m resho txvasﬁset d Itm Ita y anf € the methodology, highesolution imagery with a small
Increasedo measure e etiect on detector pertormancee 4 - il perform differently to lower resolution

In order to get an accurate distribution for the dataset a agery with a wider swath. This is due to a greater range

zero pixel values occurring due to the land mask Were ¢ <o states that may be captured in the larger image,

(rfr?qg/etq, as this would have heavily skewed themaking a single threshold less effective. Many studies
IStribution. have been carried out to show thadlarisaton and
incidence angle also have a large impact olecatity

In some cases, the SAR image was heavily saturated a
of the ocean surface.

caused the image to gar bright. In order to reduce the
effect of this the pixel intensity was capped at ' .
maximum valuewhich allowed the intensity distribution “CNN Configuration _ o
to be stretched for better contrast between ship and sdavo CNN-based object detectors were chosen for initial
surface. The stretched image however was not used féivestigationthe AlexeyAB fork?of YOLOv3*’ andthe

the thresholdingn order to preserve informatiaabout ~ Fizyr kerasretinanet implementatidf of RetinaNe®.

the brighter pixels. YOLOv3 was chosen since YOLOv2 previously
demonstrated strong performance in ship deteiand
Thresholding YOLOv3 was shown to have further improved

For the strip map images a single ideal threshold wa erformancen objectdetectiod’. Both were trained on

- the open source R Ship Detection Datasét{(SSDD)
used as this proved to perform well. TeanSAR which consists of 43,819 ship tiles, each of resolution

images would require more adaptive thresholding256 256 pi .
: ; ; - pixels with 50% overlapetween themThe
Lnrzt\?gsg lstlcr:%nftleTam\;e :?gmrgle:r? gg\ilc;rrllzzjldmb;he tiles are cropped fr_ora total of 210 images capturgd by
calculated to find the afse alarmthreshold across Gaofen3 andSentinell, both Gband SAR satellites,
averaged cellé andare providedvith the coordinates dfounding boxes
for the locations of ship& accompanying label files.

Once the false alarm was set, the distributieat had the
lowest error tamage datavas used to calculate the idea
threshold The error was nasured in dB and converted
to an 8bit value for the threshold. The imagethen
converted to binaryand regions detected above and
below the pre-defined size range of vesset to be
detected, are removed. This limits the minimum
detectable ship length but also removes any nessel
objects that may be highly reflective on tha serface.

| The dataset was split randomly into 70% training, 20%
validation and 10% test portions for both YOLOad
RetinaNet. Due to the differing formats and file
configurations between the two networks, they were
each trained on a different random split, however the
results are still expected to be broadly comparable.
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YOLOv3 was trained using the Darknet53 baakbo Each full size acquisition in thdovaSAR dataset was
from the darknet53.conv.74 starting weights, with afirst labelled manually using Labellm&. Coincident
batch size of 64, 32 subdivisions, input image size ofAlS data was used to verify the labelling was correct in
512 512 and a learning rate of 0.0fak 12,000 batches two of the acquisitions, however this data was not
Batch and subdivision sizes of 1 were used for testingavailable for the vast majority of the dataset. Whilst
The network was trained once wdithit any image everyeffort was made to label all ships present in the
augmentation, and oncettv augmentatioron the same images and avoid mistakes, there may have been a small
data splitof up to 5 degrees in image rotation and up tonumber of ships that were omitted due to uncertainty or
1.5 in exposure magnitude to investigate the applicabilitypbjects thatlosely resembled ships that were mistakenly
of traditional augmentation techniques to SAR imagerylabelled as such.

Hue and saturatio colour augmentations were not

applied since the images are single channel i.e. greyscalfwo NovaSAR acquiions, with ID 6102 (20m
ScanSARHH) and 8498 (6m Stripmap HH) were

The validation mAP appeared to plateau during trainingselected to form the teset for comparison with CFAR,
after 9000 batches, so training was stopped after 12008hich will be referred to as NovaSARest Set BThis
batches to avoid overfitting. Image augmentationwas because théxed thresholdCFAR techniqueis
appeared only to decrease stability and contribute applied on whole images,and an acquisitictevel
requirement for longer training times without comparison is a better example of an operational use case
improvement in precision or recall. It was thereforefor a ship detection techniqu&cquisition 6102 contains
concluded that these classical image augmentatioB0 labelled ships, and 8498 conta® labelled ships.
techniques did not provide benefit to detectionTogether they account for 13.3% of the ships in the
perfomance in SAR imagery and so were not appliedNovaSARdataset.

