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ABSTRACT 

Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field 
measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized 
by a footprint function / weighted area function that describes the mathematical relationship between the spatial 
distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint 
/ source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including 
turbulence fluxes, friction velocity (ustar), and wind speed, all of which influence the dimensions and orientation of the 
footprint. The total statistical weight of the footprint is equal to unity. However, due to the large size of the source area 
/ footprint, a statistical weight cutoff of less than one is considered, ranging between 0.85 and 0.95, to ensure that the 
footprint model is located inside the study area. This results in a degree of uncertainty when comparing the modeled 
fluxes from remote sensing energy models (i.e., TSEB2T) against the EC field measurements. In this research effort, 
the sensitivity of instantaneous and daily surface energy flux estimates to footprint weight cutoffs are evaluated using 
energy balance fluxes estimated with multispectral imagery acquired by AggieAir sUAS (small Unmanned Aerial 
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Vehicle) over commercial vineyards near Lodi, California, as part of the ARS-USDA Agricultural Research Service’s 
Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The instantaneous 
fluxes from the eddy covariance tower will be compared against instantaneous fluxes obtained from different TSEB2T 
aggregated footprint weights (cutoffs). The results indicate that the size, shape, and weight of pixels inside the footprint 
source area are strongly influenced by the cutoff values. Small cutoff values, such as 0.3 and 0.35, yielded high weights 
for pixels located within the footprint domain, while large cutoffs, such as 0.9 and 0.95, result in low weights. The 
results also indicate that the distribution of modelled LE values within the footprint source area are influenced by the 
cutoff values. A wide variation in LE was observed at high cutoffs, such as 0.90 and 0.95, while a low variation was 
observed at small cutoff values, such as 0.3. This happens due to the large number of pixel units involved inside the 
footprint domain when using high cutoff values, whereas a limited number of pixels are obtained at lower cutoff values. 

Keywords: eddy covariance (EC), footprint / source area, energy fluxes, latent heat flux (LE), spatial analysis, footprint 
cutoff, TSEB2T model, Kljun EC footprint model. 

 

1. INTRODUCTION 

Quantifying surface energy fluxes is essential for studying land-atmosphere interactions to better understand 
the physics behind climate and weather. Several methods have been used to measure surface fluxes in the field; 
however, the eddy covariance (EC) system has gained more popularity because it has few theoretical assumptions and 
an extensive scope of applications. For that reason, micrometeorologists consider it a standard method for determining 
energy and substance fluxes 1. Even so, the spatial heterogeneity of the land surface could be a challenging issue for 
EC measurements and limits its use. However, several studies have found the EC system capable of accurately 
measuring fluxes in a forest when the fluxes above and below canopy were partitioned 2,3,4,5. The EC tower is described 
as a non-intrusive technique that can spatially integrate fluxes at the ecosystem scale with a spatial domain of a few 
hectares 6. This contrasts with the flux chamber, which focuses on homogenous areas with a spatial domain not to 
exceed 1m2 7.  

The presence of different vegetation types and land cover patches at field scale may entail issues related to the 
representative spatial domain of the EC measurements 6. This stems from the fact that the EC integration process for 
measuring fluxes is non-uniform and potentially results in different contributions from different land cover types 8. The 
relative spatial weight of EC is defined as the footprint / source area, which depends on the micro-meteorological 
conditions at the site as measured by the EC tower. These conditions include turbulence fluxes, friction velocity (ustar), 
and wind speed, all of which influence the dimensions (fetch) and orientation of the footprint. The footprint dimension 
is determined by the EC fetch analysis that identifies the maximum distance between the EC tower and the extent of 
the source area. The total statistical weight of the footprint is equal to unity. For large source areas (~100%) the EC 
footprint has the potential to exceed the study area in an unacceptable way.  

