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Abstract: In the context of global warming, rising air temperatures are increasing evapotranspira-
tion (ET) in all agricultural crops, including rice, a staple food worldwide. Simultaneously, the
occurrence of droughts is reducing water availability, affecting traditional irrigation methods for
rice cultivation (flood irrigation). The objective of this study was to determine ET. (water use) and
yield performance in rice crop under different irrigation regimes: treatments with continuous flood
irrigation (CF) and irrigations with alternating wetting and drying (AWD5, AWD,,, and AWD,) in
an experimental area in INIA—Vista Florida. Water balance, rice physiological data, and yield were
measured in the field, and local weather data and thermal and multispectral images were collected
with a meteorological station and a UAV (a total of 13 flights). ET. values obtained by applying the
METRIC™ (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy
balance model ranged from 2.4 to 8.9 mm d-! for the AWD and CF irrigation regimes. In addition,
ET. was estimated by a water balance using the AquaCrop model, previously parameterized with
RGB image data and field weather data, soil, irrigation water, and crops, obtaining values between
4.3 and 7.1 mm d~' for the AWD and CF irrigation regimes. The results indicated that AWD irrigation
allows for water savings of 27 to 28%, although it entails a yield reduction of from 2 to 15%, which
translates into an increase in water use efficiency (WUE) of from 18 to 36%, allowing for optimizing

water use and improving irrigation management.

Keywords: energy balance; UAV; thermal sensors; multispectral sensor; paddy flooded; AquaCrop;
evapotranspiration
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1. Introduction

Peru is one of the nations facing moderate-to-significant water scarcity, with a water
extraction-to-availability ratio ranging from 20-40% [1]. Rice, which requires a lot of water
for cultivation, stands as one of the most water-demanding crops [2]. In 2022, Peru pro-
duced 3 million tons of paddy rice, mainly in the regions of Lambayeque and La Libertad
[3]. In these areas, 82% of rice farming uses flooded irrigation, while 18% depends on rain-
fall [4]. Flooded irrigation, which uses between 12,000 and 20,000 m3ha! of water, leads
to increased water tables and soil salinization [5], resulting in lower productivity and re-
duced agricultural land in coastal valleys.

To tackle these issues, adopting innovative agricultural technologies that improve
irrigation efficiency and cut down water usage is crucial. Traditional continuous flooding
(CF) uses large water volumes [6]. Alternative methods, like alternating wetting and dry-
ing (AWD), have shown that they can significantly reduce water use while maintaining
crop yields and lessening environmental harm. Research from places such as Burkina
Faso, Egypt, and Peru indicates that AWD can cut methane emissions by up to 80% and
improve nitrogen efficiency in soils [7-10]. AWD not only decreases water input by up to
34% compared to conventional methods but also provides a cost-effective alternative for
farmers in areas where advanced irrigation technologies, like drip irrigation, are imprac-
tical [8]. Moreover, AWD has been found to enhance soil health and reduce the build-up
of harmful elements, like arsenic, in rice grains, making it an environmentally sustainable
choice [11].

Other promising alternatives to conventional irrigation systems include aerobic rice
systems, the system of rice intensification (SRI), saturated soil culture (55C), direct seeding
rice (DSR), drip irrigation, and automated surface gravity irrigation systems [12,13]. AWD,
which involves intermittent and scheduled flooding, ensures adequate water supply dur-
ing key growth phases while cutting overall water consumption, thus avoiding negative
effects on yield and grain quality [2,14]. The main benefit of AWD is its capacity to reduce
water usage by up to 34% while maintaining yields comparable to traditional methods
[15]. Unlike drip irrigation, which might be less viable for large-scale farming due to high
costs and complexity, AWD offers a more accessible and economical option for farmers.
Additionally, AWD has been shown to boost soil health and decrease the accumulation of
harmful substances like arsenic in rice grains, making it an eco-friendly approach [11].

Water scarcity is becoming an increasingly pressing challenge in rice farming [16]. The
water needed for the crop depends on crop evapotranspiration (ET.), which represents the
water consumed by a cultivated area. ET is affected by climatic factors such as air tempera-
ture, wind speed, solar radiation, relative humidity, and sunshine hours, as well as crop
characteristics like vegetation height, phenological stage, and planting density [17].

Traditional methods for obtaining ET include water balances with lysimeters, mois-
ture sensors, and models like AquaCrop—FAO, which are parameterized with climate, soil,
irrigation water, and crop data [18]. However, these methods are expensive and provide
localized information for specific crops [17,19]. The use of remote sensors offers ongoing
image data across the electromagnetic spectrum, enabling the characterization of crop
phenology, soil, and water conditions [19]. Remote sensors and surface energy balance
techniques allow for the estimation of ET...

Numerous studies have investigated ET., water use efficiency (WUE), and AWD in
rice cultivation under various climatic conditions, irrigation systems, and estimation
methods. ET, values vary widely across regions, reflecting local climate and irrigation
practices. For instance, in warm arid climates, drip irrigation studies in Peru reported ET.
values ranging from 1.65 to 7.48 mm d~' using energy balance methods like METRIC
[20], while similar conditions in Iran and Pakistan showed values between 2 and 8.51 mm
dat using water balance methods [21,22]. Research in humid tropical climates, such as the
Ivory Coast and Burkina Faso, revealed ET. values of from 0 to 6.17 mm d™! under
flooded conditions using energy balance techniques [23,24]. Additionally, studies
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incorporating AWD in temperate arid regions, such as Peru, demonstrated ET. values
between 6.54 and 7.07 mm d~' [25], highlighting AWD’s potential to improve WUE while
reducing water consumption. AWD has proven particularly effective in arid and semi-arid
climates, where water conservation is critical [8,9]. These findings, using methods from
traditional water balances [26] to advanced machine learning models [27], offer valuable
context for understanding AWD’s effectiveness in enhancing water efficiency and main-
taining rice productivity under diverse environmental conditions.

The METRICTM method (Mapping Evapotranspiration at High Resolution using In-
ternalized Calibration) is an algorithm that estimates ET. as a residual of the energy bal-
ance using remotely sensed images [28]. METRICTM provides data in the visible, near-
infrared, and thermal spectra at daily, monthly, or full-season scales and has been applied
in ET estimation for various crops such as barley [29], wheat [30], and maize [31]. High-
resolution images enhance surface classification (soil and plant) in heterogeneous fields,
improving METRICTM model performance [32].

The aim of this study was to evaluate both ET. and WUE in rice crops in northern
Peru under different irrigation regimes, including AWD and CF, in an experimental area
in northern Peru. This region faces limited water resources, making the optimization of
water use in agriculture essential. By providing accurate data on ET. and WUE, this re-
search offers valuable insights for improving irrigation management and promoting more
efficient water use in rice cultivation under arid conditions. This, in turn, supports sus-
tainable agricultural development on the coast of Peru.

2. Materials and Methods

Figure 1 depicts the research methodology employed in this study, which took place
during the rice growing season from December to June.

UAV | | |

Meteorological data ’Physiology‘ ‘ Yield ‘
(Ta, WS, RH, RS)

|| Multispectral

imaging —‘
- Image RGB ——IMETRIC| |AquaCrop|

o] W
Imaging

Figure 1. Flow diagram of the methodology followed in this study.

Generation of
orthomosaics

2.1. Study Area

This research was carried out in the Lambayeque region, located on the northern
coast of Peru at an altitude of 35 m above sea level. An experimental area was established
to apply the AWD and CF irrigation systems. The experiment was carried out in the rice
fields of the Experimental Agricultural Station (EEA) “Vista Florida”, belonging to the Na-
tional Institute for Agrarian Innovation (INIA), located in the district of Picsi, province of
Chiclayo (Figure 2).
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Figure 2. Study area: (a) geographical location; (b) Lambayeque region; (¢) Experimental Agricul-
tural Station (EEA) “Vista Florida” with four plots of 24 x 11 m each, divided into three subplots
of 8 x11 m, with two irrigation regimes of continuous flooding (CF) and alternating wetting and
drying (AWD), the latter having water levels at 5 cm, 10 cm, and 20 cm below the soil surface level
(AWDs5, AWDy;, and AWDy).

