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ABSTRACT

Conformal Gravity and Time

by

Jeffrey Shafiq Hazboun, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. James T. Wheeler
Department: Physics

Cartan geometry provides a rich formalism from which to look at various geometrically

motivated extensions to general relativity. In this manuscript, we start by motivating reasons to

extend the theory of general relativity. We then introduce the reader to our technique, called

the quotient manifold method, for extending the geometry of spacetime. We will specifically

look at the class of theories formed from the various quotients of the conformal group.

Starting with the conformal symmetries of Euclidean space, we construct a manifold where

time manifests as a part of the geometry. Though there is no matter present in the geome-

try studied here, geometric terms analogous to dark energy and dark matter appear when we

write down the Einstein tensor. Specifically, the quotient of the conformal group of Euclidean

four-space by its Weyl subgroup results in a geometry possessing many of the properties of

relativistic phase space, including both a natural symplectic form and nondegenerate Killing

metric. We show the general solution possesses orthogonal Lagrangian submanifolds, with the

induced metric and the spin connection on the submanifolds necessarily Lorentzian, despite the

Euclidean starting point. By examining the structure equations of the biconformal space in an

orthonormal frame adapted to its phase space properties, we also find two new tensor fields

exist in this geometry, not present in Riemannian geometry. The first is a combination of the

Weyl vector with the scale factor on the metric, and determines the time-like directions on the

submanifolds. The second comes from the components of the spin connection, symmetric with
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respect to the new metric. Though this field comes from the spin connection, it transforms ho-

mogeneously. Finally, we show in the absence of Cartan curvature or sources, the configuration

space has geometric terms equivalent to a perfect fluid and a cosmological constant.

We complete the analysis of this homogeneous space by transforming the known, general

solution of the Maurer-Cartan equations into the orthogonal, Lagrangian basis. This results

in a signature-changing metric, just as in the work of Spencer and Wheeler, however without

any conditions on the curvature of the momentum sector. The Riemannian curvatures of the

two submanifolds are directly related. We investigate the case where the curvature on the

momentum submanifold vanishes, while the curvature of the configuration submanifold gives an

effective energy-momentum tensor corresponding to a perfect fluid.

In the second part of this manuscript, we look at the most general curved biconformal

geometry dictated by the Wehner-Wheeler action. We use the assemblage of structure equations,

Bianchi identities, and field equations to show how the geometry of the manifolds self-organizes

into trivial Weyl geometries, which can then be gauged to Riemannian geometries. The Bianchi

identities reveal the strong relationships between the various curvatures, torsions, and cotorsions.

The discussion of the curved case culminates in a number of simplifying restrictions that show

general relativity as the base of the more general theory.

(179 pages)
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PUBLIC ABSTRACT

Conformal Gravity and Time

Within the last year, two acclaimed physics experiments have probed further into the ex-

tremes of our physical understanding. The Large Hadron Collider, the largest experiment ever

constructed, has detected a Higgs boson, which establishes a mass scale for the fundamental

particles. The Planck mission satellite has made the most accurate measurements of the cos-

mic microwave background radiation, which is the oldest data about the early universe we are

currently able to measure directly. The mission corroborated the proportions of dark matter

and dark energy are all very close to expected values. While these experiments have helped

solidify the current working model of physics (general relativity plus the standard model of par-

ticle physics), large questions remain about the origins of the main constituents of the universe.

Galactic and cosmological scale observations indicate something is missing from the standard

model of our universe. The current ΛCDM model of cosmology is named after dark energy (Λ)

and cold dark matter, place holders in a model where we know the constituents’ phenomenology,

but not their origin. The need for an extension of current physical models is obvious.