Applying the footprint models has become a standard task for flux tower measurement analysis 9,10, and these 
footprint models are essential for validating the results of surface energy flux models such as the Two-Source Energy 
Balance Model (TSEB) and others. Although widespread footprint models have been used in different applications, the 
selection of suitable models still presents some challenges 11, and it is still in the exploratory stage. Another prominent 
challenge to the use of footprint models is related to the footprint weight cutoff, which could vary up to ~1. Few previous 
studies have addressed the suitable footprint weight cutoff, particularly in heterogeneous areas. Anderson and Vivoni 
2016 12 pointed out that cutoff values between 30% and 80% had low sensitivity when using the Kormann and Meixner 
model to measure land surface fluxes over a vegetation area. Still, the process of determining the cutoff value of an EC 
footprint source area is in the exploratory stage, particularly in complex canopy environments such as vineyards. In this 
research effort, multiple EC cutoff values have been tested to determine how the surface energy fluxes are influenced 
by the spatial extension of the footprint. The Kljun et al. 2015 11 model was used at multiple cutoff values (0.3, 0.35, 
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95), along with the TSEB2T model, to calculate the surface 
energy fluxes, mainly the latent heat flux (LE). 
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2. METHODOLOGY 

2.1 Study area 

The experiment was carried out in a vineyard with an area of approximately 62 ha located near Lodi in 
California’s Central Valley (38.29 N, 121.12 W) 13,14. The vineyard is operated and managed by Pacific Agri-Lands 
Management in cooperation with E&J Gallo Winery. The plantation structure is oriented east-west with a row width of 
3.35 m (11 feet). A cover crop grows in the interrows at a width of ~2-m, with bare soil strips along the vine rows, 
spanning ~ 0.7 m. The vine height varies between 2 m and 2.5 m agl (above ground level), and the plant biomass is 
concentrated in the upper half of the canopy height. The study site has been a part of the Grape Remote sensing 
Atmospheric Profile and Evapotranspiration eXperiment (GRAPeX) program for several years. This program is 
conducted as a collaboration between the USDA Agricultural Research Service, E&J Gallo Winery, Utah State 
University, University of California in Davis, and others 15,16. 

Flight campaigns were carried out by the AggieAir sUAS Program at Utah State University 
(https://uwrl.usu.edu/aggieair/). Multispectral images of the entire field have been acquired through many sUAS 
campaigns over several growing seasons. Optical data involving red, green, blue, and near infrared bands were acquired 
at 10-cm spatial resolution 17,18,19. Land surface temperature (LST) was acquired during the same flights using a 
microbolometer camera 20 and was radiometrically calibrated 21  using the procedures discussed in Torres-Rua 2017 22. 

To evaluate the ET performance, an eddy covariance (EC) flux system was deployed to measure turbulent fluxes, 
including LE and H, and the available energy terms of Rn and G. The tower is located at the eastern edge of the field 
due to predominant winds from the west. EC micrometeorological data also included wind speed, air temperature, vapor 
pressure, air pressure, and shortwave radiation. Hourly average values of these atmospheric forcing variables, as well 
as the components of the surface energy balance, were computed. Table (1) illustrates the in-situ micrometeorological 
parameters and the names of the instruments used for the measurements. 

Table 1. Description of in-situ micrometeorological measurements in this study. 

ID 
Micrometeorological 

parameters 
Instrument name1 Elevation 

1 Water vapor concentration Infrared gas analyzer (EC150, Campbell Scientific, Logan, 
Utah) 

5 m agl 

2 Wind velocity Sonic anemometer (CSAT3, Campbell Scientific) 5 m agl 

3 Net radiation 4-way radiometer (CNR-1, Kipp and Zonen, Delft, 
Netherlands) 

6 m agl 

4 Air temperature Gill shielded temperature (Vaisala, Helsinki, Finland)  5 m agl 

5 Water vapor pressure  Humidity probe (HMP45C, Vaisala, Helsinki, Finland) 5 m agl 

6 Soil heat flux Five plates (HFT-3, Radiation Energy Balance Systems, 
Bellevue, Washington) 

-8 cm  

7 Soil temperature  Thermocouples  -2 cm 

8 Soil moisture  Soil moisture probe (HydraProbe, Stevens Water 
Monitoring Systems, Portland, Oregon) 

-5 cm 

1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use does not constitute official 
endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of 
others that may be suitable. 
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Figure 1. Layout of study area in Lodi, California, locations of the north EC tower, and an example of 90% of the EC 
footprint at Landsat time for August 09, 2014. 