The experimental area at INIA-Vista Florida is characterized by a sandy loam soil
with 26% sand, 39% clay, and 35% silt. The soil has a bulk density (da) of 1.41 gcm™ and
a real density (dr) of 2.7 g cm?, resulting in a porosity of 47.2%. The field capacity (FC) is
29.8%, and the permanent wilting point (PWP) is 16.3%. The soil has an electrical conduc-
tivity (EC) of 0.4 dS m’!, with a hydrogen potential (pH) of 7.6. The cation exchange ca-
pacity (CEC) is 220 meq kg . Additionally, the soil contains 1.2% organic matter (OM),
0.1% total nitrogen (N), 4% calcium carbonate (CaCO3), 12 ppm phosphorus (P), and 376
ppm potassium (K). These analyses were conducted at the Soil, Plant, Water, and Fertilizer
Analysis Laboratory of the Faculty of Agronomy—UNALM. It is important to note that
composite samples were collected from the four treatments in the experiment, ensuring
that the soil properties were representative of the entire study area.

At the start of the experiment, the groundwater table depth was approximately 1 m
across the entire study area. However, following irrigation events, a gradient was induced,
leading to lateral flow. To manage this flow, the plots were divided into transverse zones
specifically designed to mitigate lateral movement. Although the groundwater initially
maintained a relatively uniform depth, variations were observed due to contributions and
losses from percolation, largely influenced by soil texture. These factors led to localized
fluctuations, but the overall groundwater depth remained within a consistent range across
all plots.
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2.2. Irrigation Management

The water supply for irrigation came from a canal supplied by the Tinajones reser-
voir, which is managed by the Capote irrigation commission. Throughout the different
stages of plant growth (vegetative, reproductive, and maturation), a total of sixteen, three,
and five irrigation cycles were carried out, respectively (Figure S1). The initial treatment
consisted of continuous or traditional flood irrigation (CF), while the water-saving treat-
ments used alternating wetting and drying (AWD) irrigation with water levels at a depth
of 5 cm, 10 cm, and 20 cm below the soil surface (AWDs5, AWD;,, and AWD,), with the
water level monitored using piezometers [33]. The study design was as an observational
experiment, with four plots of 24 x 11 m each.

The chemical characteristics of the irrigation water were as follows: pH 7.34, EC 0.31
dS m, cations (Ca** 1.91; Mg? 0.43; Na* 0.59; K* 0.10) meq L', and anions (CI"" 1.00;
HCOé2 1.89; SO7 0.29) meq L™, The irrigation water was classified as C2-51, indicating a
low sodium content and salinity. The sodium absorption ratio (SAR) was 0.55.

The INIA 515-Capotefia rice variety was planted on 2 January 2023, using the alma-
cigo technique. Thirty days post sowing (DPS), two seedlings were transplanted per
stroke, with a spacing of 0.25 cm x 0.25 cm (Table 1). The N-P-K fertilization dose was 250
106-60 (Kg ha™) in the form of urea, diammonium phosphate, and potassium sulfate, re-
spectively. During transplanting, 100% P and K and 30% N were applied. The rest of the
nitrogen fertilizer was distributed equally in the early tillering, panicle initiation, early
flowering, and peak flowering stages [34].

The development of the crop was assessed using growing degree days (GDD) from
planting, establishing a base temperature of 10 °C, which is a typical threshold for rice
cultivation. This index has proven effective for monitoring rice growth and development,
enabling better planning of agricultural management practices and optimizing water us-
age. Furthermore, the application of GDD in modeling rice growth, as detailed in the
study by Porras-Jorge et al. [18], provides a valuable tool for predicting yield under vari-
ous irrigation management conditions, such as alternating wetting and drying (AWD).
This approach can contribute to improving water use efficiency and the sustainability of
rice production in changing climatic contexts.

Table 1. Description of drone dates and days post sowing (DPS) in the experimental area.

. Phenology

Flight  DPS CF AWD; AWDy, AWD,,
1 38 Seedling Seedling Seedling Seedling
2 61 Tillering Tillering Tillering Tillering
3 65 Tillering Tillering Tillering Tillering
4 75 Tillering Tillering Tillering Tillering
5 79 Tillering Tillering Tillering Tillering
6 88 Tillering Tillering Tillering Tillering
7 92 Maximum tillering Tillering Tillering Tillering
8 103 Panicle initiation Maximum tillering Maximum tillering Maximum tillering
9 107 Panicle initiation Panicle initiation Panicle initiation Panicle initiation
10 123 Heading stage Heading stage Heading stage Heading stage
11 127 Flowering stage Flowering stage Flowering stage Flowering stage
12 147 Dough stage Dough stage Dough stage Dough stage
13 149 Maturity stage Maturity stage Maturity stage Maturity stage

Insecticides were applied to control Chironomus sp. and Hydrellia wirthii, which
caused problems during the vegetative stage (75 DPS) [35]. In addition, fungicides were
applied at the milky grain stage (136 DPS) to prevent disease caused by the fungus Usti-
laginoidea virens.
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2.3. Estimation of Crop Evapotranspiration (ET.)

Figure 3 illustrates the step-by-step process for estimating crop evapotranspiration
(ET.), adapted from the approach by Ramos-Fernandez et al. [25], with modifications spe-
cific to this study. This estimation utilized remote sensing data and field measurements,
incorporating UAV flights and climate data collection, as described below.

Initially, UAV flights (1) were performed to gather multispectral (2), RGB (3), and
thermal (4) images of the rice fields. From the NIR (5) and RED (6) bands, albedo (a) (10)
and vegetation indices like the NDVI (9) and Leaf Area Index (LAI) (12) were calculated,
with the LAI values refined using field data for enhanced accuracy. A Digital Terrain
Model (DTM) (7) was also derived from the RGB orthomosaic (3), and atmospheric trans-
missivity (TSW) (11) was estimated based on the DTM (7).

Climate data (14) were collected using a portable automatic weather station (ATMOS
41), which recorded solar radiation (RS) (15), wind speed (V) (16), atmospheric pressure (P)
(17), relative humidity (HR) (18), and air temperature (Ta) (19). These data facilitated the
calculation of the reference evapotranspiration (ET,) (20) using the FAO Penman-Monteith
method, from which the daily reference evapotranspiration (ET;_»4) (21) was derived.

The surface temperature (Ts) (8) was extracted from the thermal imagery (4) and ad-
justed with field data from a radiometer to estimate the corrected surface temperature (TS
adjusted) (13). Net radiation (Rn) (23) was computed using the solar zenith angle (Cos0),
solar constant (GsC), and inverse relative distance Earth-Sun (dr) (22), combined with the
LAI (12), air temperature (Ta) (19), and adjusted surface temperature (TS adjusted) (13).

To estimate the sensible heat flux (H) (25), the hot and cold pixel method (24) was
applied, along with the LAI (12), atmospheric transmissivity (TSW) (11), wind speed (V)
(16), and adjusted surface temperature (Ts adjusted) (13). The instantaneous evapotran-
spiration (ET},;) (28) was then determined based on the adjusted surface temperature (Ts
adjusted) (13).

The soil heat flux (G) (26) was calculated using the net radiation (Rn) (23), albedo (10),
adjusted surface temperature (Ts adjusted) (13), and NDVI (9). The latent heat flux (LE)
(27) was derived by subtracting the soil heat flux (G) (26) and sensible heat flux (H) (25)
from the net radiation (Rn) (23). The reference evapotranspiration fraction (ET,g) (29) was
determined using the reference evapotranspiration (ET,) (20) values. Finally, the crop
evapotranspiration (ET.) (30) was estimated by multiplying the reference evapotranspira-
tion fraction (ET,) (29) by the daily reference evapotranspiration (ETy_4) (21). All data
processing was conducted using QGIS plugins, and the methods were validated with in-
field measurements to ensure accuracy in estimating ET...
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Figure 3. Flow chart for the calculation of evapotranspiration.
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2.4. Field Measurements and Yield Data
2.4.1. Image Acquisition and Thermal Analysis for Crop Monitoring

Data were collected using a state-of-the-art Parrot Sequoia multispectral camera (Par-
rot S.A., Paris, France) and a high-performance Zenmuse H20T radiometric thermal cam-
era (DJI, Shenzhen, China). The multispectral camera includes a 16 MP RGB camera and
captures images in four multispectral bands: green (550 nm), red (660 nm), red edge (735
nm), and near-infrared (790 nm). It also features a 1.2 MP global shutter and a “Sunshine”
sensor that measures sunlight intensity in these same spectral bands, which enhanced the
accuracy of the data collected.