when training RetinaNet.
Table 1: NovaSAR Test Set B acquisition properties

RetinaNet wasrainedon the SSDIusing the ResNe_SO ; GRD | Swath | No._ of
backbone from theesnet50_coco_best_v2.1sfarting ID Mode (m) «m) | PO looks
yveights,lwith a batch sjzg of 2, a step si;e of 153.37 (N9. g498 Stripmap 6 20 by | 1(range)
images in traimg set divided by batch size), an input 4 (azimuth)
image size of 800800anda learning rate op p T 6102 | ScanSAR | 20 ~100 | HH 22(6(1;?2]%‘?%)

for 12 epochsAnchor optimization for RetinaN&twas

used to generate opt|ma| anchors The remaining 33 acquisitionsontaining 534 ShipS,

were divided intdtiles, since the resolution of the full
The anchor configurations control the sizes aradescof ~— Size images was too high to be used as input to a CNN
candidate bounding boxesnd may result in some withoutsignificant downscaling resulting in information
objects being omitted from training in the event that therdoss
is no candidate with greater than 0.5 IdQue to the
small sizes of some of the ships, the optimal scales werkhe tiles were generated using a sliding window

found to be much smallerah the default. approach with 128 pixels ofvertical and horizontal
overlap between tiles in order to ensure that simps

that would otherwise have been split between tiles by the
edge of the windowvere fully captured in at least one of
the tiles. This overlap has the effect of artificially
inflating the number of ships in the dataset through
duplication ard is similar tothe approach taken in
constructing the SSDD. The final tiles éach row and
column contained an additional, variable amount of
overlapwith the previous tiléo account for the fact that
the tile sizes were not generally perfect factors of the full
size image dimensions.

The antior configuration fortraining RetinaNeton the
SSDDwas:

Sizes: 32, 64, 128, 256, 512
Strides: 8, 16, 32, 64, 128
Ratios:0.440, 1.000, 2.274
Scales: 0.488, 0.775, 1.221

NovaSAR Dataset

The NovaSARdataset is made up of 3&ultilook
detected ground range acquisitioB4jn Stripmap mode

(6m resolutionand 11in ScanSARmode(8 at 20m and The tiles were only saved and incorporated into the

3 at 30m resolution In total, they contained 616 ships da.tasetjf the label files indicatd Fhat they contained
ships. t was not seen as helpful to include a large number

424 in Stripmap and 192 iBcanSAR Two were : o . : .
acquired in VV polarisatiomwith the rest in HHA 0.1% of negative examples, i.e.adthatdid not contain ships,
h ince these may overwhelm the training dataset and

contrast stretch was applied to all of the images in t e

dataset to improveisibility .

drastcally increase training times
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An example of a labelled NovaSAR image tile is shown 10
in Figure?2.

—*— mMAP
Fl-score
—»— Precision

081 —»— Recall

0.6

Score

0.4 1

0.2

0.0 T T T T T T T T
300 400 500 600 700 800 900 1000
Tile size

Figure 3: Performance metrics for the SSDD model
for a range of tile sizes when applied to NovaSAR
Stripmap images after 23 training batches.

10

—¥— MAP
Fl-score

—— Precision

—— Recall

0.8
Figure 2: A labelled portion of a 6m resolution

NovaSAR Stripmap mode Ground Range Detected

(GRD) HH image. The bounding box coordinates 0.6
reside in a separate annotation file and are displayed
for demonstration purposes; they are not part of the
image itself.Image Copyright SSTL. 047

IS
5]
il

This dataset of tiles was further split randomly into 70%
training, 20% valilation and 10% test. This test portion 0.2 1
will be referred to as NovaSARest Set A

The resolution of the NovaSAR images was generally %0 = = 0o 80 90 1000
higher than that of the acquisitions used to generate tt Tile size

SSDD, and therefore the apparent sizes of ships would

have variedrom the SSDD if the same 25@56 tile size  Figure 4: Performance metrics for the SSDD model
was used reducing the applicability of the SSDD for a range of tile sizes when applied to NovaSAR
learning to the NovaSAR dataseRetinaNet was ScanSARimages after 23 training batches

therefore tested directly on the NovaSAR datassihg  The NovaSAR dataset of image tiles, which excluded
the weights generated by training on the SSI® acquisitions 6102 and 8498, was therefore trd
determinethe ideal tile sizes for both Stripmap and ysing these tile sizes, and is descrifiedable2. The
ScanSARimages. This step was necessary in order total number of ships in these tiles more than doubled in
ensure maximur_n transferability from the SSDD learningcomparison to the true number of ships in the full size
to a model trained on the NovaSAR dataset. If thgmages, since even in the larger Stripmap tiles, the
NovaSAR dataset were sufficientllarge, detection majority of each tié is made up of overlapping regions.
perfamance andspeed may be improved by using a

larger tile size.