Most research in gravity has focused on understanding the geometry of spacetime. We

demonstrate how the geometry of spacetime may emerge by starting with a space where time

does not exist. Time can emerge as part of a physical theory, instead of assuming its existence

from the beginning. Specifically, we look at the symmetry of the equations that define the

gravitational interaction and extend those existing symmetries, i.e. giving a theory with more

symmetries than standard general relativity. We investigate the consequences of making a theory

of gravity that is fully scale symmetric. When we change the units (i.e. meters, feet, pounds,

seconds) of our physical measurements locally, we expect the laws of physics to undergo no

change. Biconformal space is constructed by requiring this broader class of symmetries. Here, we

show how time comes necessarily from the construction of biconformal space. The gravitational

theory derived from this construction is more complex than general relativity; however, general

relativity arises as a special case of biconformal gravity, a feature any candidate alternative
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theory of gravity must possess. We illustrate biconformal gravity is a viable successor to general

relativity and discuss this in the context of dark matter and dark energy candidates.

Jeffrey S. Hazboun
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CHAPTER 1

INTRODUCTION

1.1. Our current understanding

Within the last year, two acclaimed physics experiments have probed further into the ex-

tremes of our physical understanding than has been possible in the past. The Planck satellite

has made the most accurate measurements of the anisotropies in the cosmic microwave back-

ground to date obtaining the oldest data about the early universe we are currently able to

directly measure. The mission found the least exotic theories for the mechanisms of inflation,

and the proportions of dark matter and dark energy are all very close to accepted values from

other astrophysical measurements [1]. The Large Hadron Collider, the largest experiment yet

constructed by humans, has found the Higgs boson in the mass range where exotic particle

physics is unnecessary. While these experiments have helped solidify the current working model

of physics (general relativity + the standard model of particle physics), large questions remain

about the origins of the main constituents of the universe and how the dichotomous parts of

physics interact at a basal level.

Work in gravity has been an effort to understand the geometry of spacetime; however, in

this manuscript we will demonstrate how the geometry of spacetime emerges by considering the

symmetries of a Euclidean signature space. In fact, we will show the natural geometry is that of

a symplectic manifold with spacetime as one of the Lagrangian submanifolds: biconformal space

in an orthogonal, Lagrangian basis. Our current work relies heavily on differential geometry in

the Cartan formalism and is based on the pioneering work into gravitational gauge theory of

Kibble [2], Ne’eman and Regge [3,4], Ivanov and Niederle [5,6], and others. An extensive history

of the field is included in Section 2.2 of Chapter 2.

We extend the work of Wheeler, Wehner, and Spencer to combine the main results con-

cerning biconformal space, that biconformal space reproduces the physics of general relativity,

with the natural emergence of time as a special direction within the submanifolds of a phase

space. The orthonormal version of the time basis of [7] is used to investigate the Lorentzian

properties of the submanifolds, specifically the spin connection. We strengthen the result of [7]
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by showing that, starting in the Euclidean case, no assumptions need to be made about the

space to derive a Lorentzian (signature-changing) metric. We will also see the appearance of

two new tensors and a self organization of the submanifold geometry into that of a Riemannian

one from a Weyl geometry.

It is important to note that general relativity is extremely successful as a predictive theory,

describing the gravitational interaction for almost a century. The accuracy of both strong and

weak field tests of GR continues to grow [8]. The last, unseen, prediction of general relativity,

gravitational waves, will likely be directly detected by the end of the decade. Their dissipative

effects have already been seen in the Hulse-Taylor binary pulsar system in a way that agrees

with general relativity to better than a half a percent [8].

So the question stands, “Why do we need an extension to such a successful physical theory?”

The answer lies partly in the galactic and cosmological scale observations mounting up that seem

to point out something is missing from the standard model of our universe. The current ΛCDM

model of cosmology is named after dark energy and dark matter, place holders in a model where

we know the constituent’s phenomenology, but not their origin. If this outstanding 95% of the

universe’s content is not reason enough, there is the century old quest for a theory of quantum

gravity.