The thermal camera features an advanced uncooled VOx microbolometer sensor with
a40.6° DFOV lens, a 13.5 mm focal length, and a focus of 5 m at . The camera can capture
thermal and optical images in radiometric RGB and TIF formats, with a temperature meas-
urement range of from 8 to 14 um and a thermal resolution of 640 x 512 pixels. Its accuracy
is +2 °C, tested at 25 °C in a windless laboratory at 5 m from a blackbody. In addition, a
laser rangefinder was used with an accuracy of + (0.2 m + D x 0.15%), where D is the dis-
tance to a vertical surface, providing precise distance measurements necessary for accu-
rate image acquisition.

Both cameras were mounted on highly capable Matrice 300 RTK remotely piloted
aircraft (UAV) (DJI, Shenzhen, China). The UAV has a vertical and horizontal GPS dis-
placement accuracy of 0.1 m and +0.3 m, respectively. The flights were conducted at an
altitude of 45 m between 09:00 and 11:30 h on clear days. Thermal information was ad-
justed using temperature data measured on nine different canopy surfaces (e.g., alumi-
num, dry leaves, green leaves, expanded polystyrene) placed within a 1 x 1 m PVC frame.
Temperature measurements of these surfaces were carried out with an Apogee MI-210
radiometer (MI-210; Apogee Instruments, Inc., Logan, UT, USA) at a height of 40 cm, with
a total of 81 readings collected per flight between February 11 and June 2, 2023, [4].

2.4.2. Measurement of Normalized Difference Vegetation Index (NDVI) and Leaf Area
Index (LAI)

Twenty-five plants were selected from areas adjacent to the continuous flooding (CF)
field. For each of these plants, the Normalized Difference Vegetation Index (NDVI) was
measured, and biomass was collected to calculate the Leaf Area Index (LAI) and establish
a correlation equation.

The NDVI, which is an index related to the energy absorption of plant leaves [29],
was measured using a portable Trimble GreenSeeker™ reflectometer. Readings were
taken at a height of 60 cm above the plants, with three measurements per plant, yielding
a total of 75 readings throughout the crop development stages. The methodology for re-
cording NDVI measurements was similar to that used by Fan et al. [36].

The LAL an indicator of the radiation absorbed by plants during photosynthesis, was
estimated using an extractive method. First, the aerial parts of each plant were harvested,
followed by the separation of the leaves, which were then placed on a 1 x 1 m expanded
polystyrene sheet. The leaves were classified by size and photographed to determine their
leaf area using the QGIS 3.32 software. Finally, the leaf area was normalized by dividing
it by the reference area corresponding to a plant spacing of 0.2 x 0.2 m>. This procedure
was consistently applied to the 25 plants used for NDVI measurement.

2.4.3. Meteorological Conditions

Meteorological information, including wind speed (WS, m s!), air temperature (Ta,
°C), relative humidity (RH, %), and solar radiation (SR, W m2), were recorded using an
ATMOS-41 portable automatic station (METER, Pullman, WA, USA). This station was
linked to a ZL6 data logger and positioned 2 m above the ground at the center of the
experimental field. Data collection occurred continuously every 5 min during the UAV
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flight days. The SDI-12 digital communication system enabled data transfer from the en-
vironmental sensors to the data logger, ensuring efficient and precise data recording.

To compute the reference evapotranspiration (ETy), the collected meteorological data
were analyzed using the FAO Penman-Monteith method, which takes into account the air
temperature, relative humidity, wind speed, solar radiation, and atmospheric pressure.
The hourly ET, values were aggregated to calculate the daily evapotranspiration (ET(-24)
for each day.

2.4.4. Yield Performance Assessment of INIA 515-Capotenia

The yield of rice varieties in this study was measured manually between 154 and 156
days post sowing (DPS). Yield replicates were measured in each treatment to ensure reli-
ability of the results. For yield estimation, the de-husked grains of the INIA 515-Capotefia
variety were harvested when the moisture content was approximately 16%, ensuring that
the final moisture content at weighing was around 14%. Grain moisture was measured
using a WILE-55 device (WILE, Helsinki, Finland), which provides readings for rice grains
within a moisture content range of from 8% to 30%, with an accuracy of +0.5% over a
temperature range of from 0 °C to 40 °C.

The hulled grain of the INIA 515-Capotefia variety is slender and transparent, yield-
ing a higher proportion of whole hulled rice compared to the IR-43 variety, albeit slightly
lower than that of the INIA 508-Tinajones variety. This variety has an intermediate growth
cycle, requiring approximately 150 days from sowing to maturation. Its yield potential
exceeds that of the IR-43 variety, with experimental plots in Chepén (La Libertad) achiev-
ingupto14.0t ha™" of paddy rice and 13.0t ha™" being achieved in the Fala sector (Lam-
bayeque). Additionally, commercial plots have reported yields exceeding 12.0 t ha™" of
paddy rice [37,38].

To analyze the yield, tests for normality and homogeneity of variances were con-
ducted, followed by an analysis of variance (ANOVA) to determine significant differences
between treatments. The ANOVA results indicated that there were no significant differ-
ences in yield among the treatments (p > 0.05). The Tukey HSD test further confirmed the
absence of significant differences in yield concerning the CF treatment. Figure 4 shows
that there were no significant differences in yield among the treatments evaluated.

CF 1

AWDs 1

Treatments

AWD1 1

AWD3g

13 14 15 16 17 18 19 20 21
Yield Difference (t ha™!)

Figure 4. Tukey’s HSD test: comparisons of treatments with CF.

2.5. Generation of Orthomosaics for Temperature, NDVI, LAIL and Albedo

Image preprocessing was carried out using the photogrammetric software
Pix4Dmapper Pro (Pix4D S.A., Prilly, Switzerland) version 4.4.12. This process involved
three standard procedures: photo alignment, point cloud generation, and orthomosaics
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with digital surface models (DSM) [25]. The software has a camera model registry that
allows for recognizing and processing images in RGB, multispectral, thermal, and 3D
model formats.

Orthomosaics were generated from both RGB and thermal images. Subsequently, the
resolution was homogenized to 15 cm pixel'1 using the resampling method (resample). In
addition, a supervised classification (maximum likelihood) of the images was performed
using the QGIS 3.32 software to obtain the vegetation mask corresponding to each orthomo-
saic.

To correct the data from the thermal images, the information provided by the radi-
ometer was used, since environmental humidity can affect these measurements. The Nor-
malized Difference Vegetation Index (NDVI) was estimated by using the NIR and RED
banks of the multispectral images, according to Equation (1).

NDVI = NIR — RED O
" NIR + RED

The equation obtained from the relationship between the Leaf Area Index (LAI) and
the Normalized Difference Vegetation Index (NDVI), based on the information collected
in the field, was used to validate the NDVI generated by the UAV images. This allowed
for estimating the spatial LAI, following the approach established by Fan et al. [36]. The
albedo calculation was based on the average of the NIR and RED bands, according to the
studies conducted by Quille-Mamani et al. [20] and Machaca-Pillaca et al. [39].