The optimal squaretile size (by Fl-score) for the
Stripmap images wasund to be480 pixels,as shown
in Figure 3, while for ScanSAR448 pixels wagound to
be optimal as shown inFigure 4. The results @&
dimensionless quantitiegith values between 0 and 1.
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Table 2: NovaSAR image tile dataset

Testing

No. of tiles

No. of ships

Training

602

846

Validation

172

248

Test

87

127

Transfer Learning Approach

|
Themodel weights which gave the highest performancd : : : :
on the SSDDwere used a starting point from which to L L L L
train RetinaNet on the NovaSAR dataset. RetinaNet was T
trained until the validatio mAP plateaued and the |
weights thagave the highest mAP were used for testing. I

The anchor configuration for training ®e&Net on the
NovaSAR dataset was:

Sizes: 32, 64, 128, 256, 512 1
Strides: 8, 16, 32, 64, 128
Ratios: 0.432, 1.00, 2.312
Scales: 0.400, 0.504, 0.640

The optimal anchor scales for NovaSAR were found to

be significantly smaller than the optimal SSDD anchor

scales, since the ships in the NovaSAR images were
generally smaller as a proportion of the image than the
ships in the SSDD.

Prediction Combination

In order to achieve a final set of detections for an entire
acquisition and compare these directly with @€AR  Figure 5: Bounding box prediction combination
basedmethod, the coordinates of the detections in eaclprocess, showing two tiles and their overlapping
tile of Test Set Bhad to be translated back into the regions (dashed lines, not drawn tscale). Top: two
original image space by accounting for the coordinateside-by-side tiles in which different predictions (red
of each tile. Additionally, duplicate ships may have beerboxes) have been made in the overlapping region.
correctly detected in mufile tiles, resulting in several Middle: The predictions from both tiles are overlaid
overlapping bounding box¢kathave detected the same in the original coordinate space. Bottom: Duplicate
ships This was accounted for by cqraring overlap predictions are discarded whik all unique predictions
regions and discarding all btihe highest confidence are retained. This process is repeated for all
counterparts for those boxes thatere predicted in overlapping regions.

multiple tiles as illustratedy Figure5. This preserved
predictions thabverlap within the same tile, as in the
case of shipghatare close together, as well as retaining
predictions made in one tile but not in any others. Thi%
will have the effect of increasing the probability of both
true and false positives, which in turn increases reca@
whilst lowering precisionk-or an operational use case, it
is expected that recall is likely to be valued over
precision, since the conseques®f missing a detection
are potentially greater than a false alarm being reporte

The final results given for NovaSAR Test Set B were
computed using the predictions resulting from this
rocess, whereas the results for Test Set A were derived
irectly from the individual tiles. The two sets of results
re not directly comparable since, for the comparison
cquisitions in Test Set B, the entire image was divided
into tiles and input to RetinaNet for prediction, whereas
only tiles which were known ta@ontain ships were
jncluded in the shuffled Test Set A. Additionally, some
hips may have been divided into fragments at tile
borders, causing the performance of the detector to be
reduced if it failed to detect the fragments as ships in Test
Set A. For Bst Set Bthe performance test would not
have penalised this behaviour since the ship would have
been fully present in an adjacent tile, and that prediction

340 Annual
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would have been carried into the final set of predictiondNovaSAR Test Set ARetinaNet

used to measure overall detection perfance. Testing the trained SSDD models directlgn the

Test Set B gave a comparison with the CFAR metho%{iﬂidaﬁon portion othe NovaSARdatasetevealed that

and demonstrated the process which would be applied (; mgg?gfsrgd;%%‘llgﬁerro jgcggt%r;&z;pé”;ﬁg bi?;t in
an image for which the presence and locations of ship ain)iln were overfittepd o the ySSDD impa es
was unknown. Test Set A allowed average performancgerfor?nance on the validation set durin NovagSAI'?
across a range of acquisitions to #etermined and 9

. : model training isshown in Figure 6. All metrics
icrﬁ;ngpee:;eicri]vt\a? éh;Dd[? tection performance for tHeatd plateaued completely after ~75 batches, indicating that

any learning to be gained from the relatively small
RESULTS dataset had been exhausted.