 

2.2 EC footprint model 

Flux footprint models are used for interpretation of flux tower measurements to describe the position and size 
of surface source areas and the relative contribution of passive scalar sources to measured fluxes 11. The flux footprint 
is defined as a mathematical function used to transfer between sources and sinks of passive scalars at the surface, Qc, 
and the turbulent flux, Fc. Many parameters influence the estimate of the footprint, including receptor height, 
atmospheric stability, and surface roughness, all of which strongly affect the size of the footprint. The general 
mathematical expression used to describe the EC footprint analysis is shown in Equation (1) 

Fୡሺ0,0, z୫ሻ ൌ ׬ Qୡሺx, yሻfሺx, yሻdxdyℜ
       (1) 

where Fୡ is a flux density (per unit area), Qୡሺx, yሻ is the as source or sink at the surface. Because the footprint function 
is always estimated at a specific measurement height (receptor height), the vertical reference in f is neglected. From a 
single unit point source or sink,Q୳, Equation (1) can be simplified as follows 

fሺx, yሻ ൌ ୊ౙሺ଴,଴,୸ౣሻ

୕౫ሺ୶,୷ሻ
                    (2) 

In this study, the model used for footprint analysis was developed by Kljun et al. 2002 23 using the three-
dimensional Lagrangian stochastic footprint model LPDM-B. This model satisfies the well-mixed condition 
continuously for convective to stable stratifications and for measurement heights (receptors) within or above the surface 
layer. Assuming that crosswind turbulent dispersion can be treated independently from vertical or streamwise transport, 
the footprint function can be expressed in terms of a crosswind-integrated footprint, f ୷ഥ   and a cross-dispersion function, 
D୷  
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fሺx, yሻ ൌ f ୷ഥ ሺxሻD୷                             (3) 

fሺx, yሻ ൌ f ୷ഥ ଵ

√ଶ஠஢౯
exp ൬െ ୷మ

ଶ஢౯మ
൰        (4) 

More details about the derivation of the footprint model and model parameters can be found at Kljun et al. 2015 11 

 

2.3 TSEB2T model 

For this research, the Two Source Energy Balance with a dual temperature (TSEB2T) model has been used. 
The TSEB model was originally developed by Norman et al. 1995 24 to partition the radiative and turbulent fluxes 
between soil and canopy. In this case, net radiation (Rn) and latent heat flux (H) are partitioned between soil and canopy. 
TSEB has gone through several revisions to improve the representation of convective and radiative exchange between 
the soil and canopy system and the lower atmosphere. As illustrated in Figure (2), the TSEB2T model separates Rn, 
LE, and H between soil and vegetation, while G is calculated as a portion of Rns. Equations (5-7) describe the 
mathematical expressions used for the TSEB2T model 

R୬ ൌ LE ൅ H ൅ G, (5) 

R୬ୡ ൌ Hୡ ൅ LEୡ, (6) 

R୬ୱ ൌ Hୱ ൅ LEୱ ൅ G, (7) 

 

Figure 2. Schematic representation of the TSEB2T model 

 

where Rn is the net radiation, H is the sensible heat flux, LE is the latent heat flux, and G is the soil heat flux. 
All flux units are in W/m2. Subscripts of c and s represent the canopy and soil components, respectively. Ts and Tc 
represents the soil and canopy temperature, respectively and are derived from the LST using optical data with a high 
enough resolution. LEc and LEs are solved as residuals when (Tc and Ts) observations are available. 