Previous studies exploring the correlation between the LAl and NDVI include research
conducted on semi-arid grasslands in Inner Mongolia, China, by Fan et al. [36], who devel-
oped a general exponential correlation (Y[;=0.128eNPVI03I1 'R = 0.77). Additionally,
Quispe et al. [40] studied rice fields in the La Molina District, Lima, Peru, and derived an
exponential correlation with the equation Yj z; = 0.0202e33NPVL which resulted in a coef-
ficient of determination (R?) of 0.539 and a root mean square error (RMSE) of 0.35.

Figure 5 below presents a graphical summary of the field data collection process and
the equipment used in the study area.

Matrice 300
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U /
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camera and thermal

camera H20T : \V\V\
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Radiometric
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| “gm B Meteorological

data

Radiometer \-

Extractive
method (LAI)
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ATMOS 41

AWDjo: h =10 cm

Spadioe ) AWDz:h =20 cm

Continuous AWDs:h=5cm
AWD

Figure 5. Graphical summary with the irrigation techniques used: CF and AWD, the latter with wa-
ter levels at a depth of 5 cm, 10 cm, and 20 cm below the soil surface level (AWDs5, AWD;, and
AWD,), and equipment used in the field data collection.
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2.6. Energy and Water Use Efficiency Balance

METRIC™ is a variant of the SEBAL (Surface Energy Balance Algorithm for Land)
model that calculates crop evapotranspiration (ET.) by analyzing the surface energy bal-
ance using satellite information [41,42]. However, due to the lack of spatial resolution for
plot-level studies and the scarcity of real-time data [17], it is necessary to employ high-
resolution data, free of atmospheric errors and available in real time, provided by UAVs
to improve the accuracy of ET. estimation and facilitate uniform crop monitoring [43].

In this study, the METRIC model was used to estimate ET. from multispectral im-
ages obtained by a UAV. The ET. was determined as the remainder of the surface energy
balance equation through the latent heat flux (LE) [17]. Equation (2) shows the formula
used to calculate LE.

LE=R,-G-H )

where LE is the latent heat flux (W m™?), R, is the net radiation at the surface (W m?), G
is the ground heat flux (W m™), and H is the sensible heat flux to air (W m?).

The calculation of Rn was carried out based on Equation (3), which consists of adding
the incoming radiation and subtracting the outgoing radiation, based on internal variables
described in the studies of Allen et al. [41] and Quille-Mamani et al. [20].

Ry=(1-a)Rgl+Ry| — Rt — (1 —¢g)Rp| (3)

where Rg] is the incident shortwave radiation (W m2), a is the surface albedo, Ry | is the
incident longwave radiation (W m2), R; 1 is the emitted longwave radiation (W m2), and
g, is the surface thermal emissivity (dimensionless).

G is a value representing the heat transfer to the ground. Its calculation is based on
the value obtained from the LAI, the images captured by the UAV, and the value of Rn.
This concept was applied to rice cultivation by Mzid et at. [44], as described in Equations
(4) and (5) [45].

= (0.05+0.18e™034LAL) - [ AT>0.5 4)

7o

G (1.8><(TS —273.15)
Ry R,
where G is the soil heat flux (W m™), Rn is the net radiation (W m2), LAl is the leaf area
index, and T is the surface temperature (°C).

The estimation of H was performed with the equations given by Allen et al. [41] and
Quille-Mamani et al. [20], as per Equation (6).

+o.084) LAI<05 5)

dT
H = paireCp— (6)
Tah
where 1y, is the aerodynamic drag (s m™') between two surface heights, C, is the specific
heat capacity of the air, and its value is equivalent to 1004 ] kg™ K, and p is the air den-
sity (kg m?®). The temperature gradient (dT) was calculated for each pixel based on the
linear relationship between dT and the surface temperature (T;) for the cold and hot an-
chor pixels [42], applying each result to Equation (7) [46].

dT =a+bT, )

where a and b are parameters empirically derived from the extreme hot and cold pixels,
also known as “anchor” pixels.

For the selection of cold and hot pixels, boundary conditions for the energy balance
were defined. These pixels were selected based on homogeneity with their neighboring
pixels and distance to the weather station. Cold pixels were identified in an agricultural
field by selecting a subset of pixels with temperature values within +0.2 K of the average
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of the coldest 20%, extracted from the area corresponding to the 5% of the highest NDVI
values. Finally, 2% of this 5% of the highest NDVI values was selected, with the final can-
didate pixel being the average of this 2%. On the other hand, hot pixels were identified in
bare agricultural soils without vegetation by selecting a subset of pixels with temperature
values within +0.2 K of the average of the hottest 20%, extracted from the area correspond-
ing to 10% of the lowest NDVI values. The selection of the final pixels was based on prox-
imity to their average value and homogeneity with their neighboring pixels [47,48].

The METRIC model was fitted using high-resolution UAV data along with field
measurements of the canopy temperature. Thermal images were calibrated for each mon-
itoring date, and a general equation was established, i.e., Y .diometer = 0.6638Xppor + 12.615,
with a Pearson’s coefficient (R) of 0.959 and a root mean square error (RMSE) of 6.309 °C,
incorporating solar radiation and wind speed. This process involved adjusting the sensible
and latent heat fluxes from thermal images to match the crop evapotranspiration (ET.) esti-
mates derived from energy balance methods. Error metrics such as the root mean square
error (RMSE) and the Mean Bias Error (MBE) were computed to evaluate the model’s accu-
racy. The calibration resulted in RMSE values below 1.0 mm d'l, demonstrating a strong
agreement between the METRIC-estimated ET and the calculated ET, values.

2.7. Water Balance with AquaCrop

The AquaCrop model has been widely used in the calculation of water balances due
to its robustness and reliability, as highlighted in several studies [18,49]. This model is
effective in assessing water balance and crop productivity under different climatic and
water management conditions, proving to be especially useful in yield prediction and in
the evaluation of water stress conditions.

To estimate crop evapotranspiration, the AquaCrop model [49], previously parame-
terized with field information related to climate, crops, irrigation, and soil [50], was used.
AquaCrop simulated crop development and water balance components under flooded ir-
rigation (CF) [51,52] and alternative wetting and drying (AWD) irrigation [18], from Jan-
uary to June 2023.

The information required for the AquaCrop model included daily meteorological
data (maximum temperature (Tmax), minimum temperature (Tmin), wind speed (V), rel-
ative humidity (RH), and precipitation) from the Lambayeque (6°44'3.75"S and
79°54'35.4"W), Vista Florida (6°43'39.9"S and 79°46'51.16"W), and ATMOS-41 portable sta-
tions during crop development. The reference evapotranspiration (ETo) was estimated
using the Penman-Monteith method, with information on Tmax, Tmin, V, RH, atmos-
pheric pressure (Patm) and solar radiation.

Soil data incorporated into the model included porosity, field capacity (FC), and per-
manent wilting point (PWP). Irrigation water information incorporated into the model
included electrical conductivity (EC) and irrigation rates applied according to treatments.

As for the crops, canopy cover (CC%) was estimated using data obtained from RGB
images captured during the 13 flights performed. A supervised classification was used to
extract the green area corresponding to the canopy. In addition, data on root depth, yield,
and water table were incorporated into the model.

3. Results
3.1. Metric Inputs
3.1.1. Leaf Area Index (LAI)

The relationship between the Leaf Area Index (LAI), estimated by the extractive
method, and the Normalized Difference Vegetation Index (NDVI) measured in the field
at different dates during crop development was determined. This analysis made it possi-
ble to obtain the spatial variation in the LAI The exponential equation was generated,
yielding Y; 5 = 0.071e*°42*NPVI with an R* of 0.512 (Figure 6).
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Figure 6. Relationship between the NDVI measured with the GreenSeeker and the LAI estimated
by the extractive method, both carried out in the field. Days post sowing (DPS) are indicated.