1.1.1. Dark matter

The need for a large amount of unseen gravitationally interacting matter in the universe

originated in the calculations of Fritz Zwicky who first realized the Coma galaxy cluster seemed to

have a large amount of matter missing [9]. These observations gained more modern traction after

Rubin, Thonnard, and Ford [10] used the Doppler shift of edge-on galaxies to show their rotation

curves seemed to necessitate the existence of large amounts of unseen matter. The amount of

dark matter has now been corroborated by measurements of the gravitational lensing of galaxies

[11] where the mass of the intervening galaxies can be calculated from the lensing of more

distant sources. Galaxy formation simulations also corroborate the proportion of dark matter

needed first for star formation, and then the large–scale structure of galaxies [12]. Simulations

with only slight deviations from those proportions can drastically change the outcome of these
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simulations. Since the estimates of the missing matter comprises ∼25% of all the energy density

in the universe, there is reason to take these observations seriously.

There have been quite a few hypotheses put forward to explain the origin of this mass.

Most current searches for dark matter center around various particles that fall into the weakly

interacting massive particle (WIMP) category. All of these particles are extensions to the cur-

rently accepted theories of physics. The axion [13,14] can either be seen as an extension of the

standard model of particle physics, or as arising generically from string theory. There are also

a number of supersymmetric particles, which have been put forward as dark matter candidates.

Searches for these particles rely on them having a small, but nonzero interaction cross section

with baryonic matter [15].

Many theories have been put forward to explain dark matter and, another possibility is the

extra gravitational degrees of freedom arising in modified theories of gravity play the role of

dark matter [15]. While in some cases the degrees of freedom can be interpreted as new matter,

there are other theories, like modified Newtonian dynamics (MOND) that try to explain the

observations, normally attributed to dark matter, as a modification of gravitational dynamics

(the potential is not Newtonian � 1
r2

) on the galactic size scale [16]. The phenomenological

predictions of MOND (and its relativistic relative Tensor Vector Scalar theory [17]) stem from a

change to the Newtonian gravitational potential at the galactic (and larger) scale. MOND has

seen strong opposition since observations of colliding galaxy clusters, most famously the Bullet

cluster, have allowed the mapping of dark matter within the colliding clusters. MOND and dark

matter give distinct predictions about where the gravitational lensing will be centered in the

collision of two galaxy clusters. In MOND, the lensing is expected to be centered at the center

of mass of the luminous matter (since there is no dark matter, only a different potential). If

dark matter exists, it is expected it would continue to pass through the luminous matter, which

is slowed down due to a larger cross section of interaction. The lensing would then be centered

around the dark matter that has continued to move due to inertia. The latter seems to be the

case in the Bullet cluster [18]. Nonetheless, while MOND/TVS may be invalidated, it seems

an extension to our current theories, whether in the particle physics sector or the gravitational
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sector, is necessary to explain what constitutes dark matter.

1.1.2. Dark energy

The observation of the acceleration of the expansion of the universe [19,20], seen through a

small number of high redshift Type Ia supernovae data points, and for which the Nobel Prize was

recently awarded, is another arena of cosmology that has befuddled theorists. The acceleration

is well–modeled by resurrecting the cosmological constant, the constant term consistent with a

fully diffeomorphism-invariant theory of gravity [21], included in the Einstein field equation. The

vacuum energy of spacetime is often proposed as a source of the negative pressure needed to

create such an acceleration. However, when calculated through quantum field theoretic means

this energy density is around 100 orders of magnitude larger than the observed value [22]. The

source of dark energy is an especially interesting problem because it represents a majority of the

energy density composition of the universe. The most recent data from the Planck mission [1]

substantiated that dark energy makes up 68.3% of the critical density of the universe.

There are three commonly stated reasons the cosmological constant is not considered the

end of the story [15]. The first is the value for the cosmological constant is unexpectedly small

with regard to any physical scale (especially the predicted vacuum energy), except the current

Hubble horizon scale. Another reason is the energy density of dark energy is surprisingly close

to the current matter-energy density. This means the time at which humans are able to start

measuring the acceleration of the expansion of the universe happens to be the exact epoch

when these densities are comparable. Many physicists see this as a fine-tuning problem [15,22].

Lastly, the existence of coherent acoustical oscillations (baryon acoustic oscillations) in the

CMB have made inflation (exponential acceleration in the early universe) an integral part of the

cosmological model. Since the accelerated expansion of inflation stopped, this gives reason to

believe the current acceleration is temporary and not due to the cosmological constant [15].