L0

SSDD- RetinaNet & YOLOv3
Both YOLOv3 and RetinaNet were tested on their

respective 10% test portioo$ the SAR Ship Detection  °¢ =T e
Dataset (SSDD)each usinga confidence threshold of
0.25 to allow for a direct comparisdRetinaNet defaults

to a 0.1 confidence threshold which does result in ¢,
higher mean average precision (MmARS 95.4% §
however false positives (FP) overwhelm the true o4/
positives (TP), making thdetections considerably less
useful. The model produced after 23 training batches wa:
found to perform the best on the validation dataset, s 021
this model was used for testing on the SSDD testiset.

loU threshold of 0.5 for a positive detection was reglire oo

throughout testing for all neural networks and models. 0 0 20 30 4 50 60 70 80
Batches

— mAP
Fl-score

—— Precision

— Recall

It can be seefrom the results iMable 3 thatthe mean
average precision (mAP)Fl-score and recall of Figure 6: NovaSAR mocel validation performance
RetinaNet are excellent, far exceeding the performancever the course otraining on the NovaSAR dataset

of YOLO. RetinaNet predicted a higher number of truépg (et resultsor confidence thresholds between 0.1

positives, a lower number of false negatives and only, 4 o ofor the SSDD model and NovaSAR modek
marginally more false positives, resulting in increasedh, o\n inFigure7 andFigure8 respectively.
precision in addition.

Table 3: Results of testing both CNN object 101
detectors on the SAR Ship Detection Dataset (SSDD)
at 0.25 confidence
0.8 1
YOLOvV3 RetinaNet
mAP 0.774 0.928 v 064
F1-score 0.75 0.90 3
Precision 0.83 0.85 0.4 1
Recall 0.69 0.95
—— mAP
TP 4195 5709 0.2 4 Fl-score
—8— Precision
FP 884 1004 —e— Recall
EN 1870 324 00 o1 0.2 03 0.4 05 0.6 0.7 o8 0.9

Confidence threshold

Based on these resulRgtinaNet was selected for testing

on the NovaSAR dataset due to its high detectiorfigure 7: Performance of the SSDD model at a range
performance. of confidence thresholds for NovaSAR Test Set.A
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While the NovaSAR model clearly providetthe best
detecton performance, the SSDD model svable to
10 identify nearly half of the ships in thinages with
relatively few false positives, despite having been trained
on SAR images of different band and resolution to the
test set.

s T~ | NovaSAR Test Set BCFAR

The land masking for acquisition 849&n be seen

0.8

Score

0.4 4 below. The high land mask performed better as it was
able to identify ships in the littoral regions as shown in
—— map Figure.
0.2 4 Fl-score
—— Precision

—— Recall

0.0 T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Confidence threshold

Figure 8: Performance of the NovaSAR model at a
range of confidence thresholds for NovaSAR Test Set
A.

Lower thresholds providehigher performancdor the  Figure 9: Land mask with cell averaged image (left)
SSDD model since it hadot been trained directly on and with full resdution image (right). Image
NovaSARdata and therefore predictionsreeenerally  Copyright SSTL.

low confidence. The NovaSAR model svaable to
perform well at high thresholdsince the predictions
made wee generally highanfidence.

Once the land maskas appliedthe Gamma, Lognormal
and K distributionsvere plotted against pixel intensity
in dB. This ca be seen ikigurel0.

The NovaSAR transfdearned model outperfored the
SSDD model across all confidence thresholds
demonstrating higher mAP, Ftore and recall. The
SSDD model appears to outperform the NovaSAR mode
at very high confidence thresholds in terms of precision 2
but this is only due to the extremely low ribcat this
level.

= -4
The results for the highest performing (by-$tbre) 8
confidence thresholds for each model on NovaSAR Tes ~°
Set A areshown inTable4.