The main inputs of TSEB2T are Tc, Ts, fc, LAI, wc/hc, and hc, as well as ancillary micrometeorological data to 
parameterize the radiative and convective flux exchange between the soil/substrate and the canopy. A study conducted 
by Chirouze et al. 2014 25 found the TSEB model to be better compared with other remote sensing ET models due to 
its lack of sensitivity to roughness.  

The underpinning concept behind the TSEB2T model is the determination of Ts and Tc from composite LST 
imagery using the relationship between NDVI or any vegetation index (VIs) and LST, such as the LST-NDVI 
relationship 18. Ts and Tc are then identified based on threshold values of NDVI for soil and canopy. Threshold NDVIc 
is calculated as the mean value of pixels identified as pure vegetation in a binary (soil-vegetation) classification of a 
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multispectral image. The NDVI threshold of pure soil for bare soil interrows is determined by constructing a 
relationship between NDVI and LAI curves when LAI in the interrows is nearly zero.  

 

3. RESULTS 

3.1 EC Footprint Estimation 

Figure (3) represents the footprint analysis using the 2D flux model developed by Kljun et al. 2015 11 and 
described in section 2.2 for a sUAS flight carried out on August 09, 2014. The fetch shape and orientation of the flux 
footprint / source area depend on the micro-meteorological conditions at the site measured by the EC towers. Those 
measurements involve turbulence fluxes, friction velocity, and wind speed, which affect atmospheric stability, and 
canopy and EC measurement height, which affect the effective sampling height and wind direction, subsequently 
affecting the orientation of the footprint. As illustrated in Figure (3), the different sizes of EC footprint fetch rely on 
the cutoff value used in the footprint analysis. A small EC fetch area relates to a low cutoff value, while a large 
contribution area / source area relates to a large cutoff value. The total statistical weight of the footprint is taken to 
equal unity by normalizing the values, although the actual area computed by the footprint model varies depending on 
the cutoff value.  

 

Figure 3. Multiple EC footprints at different cutoffs. 

 

As shown in Figure (4), boxplots are used to demonstrate the variation of footprint weights within the source 
area across multiple cutoff values. The results indicate a decreasing trend in the weights as cutoff values increase. The 
highest weights with a large variance are observed at a 0.3 cutoff, while the lowest values with small variability are 
obtained when a 0.95 cutoff is used. At the 0.3 cutoff, a small number of pixels are involved inside the EC footprint, 
an area less than 700 m2, which causes large deviations between the pixels located close to the EC towers and those at 
a large distance from the tower. In general, the highest weight in the footprint analysis is allocated to the closest pixels 
to the EC towers, which then degrade as the distance increases. Using a 0.95 cutoff, the results indicate a very small 
variation in the weights due to the large number of pixels included inside the source area / footprint, which give more 
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span / enough distance to the weights to decrease gradually, with the exception of some outliers (see Figure (4)) that 
represent the high-weighted pixels close to the EC tower. 

 

Figure 4. Boxplots for EC footprint weights at multiple cutoffs at 3.6-m resolution. 

 

3.2 Impact of cutoff on LE statistics 

To evaluate the effect of footprint cutoff on LE statistics inside the source area, multiple boxplots for LE 
values are presented (see Figure(5)), and other statistics including the mean, standard deviation, and coefficient of 
variation (CV) were calculated as shown in Table (1). As illustrated in Figure (5), although the results indicate an 
increasing variability in LE values as the cutoff value increases, a small shift in the median is observed across different 
cutoffs. The highest variation of LE was observed at a cutoff value of 0.95, ranging between 9 W/m2 and 535 W/m2, 
while, at 0.3 cutoff, the range becomes small, varying between 244 W/m2 and 436 W/m2. This happens due to the large 
number of pixels involved within the footprint domain at the 0.95 cutoff, whereas the 0.3 cutoff results in a small source 
area with a limited number of pixels, accounting for 54 units. 