A measurement solely of the expansion rate of the universe does not allow observers to

differentiate between the possible mechanisms of the acceleration. It is unknown whether the

acceleration is due to a heretofore unknown dynamical fluid or field (dark energy) or an extension

of the theory of general relativity. A number of modifications to general relativity have been
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proposed that explain the expansion without adding in a new form of matter, such as new

massive gravity [23], but often add other complications to the theory [24]. The fields necessary

for this acceleration have been phenomenologically modeled [25]; however, the source of these

fields is not yet known. How these fields will emerge from an extension of the standard model

of particle physics, or general relativity or a unified field theory such as string theory is difficult

to predict; however, it is certain such an extension is needed. That it will be centered on the

gravitational sector is certainly possible.

1.1.3. Quantum gravity

One of the last motivations we mention for extending general relativity is quantization.

Quantization of the gravitational interaction is a long–open field of current theoretical effort.

There are varied opinions as to how close we are to realizing a quantum theory of gravity,

but we are certainly lacking any experimental verifications of any quantum gravity candidate

[26, 27]. The Large Hadron Collider in CERN is projected to eventually run at 14 TeV [28],

while the Planck scale (the energy scale at which we expect to see quantum gravity effects)

is 1.22 × 1016 TeV , a factor of approximately 1015 larger. The scales at which the effects of

quantum gravity are predicted are at small enough lengths (large enough energies) that we are

far from being able to directly measure them through the normal route of particle accelerators.

There are efforts to look for quantum gravity in the signatures of astrophysical events [26], but

these are still nascent. The most straightforward route to quantization, as a quantum field theory

of the spin-two graviton with the Einstein-Hilbert action is perturbatively nonrenormalizable [29].

This can most easily be seen from the superficial degree of divergence, where the relative mass

term has a dimension of –1 in four dimensions [29].

The construction of a fully diffeomorphism invariant theory of spacetime is one of the main

contributions of relativity. Unfortunately, the most commonly used quantization schemes neces-

sitate separating the direction of time from space. The problem of time is a term used in slightly

different ways within the quantum gravity community. According to [29] the incompatibility lies

in the fact that quantum field theory treats the background as external to the physics, while

general relativity treats them as dynamical. Thiemann [30] more specifically points to the fact
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the Hamiltonian, in a diffeomorphism invariant theory, vanishes on the constraint surface. There

is, therefore, no evolution in the normal sense we think of it in a quantum system. A partial

solution to the problem of time in canonical quantum gravity is the use of dust fields to char-

acterize the passage of time [31, 32]. It is an issue at the heart of the problem between gravity

and quantum theory, and it is listed as a motivation for looking at the problem of quantum

gravity [29]. In this manuscript we will show another resolution to the problem of time. In fact,

we will see time emerge as part of the symmetries of a Euclidean space.

String theory is naturally seen as a theory of quantum gravity since a closed, quantized

string has a massless spin–two mode [33], describing the graviton at the first–order interaction.

It does not suffer in the same way from the problem of time since the gravitational interaction

happens on a nondynamical 10 (11)-dimensional Minkowski background. However, string theory

struggles to make predictions on the physical scales of current astrophysical observations.

Extending general relativity

Since there are so many unanswered questions surrounding gravitational phenomena, it

seems reasonable to consider extensions to general relativity in order to gain understanding

about them. There are myriad avenues available to extend general relativity. There is a long

history [34] of extending or changing altogether the paradigms, which are the basis of general

relativity.1 Here, we will quickly summarize a number of schemes for constructing an alternative

theory of gravity. One can imagine these theories as effective theories of some larger unified field

theory, or solely as an extension of GR. Here we focus on the latter, but point out biconformal

space can also be seen as a low–energy limit of some string models. In this manuscript we

will show, while the starting point may seem like an alternative theory, we reproduce general

relativity with our approach.

The most straightforward way to alter the physics of a field theory is to change the action

principle for that theory. There are changes to the theory that can be viewed as changing

the fundamental way in which one views the world, or the characteristics of its constituents.