3.1.2. Reference Evapotranspiration (ETj) and In Situ Meteorological Data

Figure 7 presents the hourly variation in reference evapotranspiration (ETo) during
the 24 h of the 13 flight days, calculated using the Penman-Monteith method with data
from the ATMOS-41 portable weather station. The flight days are grouped according to
crop stage: vegetative (38, 61, 65, 75, 79, 88, and 92 days after planting, DPS), reproductive
(103, 107, 123, and 127 DPS), and ripening (147 and 149 DPS).
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Figure 7. Hourly variation in reference evapotranspiration (ET,) according to vegetative stage (a),
reproductive stage, and crop maturity (b) according to the 13 flight dates.
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Figure 8 shows the meteorological conditions during the monitoring period. The am-
bient temperature (Figure 8a) fluctuated between 25.4 °C and 30.5 °C. The relative humid-
ity (Figure 8b) varied considerably, ranging from 61.1% to 90.5%. Wind speed (Figure 8c)
ranged from 0.32 to 4.32 s m'!. Solar radiation (Figure 8d) ranged from 267 to 1051 W
m 2. These data were collected during the time interval when the UAV flights were being
conducted, specifically between 09:00 and 11:30 h.
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Figure 8. Meteorological conditions according to UAV flights: (a) temperature (T, °C), (b) relative
humidity (RH, %), (c) wind speed (WS, m s!), and (d) solar radiation (SR, W m2).

3.1.3. Cold and Hot Pixel

The selection of extreme pixels (Table 2) shows that the cold pixels corresponded to
a surface temperature (Ts) minimum of 296.76 K and maximum values of the NDVI, LAI,
and albedo of 0.93, 9.98, and 0.35, respectively. The hot pixels corresponded to a maximum
surface temperature (Ts) of 321.88 K and minimum NDVI, LA, and albedo values of 0.02,
0.05, and 0.15, respectively.

Table 2. Selection of cold and hot pixels with values of NDVI, albedo, temperature, and calibration
constants, i.e., a and b in equation dT =a +bxT, [42].

Date DPS Pixel Cot))(rdinate (WGS84, UyTM) NDVI LAI Albedo T K) Caalibration Cons:’ants

11-Feb. 38 Cold 633,648.78 9,255,632.41 0.72 2.78 0.25 298.96 0.382 -111.531
Hot 633,637.75 9,255,631.10 0.02 0.05 0.22 307.51

6-Mar. 61 Cold 633,644.81 9,255,650.83 0.77 3.68 0.22 302.40 0.345 -100.349
Hot 633,632.07 9,255,701.91 0.15 0.11 0.15 311.10

10-Mar. 65 Cold 633,613.16 9,255,672.40 0.84 5.43 0.21 301.26 0.636 -187.402
Hot 633,606.73 9,255,734.94 0.14 0.10 0.15 306.29

20-Mar. 75 Cold 633,629.01 9,255,674.63 0.85 5.88 0.27 302.12 0.245 -71.220
Hot 633,635.03 9,255,702.95 0.14 0.10 0.26 318.34

24-Mar. 79 Cold 633,619.50 9,255,642.26 0.88 6.13 0.29 300.35 0.166 —-46.459
Hot 633,634.97 9255,708.46 0.16 0.68 0.22 321.88

2-Apr. 88 Cold 633,620.37 9,255,642.46 0.90 6.63 0.33 300.60 0.322 -92.839
Hot 633,634.20 9,255,704.54 0.24 0.88 0.20 308.65

6-Apr. 92 Cold 633,626.61 9,255,689.27 0.93 6.17 0.35 299.17 0.340 -99.414
Hot 633,595.26 9,255,717.95 0.22 0.88 0.17 308.14

17-Apr. 103 Cold 633,622.01 9,255,705.07 091 7.73 0.32 300.48 0.152 -41.320
Hot 633,595.07 9,255,719.49 0.24 0.22 0.17 311.56

21-Apr. 107 Cold 633,604.20 9255,713.17 0.91 7.61 0.32 296.76 0.271 -77.976
Hot 633,616.79 9,255,726.50 0.26 0.25 0.15 308.15

7-May. 123 Cold 633,643.04 9,255,650.77 0.86 6.99 0.30 297.11 0.185 -53.158
Hot 633,595.89 9,255,711.76 0.20 0.18 0.20 317.35

11-May. 127 Cold 633,625.31 9,255,645.13 0.84 6.42 0.29 300.27 0.323 -95.512

Hot 633,616.16 9,255,723.40 0.22 0.20 0.18 314.58
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31-May. 147 Cold 633,640.25 9,255,683.39 0.84 6.69 0.24 300.83 0.198 -56.978
Hot 633,618.06 9,255,723.40 0.28 0.29 0.22 317.79
2-Jun. 149 Cold 633,640.53 9,255,683.74 0.86 7.05 0.33 298.01 0.129 —-34.544
Hot 633,610.07 9,255,724.46 0.26 0.25 0.20 315.67
3.1.4. Components of the Energy Balance
Figure 9 presents the boxplots of the temporal variation in the energy balance and
evapotranspiration components for all monitored dates. This can be seen graphically in
Figures 52-55.
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Energy balance components and ET¢: with CF (aeim,q), AWDs (b,fjnr), AWD,,
(c,gk,0,5), and AWD,q (d,h1,p,t), with water level depths at 5 cm, 10 cm, and 20 cm below the soil

Figure 9 illustrates the seasonal variations in the latent heat flux (LE), sensible heat
flux (H), soil heat flux (G), net radiation (Rn), and crop evapotranspiration (ET.) across
the four irrigation treatments (CF, AWDs, AWD;;, and AWD,;). Notably, LE demon-
strated a distinct decrease starting from flight 5, which coincided with the onset of pro-
longed dry periods due to the cessation of irrigation. This shift is most apparent in the AWD
treatments, where water stress progressively increased. Prior to flight 5, LE remained ele-
vated, particularly in the CF and AWD; treatments, as the water availability supported
high transpiration rates. However, the impact of the Yaku phenomenon during flights 3 and
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4 introduced variability in energy partitioning, with reduced net radiation (Rn) and fluctu-
ations in LE. In flight 4, AWD irrigation was applied, which intensified the drought condi-
tions, leading to a significant decrease in LE, while H and G increased, reflecting a redistri-
bution of energy as the crop’s transpiration capacity diminished under water stress condi-
tions. These trends highlight the direct influence of irrigation management and external cli-
matic events on energy flux dynamics throughout the growing season.

Table S1 shows the results of the NDVI, LAl and energy balance components accord-
ing to the irrigation regime. For CF, there were average values of 552.08, 69.13, 114.33, and
422.18 Wm?2 for Rn, G, H, and LE, respectively. In the case of AWD, its average values
were 565.06, 74.23, 129.63, and 411.48 W m? for Rn, G, H and LE, respectively.

In AWD:s, there were average values of 553.84, 70.45, 118.27, and 41527 W m™2 for Rn,
G, H, and LE, respectively. Regarding AWD, there were average values of 567.37, 71.52,
120.76, and 428.03 W m™ for Rn, G, H, and LE, respectively., and for AWD,,, the average
values were 565.06, 74.96, 130.69, and 401.56 W m™ for Rn, G, H, and LE, respectively.

3.1.5. Crop Evapotranspiration (ET.) by Energy Balance

Figure 10 shows the spatial variation in daily ET, from 2.4 to 8.9 mm d', according to
crop stages: vegetative (38-92 DPS), reproductive (103-127 DPS), and ripening (147-149
DPS).
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Figure 10. Spatial variation in ET, in vegetative (38 to 92 DPS), reproductive (103 to 127 DPS), and
ripening (147 and 149 DPS) phases of the rice crop.
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3.2. Crop Evapotranspiration (ET,) by Water Balance

The AquaCrop model was validated by comparing its simulated canopy cover (CC)
and evapotranspiration (ET.) with actual field measurements. Statistical analysis showed
strong validation outcomes, with Pearson’s correlation coefficients (R) being 0.96 for CF
and 0.92, 0.92, and 0.97 for the AWDs5, AWD;y, and AWD,, treatments, respectively. The
Nash-Sutcliffe efficiency (EF) index varied between 0.43 and 0.66, while the Willmott in-
dex (d) remained consistently above 0.88, indicating the model’s precision in simulating
crop growth and water usage across the different irrigation regimes (Figure 11).
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Figure 11. Relationship between simulated vs. measured canopy cover (CC%) under irrigation man-
agement conditions and AWD, the latter with water levels below the soil surface of 5 cm, 10 cm, and
20 cm (AWDs, AWD), and AWDyy).