 

Figure 5. Boxplots of LE at multiple cutoffs at 3.6-m resolution. 

 

As shown in Table 2, the mean (μ) shows little difference across different cutoff weights, with a slight increase in 
CV. In the range between the 0.3 and 0.65 cutoffs, the CV shows very close values that vary from 8% to 9%. The 
exception emerges at the 0.9 and 0.95 cutoffs, which show a significant difference in mean and CV. As demonstrated 
in Table 2, the mean at the 0.90 and 0.95 cutoffs yields values of 335 W/m2 and 326 W/m2, respectively, while the CV 
yielded values of 13% and 17%, respectively. This behavior aligns with the results presented in Figure (5) due to the 
large EC source area produced using high cutoff values, particularly at 0.95, which implies that more pixel units are 
included inside the footprint domain, causing high spatial variability. 
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Table 2. Statistics of sUAS TSEB2T LE inside the EC footprint/source area at different cutoffs. 

Cutoff Mean(W/m2) SD(W/m2) CV 

0.3 317 29 9 

0.35 316 29 9 

0.4 317 27 9 

0.45 318 27 8 

0.5 318 27 8 

0.55 319 27 9 

0.6 321 26 8 

0.65 321 28 9 

0.7 320 31 10 

0.75 319 34 11 

0.8 318 35 11 

0.85 320 39 12 

0.9 335 44 13 

0.95 326 54 17 

 

Figure (6) shows the relationship between the cutoff and LE, calculated by multiplying the source area of the 
footprint model by the corresponding modeled LE map. The results indicate an increasing trend in LE with increasing 
cutoff value; however, the range of LE values is small, varying between 315 W/m2 and 322 W/m2. This implies that 
LE is only slightly influenced by the cutoff, particularly in the range between 0.6 and 0.85, which yield almost the same 
LE value of nearly 318 W/m2. The best agreement between the modelled and measured LE is found at the 0.85 cutoff. 
Moreover, as illustrated in Figure (6), the general trend of the cutoff-LE relationship seems to behave like an 
exponential model within the cutoff range between 0.3 and 0.8, similar to a semivariogram plot, which is characterized 
by a linear increasing trend to a certain level that then flattens out.  

 

 

Figure 6. Relationship between the cutoff and the weighted LE. 

 

 

 

EC measurement 
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4. CONCLUSIONS 

The objective of this study was to evaluate the impact of EC weight cutoff on latent heat flux (LE) in vineyards 
at different cutoff values, specifically, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95, using 
the Kljun EC model along with a physically-based ET model known as TSEB2T with sUAS information. In this study, 
a grid size of 3.6 m was used for analysis, which represents the finest pixel resolution that includes both vine canopy 
and interrow conditions. Multiple statistical measures were used to assess the effect of cutoff on the LE values. Firstly, 
multiple boxplots were used to evaluate the weight of pixels inside the footprint domain, which indicate a decreasing 
trend in the weights with increasing cutoff values. High weights were observed at the 0.3 cutoff with large variation, 
while the 0.95 cutoff yielded very low values with little variation. Secondly, mean CV and bias were calculated to 
assess the LE statistics within the footprint domain at different cutoff values. The results indicate a high variation in 
LE values when large cutoff values were used, such as 0.9 and 0.95. This is because heterogeneity increases at larger 
footprints, thus providing a higher variability. The mean of LE from TSEB2T showed little difference across multiple 
cutoffs, with a slight increase in CV. The exception is at cutoff values of 0.9 and 0.95, which show a significant 
difference in mean and CV. Lastly, to assess the weighted LE values using different cutoff values, each source area 
estimated by the footprint model was multiplied by the corresponding modeled LE map produced by the TSEB2T 
model. The results indicate an increasing trend in LE with increasing cutoff value. However, the range of LE is very 
small, particularly when using cutoff values between 0.6 and 0.85. The best agreement between the modelled and 
measured LE is found at the 0.85 cutoff. 
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