However, most of these can be best understood in how they affect the Lagrangian of the theory.

1One must remember that at the time, solving the questions about the advance of the perihelion of Mercury
was a triumph of modified gravity theory. Granted the modification was a complete paradigm shift.



7

Perhaps the most straightforward way to change the Einstein-Hilbert action is by adding terms

not linear in the curvature. These type of theories, including Gauss-Bonnet gravity and f (R)-

theories have been extensively studied in the literature. Many of them manifest as lower energy

limits of string theory. Various other structures can be added to the action, for instance Lovelock

gravity, or tensor-vector-scalar gravity. It can even be shown one can recover much of general

relativity by dropping the Riemann curvature and instead considering torsion to be the leading

curvature to consider in teleparallel theory.

In this manuscript we are most interested in those extensions of general relativity that

change the symmetry of the action. It is out of the scope of this introduction to cover the various

alternate theories, but in Table 1.1 we list a number of extensions that change the symmetry

of the action. We also note the change in symmetry with respect to Poincaré symmetry and

references.

Table 1.1. Symmetry Extensions of General Relativity

Theory/ Model Symmetry change from Poincaré Reference

Supergravity Supersymmetric Poincaré invariance [35]

String Theory Supersymmetric and up to E (8)× E (8) [33, 36, 37]

Hǒrava-Lifshitz Galilean Invariance [38]

MacDowell-Mansouri de Sitter or anti-de Sitter invariance [39, 40]

Weyl Gravity 4-dim Weyl invariance [41–44]

Dynamical Cartan Various extensions broken by dynamical vector [45]

Observer Space de Sitter Symmetry [46]

Shape Dynamics 3-dim Weyl invariance [47, 48]

Einstein-Aether Vector field which can break 4-diffeos [49]

Biconformal Space n-dimensional Weyl invariance [50, 51]

Biconformal space is an extension of the symmetries of general relativity. In Chapter 4

we will show one can regain scale invariant general relativity from an action that has Weyl

symmetry.
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1.2. Conformal symmetry

1.2.1. Extending the symmetry of general relativity

The development of the Standard Model of particle physics gives an interesting lesson about

developing working physical models. The SU (3) × SU (2) × U (1) symmetry of the Standard

Model is not a symmetry we actually see in nature (i.e. particle accelerators) today. It is a

symmetry spontaneously broken via the Higgs mechanism, which gives mass to the fields within

the theory. The full SU (3) × SU (2) × U (1) symmetry would only be seen in a high–energy

limit. However, a full understanding of how the various fermions and vector bosons of the model

interact necessitates an understanding of the underlying, broken symmetry. It is by starting with

a fully symmetric theory and then breaking that symmetry we get to the widely successful

Standard Model.

The idea of extending the symmetries of physics goes back much further than particle

physics. One can interpret Newton’s law of inertia (first due to Galileo), at the time, as an ex-

tension of the symmetry principles within physics. It was one of Galileo’s most powerful insights

to see that without friction, inertia would keep objects at rest or in motion [52]. In modern

language, one would say that the equations of mechanics are invariant under Galilean transfor-

mations. Again, the common theme here is the theoretical framework possesses a symmetry,

which must be broken (in this case by friction) to find experimental resolution. While the laws

of classical physics are invariant under Galilean transformations, this is not always evident from

everyday experience. Friction allows for inertia to be worked against, allowing Newton’s first

law of mechanics to be realized. In other words, Newton’s insight was to see the symmetries of

the world are broken by dissipative forces, which can then be included into the theory.

Special relativity is another theory where we have been able to change the symmetries of

nature in order to broaden our physical model of the world. With hindsight, it can be shown all

one needs in order to understand special relativity is to change the symmetries of nature from

those of the Galilean group (spatial rotations, classical boosts and space + time translations)

in three-dim to those of the Poincaré group (spacetime “rotations” and translations) in four-

dim [53].
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In fact, string theory is so successful at including all physical interactions in part because

it includes huge symmetry groups. Of course, this is a double-edged sword, and the symmetry

of string theory makes it difficult to make specific predictions about the world.