The efficiency of the fit was quantified using several statistical indices [53]: the Nash—
Sutcliffe index (EF), the Willmott index (d), and the ratio of the RMSE to the standard
deviation of the observations (RSR). In addition, Pearson’s coefficient (R) was calculated
using Student’s t-test at a significance level of 5%.

Each of these statistical indicators (Table 3) has its limitations, but their use together
reinforces the robustness of the calibration of the AquaCrop model. The value of EF ranges
from negative infinity to 1, where values between 0 and 1 indicate acceptable performance.
The values of d range from 0 to 1, with values closer to 1 indicating perfect agreement
between observed and simulated data [53].

Table 3. Statistical indicators for irrigation management: continuous flooding (CF) and alternating
wetting and drying (AWDs5, AWD;, and AWD).

Irrigation Management EF RSR d Rating (*) R (**)
CF 0.66 0.56 0.92 GGV 0.96

AWD:s 043 0.72 0.88 AU G 0.92

AWDno 0.55 0.65 0.89 S S G 0.92

AWDxo 047 071 0.89 AU G 0.97

(*): Very good (V), good (G), satisfactory (S), acceptable (A), unsatisfactory (U). (**): Significant
according to Student’s {-test for an alpha of 5%.

Table 4 shows the values of the calibrated parameters for the different types of
irrigation management.
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Table 4. Calibrated parameters in the simulation of the variety INIA 515-Capotefia under irrigation
management (CF, AWDs, AWD;y, and AWDy).

Irrigation Management

Description CF AWD; AWD;, AWD,
Normalized water productivity WP (g m=) 19 19 19 19
Reference harvest index HI (%) 53 53 53 53
Upper temperature (°C) 30 30 30 30
Base temperature (°C) 10 10 10 10
Time from transplanting to recovery (DPS) 33 33 33 36
Time from transplanting to flowering (DPS) 103 103 99 110
Time from transplanting to starting senescence 134 134 134 136
(DPS)
Time from transplanting to maturity (DPS) 156 156 149 149
Length of the flowering state (DPS) 122 122 122 126
Time from maximum effective rooting depth 103 103 99 110
(DPS)
Initial canopy cover (% CCo) 1.41 2.3 3.06 1.91
Soil surface covered by an individual seedling at 78 125 172 105
90% recovery (cm?/plant)
Canopy growth coefficient CGC (% GDD) 94 8.5 8.3 7.9
Maximum canopy cover CCx (%) 79 69 59 51
Canopy decline coefficient CDC (% GDD) 6 6 6 6
Maximum effective rooting depth (m) 025 025 0.25 0.25
Soil evaporation coefficient (Ke) 1.15 1.15 1.15 1.15
Crop transpiration coefficient (Kcrr) 1.28 1.28 1.28 1.28
Crop decrease coefficient (%/day) 0.15 0.15 0.15 0.15

From the calibration of the AquaCrop model, Table 5 shows the water balance com-
ponents according to irrigation management (CF, AWDs, AWD,;, and AWD,,). Water
consumption and water use efficiency (WUE) ranged from 14,428 to 19,970 m® ha™ and
from 0.70 to 0.96 kg m™, respectively. As a result, the highest WUE corresponded to
AWD, irrigation. This table shows the real components of precipitation, irrigation, and
yield, since they are data collected in the field; the first two components with the
SENAMHI records and the last one were selected at random for experimental data from
the final stage. The simulated components were capillary rise, percolation, and ET; these
are the final data that AquaCrop generated.

Table 5. Components of water balance and water use efficiency (WUE) according to irrigation man-

agement (CF and AWD).
Irrigation Man- Precipitation  Irrigation = Capillary Rise  Percolation  ET, Yield WUE
agement (mm) (mm) (mm) (mm) (mm) (t ha™) (kg m™3)
CF 169 1997 664 1641 823 14.01+1.22 0.70
AWD; 169 1428 562 1056 780 11.85+0.64 0.83
AWDy, 169 1434 583 1051 767 13.72 +2.08 0.96
AWD,, 169 1447 579 1000 763 1291 +2.53 0.89

Figure 12 shows the variation in the water balance components according to irriga-
tion management. The greatest variability was observed in terms of percolation losses.
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Figure 12. Water balance components according to previously calibrated AquaCrop model: (a) total
values during crop development according to CF and AWD irrigation management. Monthly values
according to irrigation management for (b) CF, (¢) AWDs, (d) AWDy, and (e) AWD,,.

Figure 13 shows the ET. values obtained through the water balance. For the CF irri-
gation management, the minimum value was 4.5 mm d"', with a 25th percentile (¢25) at
5.6 mm d”, median (g50) at 6.6 mm d”, 75th percentile (q75) at 6.7 mm d”', and maxi-
mum value of 7.1 mm d™. For AWDs;, the minimum value was 4.5 mm d‘l, with q25 at
5.5 mm d'l, g50 at 6.6 mm d'l, q75 at 6.7 mm d'l, and a maximum value of 7.0 mm d™.
In AWD,, the minimum value was 4.5 mm d'l, with g25at5.5 mm d'l, g50at 6.5 mm d'l,
q75 at 6.7 mm d‘l, and a maximum value of 7.1 mm d.. Finally, for AWD,,, the mini-
mum value was 4.3 mm d'l, with g25at5.5 mm d'l, g50 at 6.2 mm d'l, q75at6.5 mm d'l,
and a maximum value of 6.8 mm d.
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Figure 13. Evapotranspiration from AquaCrop water balance model according to CF and AWD irri-
gation management.
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The AquaCrop model allowed for obtaining the water balance, which was compared
with the energy balance; as shown in Figure 14, a linear equation was generated, i.e.,

(ET, (Energy B) — 1.237 x ET, (water B) ~ 2.280), with a Pearson’s correlation coefficient of 0.783,

which was significant for an alpha of 5%.
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Figure 14. Relationship between energy balance (METRIC model) and water balance (AquaCrop
model) under CF and AWD irrigation management.

Figure 15 illustrates the dynamics of the cumulative and daily irrigation (m3 ha™)
under the different irrigation management strategies, comparing continuous flooding
(CF) with alternate wetting and drying (AWD). As shown in Figure 15a, clear differences
in cumulative water consumption were observed across the treatments, with CF exhibit-
ing higher water use and the AWD treatments, particularly AWD,,, showing greater wa-
ter efficiency. Figure 15b represents the daily irrigation patterns throughout the crop phe-
nological cycle and marks the days of UAV monitoring, which allowed for an accurate
assessment of crop evapotranspiration (ET.) using the energy and water balance methods.
These results highlight the advantages of AWD strategies in terms of reducing water con-
sumption without compromising crop water status monitoring.
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Figure 15. (a) Cumulative irrigation applied days post-sowing (DPS) (m? ha™) throughout the grow-
ing season, and (b) Irrigation amounts (m3 ha'l) measured under different irrigation treatments: CF,
AWDS, AWDlOI and AWDZ())
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In Figure 16, the AquaCrop model decomposes crop evapotranspiration into evapo-
ration and transpiration, revealing distinct patterns according to irrigation management.
Under the AWD irrigation regime, higher evaporation was observed from transplanting
to 33 DPS. In the case of CF management, an increase in transpiration and a decrease in
evaporation was shown at 50 DPS, while by 66 DPS, both components reached similar
values. In the AWD,, treatment, higher values of transpiration were recorded up to 72
DPS. In AWD;y and AWD,, a decrease in evaporation was observed between 50 DPS
and 55 DPS.

------ Evaporation

—— Transpiration
— CF

— AWDs
AWDo
AWD»o

W L w

Evapotranspiration (mm d~1)

N

30 40 50 60 70 80 90 100 110 120 130 140 150
Days Post Sowing (DPS)

Figure 16. Temporal variation in evapotranspiration obtained with the previously calibrated Aqua-
Crop model under CF and AWD irrigation management.