& —— Gamma distribution

Table 4: Performance of RetinaNet SSDD and . :._?;:s:na:rdistribution
NovaSAR models for NovaSAR Test Set A. The = K -distribution
SSDD model was evaluated at a 0.2 confidence 24 2 20 1B 16 14 12 10 8

Pixel intensity (dB)

threshold, while the NovaSAR model was evaluated

at a 0.3 confidence threshold.
Figure 10: logCFD distributions plotted against

SSDD model NovaSARmodel pixel intensity in y (dB).
mAP 0.440 0.727 With a rangeof false alarms from 16to 10®the Gamma
F1 0.574 0.810 distribution performed the best a low R, but the k

distribution had the lowest error at a high, Bs can be

Precision 0.773 0.895 .
seen inTable 5. The table also shows the CDF error
Recall 0.457 0.740 associated with the {Pfor Both imaging modes. A
P 58 94 minimum region size of 24 pixels was set in order to
FP 17 11 eliminate small, highly reflective surfaces at the bottom
N 69 33 left of the image. The resultsue be seem Figurell.
Carman, Kolhatkar 11 34" Annual

Small Satellite Conference



Table 5: Sensitivity of false alarm values against
number of detections in image and CDF error

False alarm No. of detections | CDF error (dB)
6102 8498 6102 8498

104 10190 70 0.51 1.40
10° 9395 76 1.75 1.82
106 8606 65 24 1.16

Figure 13 Visualisation of ScanSARimage before
(top) and after distribution is stretched. Image
Copyright SSTL.

Figure 11: Vessels detected in Stripmap imagémage | hedistributions were ftedto the land masked image as
Copyright SSTL. shown in Figure 14. The CDF divergence is more
uniform due to the image being stretched acrossatleam

The bright regions of the detected vessels were in SOM& namic range. The Kdistribution produced the lowest
cases captured as independent vessels. These centroifls,,

were clustered to produce a new location and
corresponding bounding box for the resulting images
The results of this can be sdagiow inFigure12.

CDF (log10)

—— Gamma distribution

=144 - Image data
Lognormal distribution
—16 { = K- distribution
Figure 12 Bright regions of a ship as segrate 225 200 175 150 125 100 75
detections (left) and clustering of bounding boxes to image intensity (d8)
find more accurate ship area (right). Image _ S _
Copyright SSTL. Figure 14: logCDF of distributions in ScanSAR

image aganst pixel intensity (dB).
The ScanSARimage 6102 proved much more difficult 'mage ag pett ity (dB)

to land mask as the image was originalaturated. The Due to the varying sea state in range a great deal of
image was capped at a max intensity to stretch thBighly reflective surfaces in the bright regions were
dynamic range of the image. This improved the contrasidgged as vesseldncreasing the number of false
in the image as can be seenFigure 13 below. The  Positives dramatically. The detected image can be seen
reflectivity can be seen to vary in range, resulting inin Figure15.

bright sea regions (bottom) and darker regitovgards

the top. The darker regions created softer edge gradients

resulting in poorer land mask performance.
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need for application of a land mask wugia CNNbased
object detector.

Figure 15: Ship detection performance inScanSAR
image. There are a large number of detections in the
bright region of the image.Image Copyright SSTL.

NovaSAR Test Set BRetinaNet

Figure 17. A region of the 6102 acquisition after
detection by RetinaNet §SDD model), showing
detections (orange boxes) and labels (blue boxes).
Some correct detectionsvith high loU can be seen in
the top-left and top-right of the image, however it is
obvious that an overwhelming number of false
positives were produced over land in regions of bright
Figure 16. A region of the 8498 acquisition after backscatter.Image Copyright SSTL

detection by RetinaNet (NovaSAR model), showing
detections (orange boxes) and labels (blue boxes).
Detections are accompanied by a class and confidence
label. Many of the detections are difficult to see due
to the near-perfect loU with the labels, however there
are some false positives on the small strip of land
which could not be masked out due to the NovaSAR
imagegeolocation error. Image Copyright SSTL.

RetinaNet was also able to identify some shipshieyr
wakes, which are clearly visiblen Figure 18 even
though the ships themselves are difficult to see. The
bounding boxes for these ships, howevevere
erroneously predicted as being much too large, leading
to these detections being counted as false positives since
their intersection over union with the labels was lower
than the required value of 0.5.

Figure 16 shows a portion of Stripmap image 8498,

demonstrating good detection performance; loU for the

correctly detected ships is nearly 1.0, and all 9 ships

which are clearly visible are correctly detected. €her

are, however, 8 false positives shown in the ardanof

thathave high prediction confidence.