As illustrated here, the technique of extending the symmetry of a physical theory is a

common method utilized by theorists to gain understanding of the world. In this manuscript, we

investigate the outcome of considering an extension of the Poincaré symmetry group of general

relativity, to that of the full conformal group.

1.2.2. Why conformal symmetry?

In this manuscript conformal symmetry will refer to the freedom to choose the units of a

physical measurement. For a particle, the position xµ (t) is the dynamical variable and therefore

scales by a scale factor xµ → eφxµ, φ ∈ R. In field theory, it is the fields, not the coor-

dinates, that transform so we have gαβ → e2ϕgαβ as the principal transformation, where gαβ

is a metric on spacetime. Of course, in physics the units on either side of an equation must

match, so where there are other units besides length, those units must also change with a scale

transformation. For instance, a mass transforms as 1
Length in geometric coordinates. There is

often confusion in the literature about various versions of conformal or scaling symmetry. If one

scales the coordinates of a theory, but not the masses, for instance, often the theory will seem

inconsistent [54]. This arises from being inconsistent with the implementation of the scaling.

In this manuscript it is acknowledged that all physical measurements are comparisons, and so

what is important in physics is ratios of unit-ful observations.

Apart from the obvious observation that every physical measurement is only a comparison

of ratios, there are a number of other motivations to specifically consider conformal symmetry in

a theory of gravity. One compelling reason stems from looking at the symmetry of the combined

action of the known physical interactions.

SUniverse(Currently) =

ˆ
SGravity︸ ︷︷ ︸

Poincaré

+

ˆ
SYang-Mills︸ ︷︷ ︸

Conformal

The action of Yang-Mills theories (i.e. the Standard Model) are conformally invariant, only later
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broken by the Higgs boson. This is fair reason to hypothesize that the whole action should be

conformally invariant. In fact in [55], and earlier work cited therein this idea is taken a step

further to show the scale factor of a conformal theory can be related to the Higgs field on the

Yang-Mills sector.

In the renowned paper by Ehlers, Pirani, and Schild [56] they define axioms about the

measurement of light rays and freely falling particles to bootstrap to the geometry of spacetime.

They show by making the fully conformal geometry defined by light rays and the projective

geometry defined by measurement of freely falling particles consistent with each other, the

connection is, at best, a connection of a Weyl geometry. Figure 1.1 summarizes the methodology

of the paper.

Projective Structure
Geodesics, restricted parallel 

transport of directions

Conformal Structure
Infinitesimal null cones, Orthogonality, 

Null geodesic

Compatibility
Particle lines fill light cones

Manifold
Coordinate patches, Continuity, Differentiability)

Weyl Structure

Figure 1.1. This diagram summarizes how a Weyl geometry can be built from the symmetries of
light rays and freely falling particles. In [56] Ehlers, Pirani, and Schild start by considering what
types of geometry can be defined by observations of light rays and freely falling dust. Requiring
these geometries to be compatible, they show the connection is that of a Weyl geometry.

It should be noted the paper ends imposing what they refer to as Einstein simultaneity to

restrict the Weyl geometry to a Riemannian and regain the background for general relativity.

We have excised this ad hoc assumption from the diagram, as we hope to give the reader ample

reason to take (trivial) Weyl geometry as the natural background for a gravitational theory.
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CHAPTER 2

BICONFORMAL SPACE

2.1. Introduction

Through the course of this work, we will study the consequences of choosing conformal

symmetry as the symmetry of our gravitational theory, first by considering strictly the geometry

of a homogeneous space based on conformal symmetries, then by adding a gravitational action to

that geometry. The tool we will use to understand this choice is Cartan geometry in the language

of differential forms. A review of differential forms1 is out of the scope of this manuscript, but

the classic reference is Flanders [57].

In the remainder of this introduction, we give a brief historical overview of techniques

leading up to, related to, or motivating our own, then describe the layout of our presentation.