3.2.1. Yield Comparison Measured vs. AquaCrop

The comparison between field-measured and AquaCrop-simulated yields revealed
noticeable differences across the various treatments applied (Figure 17). For the CF treat-
ment, the yield measured in the field was 14.01 kg ha”, while AquaCrop simulated a
slightly higher yield of 14.14 kg ha™. In the AWD; treatment, the field-measured yield
was 11.85 kg ha™, compared to a simulated yield of 12.47 kg ha” by AquaCrop. Regard-
ing the AWD,; treatment, the field-measured yield was 13.72 kg ha'l, whereas the simu-
lated yield was 12.284 kg ha. Finally, for the AWD,, treatment, the field-measured
yield was recorded at 12.91 kg ha™, with AquaCrop simulating a significantly lower yield
of 10.54 kgha™.

These variations might be due to the enhanced grain yield components seen under
AWD management, like the number of panicles per square meter, panicle weight, and
grain weight. The increased availability of irrigation water in the AWD treatments proba-
bly aided in more effective dry matter movement to panicles, leading to improved grain
filling and yield.

Moreover, the difference between the observed and simulated yields could be linked
to AquaCrop’s limitations in accurately reflecting the impacts of AWD irrigation practices,
as well as unaccounted field condition variabilities during calibration. The gaps between
the field-measured and AquaCrop-simulated yields could stem from multiple factors.
Firstly, AquaCrop’s calibration for AWD irrigation might not fully capture the water avail-
ability dynamics, especially regarding soil moisture changes during wet and dry cycles.
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Additionally, field conditions like microclimate differences, soil variability, and potential
unmeasured environmental stresses might have caused yield variations that the model
could not simulate accurately.

This suggests a need for further refinement in AquaCrop’s calibration, specifically by
tweaking parameters related to soil moisture retention and water stress limits for AWD
systems.

16 1 B Field (14% moisture)
I AquaCrop Simulated (14% moisture)

13.72

1401 14.14

1291

CF AWDs AWD1o AWD3g

Figure 17. Yield comparison between field measurements and AquaCrop simulations for CF,
AWDs5, AWDyj, and AWD,, treatments.

3.2.2. Yield and Water Use Efficiency under CF and AWD Irrigation Treatments

The analysis of crop yield versus cumulative irrigation under the various regimes
revealed significant insights into water use efficiency (WUE). In the continuous flooding
(CF) treatment, the highest cumulative irrigation of 19,971.17 m? ha yielded 14.01 kg
ha™ but with the lowest WUE of 0.00070 kg m?, indicating that increased water use does
not always correlate with a higher yield efficiency (Figure 18). Conversely, the alternate
wetting and drying (AWDj;) treatment at a 5 cm depth with a lower cumulative irrigation
of 14,268.09 m> ha™ achieved a yield of 11.85 kg ha™ but with a higher WUE of 0.00083
kg m?, demonstrating more efficient water use. The AWD;, and AWD,, treatments,
with similar irrigation volumes of 14,340.80 m3 ha'l and 14,468.56 m° ha'l, respectively,
produced yields of 13.72 kg ha™ and 12.91 kg ha™ while improving WUE to 0.00096 kg
m™ and 0.00089 kg m™. The results indicate that managing water depth in AWD treat-
ments enhances water use efficiency with minimal impact on yield.
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Figure 18. Comparison of field yield and cumulative irrigation under different irrigation treatments
(CF, AWD;, AWDy, and AWD,y).

The AquaCrop model was calculated using field-specific parameters, incorporating
canopy cover data from UAV imagery and weather information from the ATMOS-41 sta-
tion. Calibration was executed for each irrigation treatment (CF, AWDs, AWD,,, and
AWD,), concentrating on essential crop growth phases and water management strate-
gies. The calibration parameters included normalized water productivity, harvest index,
and effective rooting depth, adapted to the local soil and environmental conditions. Can-
opy growth coefficients and transpiration factors were adjusted based on field observa-
tions and compared with simulated outputs to ensure precision. The model’s performance
was assessed using statistical indicators like the Nash-Sutcliffe efficiency (EF) and Pear-
son’s correlation coefficient (R), demonstrating strong alignment between the simulated
and observed canopy cover and yield, with R values exceeding 0.92 for all treatments.

4. Discussions

The ATMOS-41 portable station was used to obtain accurate and representative me-
teorological data [54]. According to Chu et al. [55], the accuracy of measurements of envi-
ronmental conditions is crucial for the accurate calculation of crop evapotranspiration,
ET,, since many studies use data from weather stations that may be far from the study
area. The equation obtained for the Leaf Area Index (LAI) based on the NDVI, with a co-
efficient of determination R2 of 0.51, showed similarities with the results of Sisheber et al.
[56], who found a linear relationship between the LAI measured with a ceptometer and a
vegetation index estimated from LANDSAT images (R? = 0.45). The maximum LAI values
obtained in each mosaic reached up to 7.74, which is in agreement with findings reported
by Ali et al. [57], Gong et al. [58], and Serrano et al. [59] in rice crops.

The selection process of the cold and hot pixels was carried out in separate areas: the
cold pixels were selected in vegetation cover, while the hot pixels were selected in bare
soils without vegetation, following the recommendations of Allen et al. [41] and Morton
et al. [60]. Regarding the selection of the extreme pixels, throughout the 13 monitoring
dates, it was observed that the cold pixels corresponded to maximum NDVI values of 0.93,
while the hot pixels corresponded to a minimum NDVI value of 0.02, coinciding with the
characteristics described by Allen et al. [45] and Morton et al. [60].

The results obtained for net radiation (Rn), which ranged from 100 to 800 W m, are
in agreement with the findings reported by Nassar et al. [61] and Montibeller et al. [62].
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On some specific days, higher Rn values were recorded, reaching between 423 and 851
W m~?, which coincides with the results obtained by Ramos-Fernandez et al. [25] on the
northern coast of Peru. These variations can be attributed to differences in the spatial dis-
tribution of albedo and climatic conditions, as indicated by Montibeller et al. [62].

Regarding soil heat flux (G), the results obtained are within the range reported by Nas-
sar et al. [61], ranging from 0 to 180 W m™. Regarding sensible heat flux (H) under CF irri-
gation, the values obtained are in agreement with those reported by Acharya et al. [46], rang-
ing from 50 to 400 W m™. Regarding latent heat flux (LE), the results agree with those found
by Ramos-Fernandez et al. [25], who reported values ranging from 63 to 1045 W m™.

Nassar et al. [61] point out that the energy balance components reach their highest
values at midday, with hourly variations depending on the season of the year (summer,
spring, autumn, and winter), with the highest values occurring during the summer. In
addition, Liu et al. [63] mention that at higher values of net radiation (Rn), an increase in
crop evapotranspiration ET, is observed.

The ET, values (Figure 10) agree with Taherparvar et al. [21], ranging from 3.40 to
840 mmd™ (ETy x k), Djaman et al. [26], ranging from 4.40 to 10.50 mm d~! (water bal-
ance), Hussain et al. [39], ranging from 2 to 8.51 mm d’! (Croptwat), Elsadek et al. [49],
ranging from 0.3 to 5.5 mm d" (AquaCrop), Sawadogo et al. [24], ranging from 5.52 to
6.17 mmd™” (SEBAL), and the average values of Lee et al. [64] of between 5.30 and 5.20
mm d”(SEBAL and eddy covariance, respectively), with respect to the average obtained
(5.38 mm d). Other results obtained by energy balances include those from Ferreira et
al. [65], ranging from 2.1 to 4.7 mm d’! (METRIC), Kra et al. [23], ranging from 0 to 5.44
mmd” (SEBAL), Xie et al. [66], ranging from 5 to 5.26 mm d’ (SEBAL), and Islam et al.
[27], ranging from 3.6 to 5.45 mm d’ (ML).