The majority of thdalse positives occurred overgions

of land, as can bgeen irFigurel?. Land masking using

a shape file was applied to the detections, however due
tothegeolocatiorerror inthe NovaSAR images, this was
offset and therefore unable to fully mask out the false
postives in land regionsThe time taken to perform
detedions could have been drastigaleduced if the land
mask had been applied prior to detection, however this
method allowed for comparison and evaluationthef
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Figure 18 RetinaNet (NovaSAR model) detected
(orange boxes) two ships by their wake in the 6102
ScanSARiImage, though it predicted boundingboxes
that were too large. A third, smaller ship (blue box,
middle-right) was not detected. Image Copyright
SSTL.

Lower thresholds res@t in an overwhelming number
of false positivesleading to extremely low levels of
precision.

The highest Fbkcores for the SSDD model wereCad
confidence before land masking, @nhé confidenceafter
land maskingn the 6102 acquisitionThe highest E-
scores in the 8498 acquisition were at 0.5 confidence
before land masking an@.3 confidenceafter land
masking. For the NovaSAR model F4cores were
highest in both imagesefore and after land maskirag,
0.9 confidenceEach of these thresholds wéetefore
applied to vyield the results in the performance
comparison with CFAR, in order to give a beaske
scenario for each method.

CNN & CFAR Comparison

The performace comparison for all methods is shown in
Figure 20 for acquisition 8498 and ifrigure 21 for
acquisition 6102The bounding boxes pdoiced by the
CFAR method were compared to the labels at an loU
threshold of 0.5, allowing mean average precision, F1
score, precision and recall to be calculated as with the
CNN-based methodAny duplicate boxes were counted

The performance of RetinaNet using both SSDD ands false positives as with tiRetinaNet resultsVetrics

NovaSAR trained models on NovaSAR Test Set B isyere not calculated for the CFAR results for the 6102

shown inFigure19. For both models, it can be seen thatjmage due to the large number of false alarms produced;
the best results were obtained with higher confidencgyecision was effectively zero.

thresholds than for Test Setlf¥fore a land mask was

applied
Acquisition 6102 - SSDD Model Acquisition 6102 - NovaSAR Model

10 10

0.8 0.8

0.6 - 061 » »> A g *> \d L 4 e —
v ©
s s
A &

0.4 4 0.4 4

0.0 T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence threshold

024
— /\

0.0 T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence threshold

— mMAP
Fl-score
—— Precision

— Recall

Acquisition 8498 - SSDD Model
1.0 10

Acquisition 8498 - NovaSAR Model

0.8 0.8

061 0 0.6

Score
Score

0.4 0.4

0.2 4 0.2 4

0.0

0:1 0.‘2 0:3 0:4 0.‘5 0:6 0:7 0.‘8 0.‘9 oo 0:1 0.‘2 0:3 0:4 0.‘5 0:6 0.‘7 O:B 0:9
Confidence threshold Confidence threshold

Figure 19: Ship detection performance by RetinaNet for NovaSAR Test Set B at a range of prediction

confidence thresholds. Cross markers denote the results before land masking, while circular markers der

the results after land masking.
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. mAP
S Fl-score
BN Precision
mmm Recall

0.8

SSDD @ 0.5 confidence NovaSAR @ 0.9 confidence SSDD @ 0.3 confidence + land mask NovaSAR @ 0.9 confidence + land mask CFAR @ 107% Py,

Figure 20: NovaSAR acquisition 849&erformance comparison between RetinaNet and CFARasedmethods

Both methods were able to identify ships in the 8498he SSDD model as expectedxcept in terms of
image, with all RetinaNet models outperforming theprecision.The NovaSAR model was capable of detecting
CFAR methodon nearly all metricsboth with and  more than 66% of the ships, while the SSDD model was
without land maskingThe NovaSAR RetinaNet model able to detect 40% of the ships present with slightly
outperformed the SSDD model after land maskingfewer false positives. The CFAdetector produced more
howeve prior to land masking the NovaSARwodel than 8000 false positives after applying a land mask.
produced more false alarms resulting in reducedBefore land masking, the NovaSAR model (at 0.9
precision.Land masking was necessary focleaf the  confidence) produced 292 false positives, and the SSDD
RetinaNet models to @mease precision in the 6102 model (at 0.4 confidence) produced 69.

image, where the NovaSAR model again outperformed

Figure 21: NovaSAR acquisition 6102 performance comparison between RetinaNet methods
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