We show, by basing a gravitational gauge theory on underlying symmetry, how the presence

of a time-like direction can emerge from an initially Euclidean geometry. In addition, we show

it is possible to produce a cosmological constant and cosmological dust as part of an initial

geometry rather than as matter sources. Both of these changes occur as a result of increased

symmetry. For the first, a new vector field, built as the difference of two gauge–dependent

quantities, necessarily gives a time-like direction. The cosmological constant and dust arise in

much the same way as the emergence of a cosmological constant in the MacDowell-Mansouri

treatment of the de Sitter group [39], with the extra symmetry adding terms to the curvature.

By gauge theory, we typically understand a theory (i.e. the specification of an action

functional), which is invariant under a local symmetry group – the gauge symmetry. Thus,

there may be many gauge theories having the same gauge group. However, gauge theories

having the same gauge group share a common structure: the underlying principal fiber bundle

in which the base manifold is spacetime or some other world manifold and the fibers are copies

of the gauge group. Such a principal fiber bundle is most simply constructed as the quotient of

a larger group by the symmetry group. Constructed in this way, we have immediate access to

1For a more modern approach, in the form of class notes see
http://www.physics.usu.edu/Wheeler/GaugeTheory/Lectures09SpringGaugeTheory.htm .

http://www.physics.usu.edu/Wheeler/GaugeTheory/Lectures09SpringGaugeTheory.htm
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relevant tensor fields: any group invariant tensors, the curvatures of the bundle, and the vectors

of the group representation. Then any functional built invariantly from these tensors is a gauge

theory. For example, in Sec. 2.3.3 below, we show how the quotient of the Poincaré group by

its Lorentz subgroup may be generalized to a principal fiber bundle with Lorentz group fibers

and a general base manifold having arbitrary Riemannian curvature. Identifying the curvature,

solder form, Lorentz metric, and Levi-Civita tensor as tensors with respect to this local Lorentz

symmetry, it is clear any functional built invariantly from them is a gauge theory. In addition,

if we use a linear representation, SO(3, 1) or SL (2, C), of the Lorentz group, then the action

functional may include vectors or spinors from that representation and their covariant derivatives.

For these reasons, we will define a gauging to be the fiber bundle of a specific quotient, along

with the identification of its associated tensors. A gauge theory remains the specification of an

action functional invariant on this bundle.

We develop a gauging based on the conformal group of a Euclidean space, and show

its group properties necessarily lead to a symplectic manifold with Lagrangian submanifolds

of Lorentzian signature. Though we deal almost exclusively with the homogeneous quotient

space, we always have in mind the class of biconformal gauge theories presented in Sec. 2.5.2.

This theory has been studied extensively [50]. In particular, we note from the field equations

given in [50] that for specific relations of the action coefficients the homogeneous space is a

vacuum solution. We find these vacuum solutions carry both a cosmological constant and a

cosmological perfect fluid as geometric generalizations of the Einstein tensor. In curved models,

this geometric background may explain or contribute to dark matter and dark energy. To

emphasize the purely geometric character of the construction, we give a description of our

use of the quotient manifold method for building gauge theories. Our use of the conformal

group, together with our choice of local symmetry lead to several structures not present in other

related gauge theories. Specifically, we show the generic presence of a symplectic form, there

exists an induced metric from the nondegenerate Killing form, demonstrate (but do not use)

Kähler structure, and find natural orthogonal, Lagrangian submanifolds. All of these properties

arise directly from group theory.
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2.2. Historical introduction

As mathematicians began studying the various incarnations of non-Euclidean geometry,

Klein started his Erlangen Program in 1872 as a way to classify all forms of geometries that

could be constructed using quotients of groups. These homogeneous spaces allowed for straight-

forward classification of the spaces dependent on their symmetry properties. Much of the ma-

chinery necessary to understand these spaces originated with Cartan, beginning with his doctoral

dissertation [58]. The classification of these geometries according to symmetry foreshadowed

gauge theory, the major tool that would be used by theoretical physicists as the twentieth cen-

tury continued. We will go into extensive detail about how these methods are used in a modern

context in section 2.3. Most of the development, in modern language, can be found in [59].