In addition, according to the results of ET. studies carried out on the coast of Peru,
the values are close to those obtained by an energy balance (METRIC) by Quille-Mamani
et al. [20] in La Molina (1.65 to 7.48 mm d'l), as well as those obtained by Ramos-Fernan-
dez et al. [25] in Lambayeque (6.54 to 7.07 mm d'l) and the water balance of Neira et al.
[67] in La Molina (1.75 to 5.16 mm d'l).

The evapotranspiration values obtained through the water balance (AquaCrop) and
energy balance methods ranged from 4.31 to 7.1 mm d" and 2.4 to 8.9 mm d”, respec-
tively. A significant discrepancy was observed in the water balance values during periods
of severe water scarcity, particularly between 50 and 55 days post sowing (DPS) and from
71 to 86 DPS. This finding aligns with the report by Elsadek et al. [49], who noted that
AquaCrop might not fully capture the impact of water stress on canopy development,
potentially leading to an overestimation of ET..

In Figure 14, the ET, values calculated by the water balance are shown to be 6.6 and
6.7 mm d”, while the ET,. values obtained through the energy balance ranged from 5.1
t07.29 mm d”', indicating that they did not fully align with the evapotranspiration values
under AWD irrigation management, particularly in AWD,,. Pearson’s correlation coeffi-
cients of R = 0.818 and R = 0.829 were found for AWDs5; and AWDy,, respectively, which
were higher than the coefficient obtained for CF (R = 0.798). This result is consistent with
the findings of Li et al. [68], who highlighted that certain depth ranges provide an optimal
environment for crop growth, allowing for maximum yields or relatively stable perfor-
mance.

As shown in Figure 16, transpiration peaked around 96 DPS, coinciding with the
maximum tillering stage for CF. However, for AWDs5;, AWD;y, and AWD,,, this peak ex-
tended until approximately 103 DPS. This delay in development is related to the initial
irrigation deficiency during the early tillering stage, which prolonged the flowering dates
until 122 and 126 DPS.

Meanwhile, as shown in Figure 16, the observed increase in rice yield per hectare
under the AWD, regime may be attributed to improved soil aeration. These findings
align with the results reported by Elsadek et al. [49]. Conversely, the decrease in yield
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observed in the AWD5; and AWD,, treatments could be attributed to factors related to
soil chemical conditions and irrigation management. In particular, soils with low organic
carbon content and elevated pH may have promoted ammonia volatilization, reducing
nitrogen availability for plants. This reduction in essential nitrogen uptake could have
negatively affected rice productivity. Additionally, the water deficit associated with these
irrigation regimes may have further contributed to a reduction in photosynthesis, ulti-
mately impacting crop yield, as highlighted by Gao et al. [15] and Hirayama et al. [69].

The AWDs and AWD;, irrigation management strategies, which used 1428 mm and
1434 mm of irrigation water, respectively, required less water compared to AWD,, (1447
mm), as detailed in Table 5. This is attributed to the capillary effect, which helps maintain
soil saturation by allowing water to rise toward the plant root zones. Additionally, the
AWD irrigation technique demonstrated higher water use efficiency (0.96 kg m®) com-
pared to the other AWD irrigation techniques.

Drawing from the work of Alauddin et al. [70] and Ishfaq et al. [71], the alternate
wetting and drying (AWD) irrigation method has been shown to improve water use effi-
ciency (WUE) while lowering overall water consumption. Although there may be minor
reductions in yield with AWD, these are largely offset by significant economic savings and
environmental advantages. Alauddin et al. [70] observed that AWD can cut water use by
up to 30% and reduce irrigation costs by as much as 38%, presenting a feasible option for
water-limited areas like Lambayeque. Moreover, AWD supports environmental sustaina-
bility by cutting methane emissions, a major benefit over continuous flooding methods
[10,71]. These observations are consistent with this study’s results, where AWD led to a
27-28% reduction in water use and an increase in WUE by 18-36%. Therefore, implement-
ing AWD not only ensures the economic viability of rice production but also fosters long-
term sustainability in water-scarce regions.

The comparison between the METRIC energy balance model and the AquaCrop wa-
ter balance model resulted a Pearson’s correlation coefficient of r = 0.783 with a signifi-
cance level of p < 0.05. This indicates a positive and significant relationship between the
two methods for estimating ET,, though it is slightly lower than findings from other stud-
ies, such as Quille-Mamani et al. [20], who reported an r = 0.97 using METRIC in rice.
Despite these discrepancies, the results demonstrated high accuracy in the ET. estima-
tions, underscoring the effectiveness of UAVs in capturing thermal and multispectral im-
ages for efficient model calibration.

For calibrating the thermal images, a method similar to Machaca-Pillaca et al. [39]
was employed, who developed a correction equation of Y .giometer = 1.10Xgor — 10.84,
achieving a coefficient of determination of r = 0.98 and an RMSE of 7 °C. In this study, a
similar correction equation, Y .giometer = 0.6638Xppot + 12.615, was obtained, with r = 0.959
and an RMSE of 6.309, ensuring precise estimates of surface temperature and thus evapo-
transpiration. Although Quille-Mamani et al. [20] reported an RMSE of 0.51 mm d”, dif-
ferences in irrigation practices and agricultural management in Lambayeque may have
affected the results here, yet the adjustments made allow for robust estimates suitable for
local conditions. This emphasizes the importance of using high-resolution imagery and
energy balance models to enhance irrigation management efficiency.

The AWD irrigation method for rice in this study significantly improved water use
efficiency (WUE), achieving increases of from 18 to 36% and saving from 27 to 28% of
water. However, this method may lead to a yield reduction of from 2 to 15%. These find-
ings align with previous research, such as Zhang et al. [72], who documented an average
6% yield decline under AWD. This reduction was likely due to decreased aerial biomass
and Leaf Area Index (LAI), influenced by lower soil water potential during key growth
phases. Nonetheless, recent research indicates that maintaining water potential above —15
kPa and optimizing soil properties like total organic carbon (TOC) and available potas-
sium (AK) can reduce yield losses, even achieving 5-7% increases in nutrient-rich soils.
Thus, AWD irrigation serves as an effective method to conserve water and, with proper
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agronomic practices, can enhance production, minimize yield reductions, and boost the
sustainability of agricultural systems.

5. Conclusions

Thermal and multispectral imagery was collected through flights using a Matrice 300
drone, supplemented with field data to assess the spatial Leaf Area Index (LAI) and adjust
the thermal bands. The crop evapotranspiration (ET.) of the rice variety INIA 515 was
estimated under two irrigation methods: continuous flooding (CF) and alternating wet-
ting and drying (AWD) at depths of 5, 10, and 20 cm below the soil surface.

CF irrigation showed consistent values for net radiation (Rn), soil heat flux (G), sen-
sible heat flux (H), and latent heat flux (LE). In contrast, AWD irrigation directly influ-
enced crop temperature, causing variations in these energy components.

The ET, calculated using the energy balance averaged 5.45 and 5.24 mm d” for CF
and AWD irrigation, respectively. Meanwhile, using the water balance, average values of
6.18 and 6.09 mm d~! were obtained for these irrigation regimes. Calibration of the Aq-
uaCrop model to simulate the development of the INIA 515-Capotena rice crop indicated
that that the AWDs and AWD,, irrigation management systems were more effective in
terms of yield and water efficiency, highlighting them as the best strategies during the
study year.

The model also exhibited acceptable performance in simulating water balance com-
ponents, showing significant differences in percolation between CF and AWD. Although
CF resulted in the highest yield, AWD achieved the best balance between yield and water
use, underlining the potential of AWD strategies, especially at a 10 cm depth, to enhance
water productivity. These results support the adoption of AWD as a viable option in wa-
ter-scarce areas, similar to findings by authors such as Yang et al. [33] and Gao et al. [15],
who also observed benefits in alternative irrigation practices.

Regarding the calibration of thermal images, similar outcomes were obtained to those
reported by Quille-Mamani et al. [20], Machaca-Pillaca et al. [39], and Quispe-Tito et al.
[40], who also utilized thermal imaging techniques in rice crops, achieving precise esti-
mates of evapotranspiration.
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