The use of symmetries to construct physical theories can be greatly credited to Weyl’s

attempts at constructing a unified theory of gravity and electromagnetism by adding dilatational

symmetry to general relativity. These attempts failed until Weyl looked at a U(1) symmetry

of the action, thus constructing the first gauge theory of electromagnetism. These efforts were

extended to non-Abelian groups by Yang and Mills [60], including all SU(n) and described by

the Yang-Mills action. The success of these theories as quantum precursors inspired relativists

to try and construct general relativity as a gauge theory. Utiyama [61] looked at GR based

on the the Lorentz group, followed by Kibble [2] who first gauged the Poincaré group to form

general relativity.

Standard approaches to gauge theory begin with a matter action, globally invariant under

some symmetry group H. This action generally fails to be locally symmetric due to the deriva-

tives of the fields, but can be made locally invariant by introducing an H-covariant derivative.

The connection fields used for this derivative are called gauge fields. The final step is to make

the gauge fields dynamical by constructing their field strengths, which may be thought of as

curvatures of the connection, and including them in a modified action.

In the 1970s, the success of the standard model and the growth of supersymmetric gravity

theories inspired physicists to extend the symmetry used to construct a gravitational theory.

MacDowell and Mansouri [39] obtained general relativity by gauging the de Sitter or anti-de
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Sitter groups, and using a Wigner-Inönu contraction to recover Poincaré symmetry. As a pre-

cursor to supersymmetrizing Weyl gravity, two groups [62–65] looked at a gravitational theory

based on the conformal group, using the Weyl curvature-squared action. These approaches

are top down, in the sense they are often based on constructing an action with specified local

symmetry, then investigating any new structures and the new field equations. However, as this

work expanded, physicists started using the techniques of Cartan and Klein to organize and

develop the structures systematically.

In [3,4] Ne’eman and Regge develop what they refer to as the quotient manifold technique to

construct a gauge theory of gravity based on the Poincaré group. Theirs is the first construction

of a gravitational gauge theory that uses Klein (homogeneous) spaces as generalized versions

of tangent spaces, applying methods developed by Cartan [66] to characterize a more general

geometry. In their 1982 papers [5, 6], Ivanov and Niederle exhaustively considered quotients of

the Poincaré, de Sitter, anti-de Sitter and Lorentzian conformal groups (ISO (3, 1), SO (4, 1),

SO (3, 2), and SO (4, 2) respectively) by various subgroups containing the Lorentz group.

There are a number of more recent implementations of Cartan geometry in the modern

literature. One good introduction is Wise’s use of Cartan methods to look at the MacDowell-

Mansouri action [40]. The waywiser approach of visualizing these geometries is advocated

strongly, and gives a clear geometric way of undertsanding Cartan geometry. The use of Cartan

techniques in [67] to look at the Chern-Simons action in 2+1 dimensions provides a nice example

of the versatility of the method. This action can be viewed as having either Minkowski, de Sitter

or anti-de Sitter symmetry, and Cartan methods allow a straightforward characterization of the

theory given the various symmetries. The analysis is extended to look first at the conformal

representation of these groups on the Euclidean surfaces of the theory (two-dimensional spatial

slices). The authors then look specifically at shape dynamics, which is found equivalent to the

case when the Chern-Simons action has de Sitter symmetry. Tractor calculus is another example

using a quotient of the conformal group, in which the associated tensor bundles are based on

a linear, (n + 2)-dim representation of the group. This is a distinct gauging from the one we

study here, but one studied in [68].
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Our research focuses primarily on gaugings of the conformal group. Initially motivated

by a desire to understand the physical role of local scale invariance, the growing prospects of

twistor string formulations of gravity [69] elevate the importance of understanding its low-energy

limit, which is expected to be a conformal gauge theory of gravity. Interestingly, there are two

distinct ways to formulate gravitational theories based on the conformal group, first identified

in [5, 6] and developed in [50], [51], and [68]. Both of these lead directly to scale-invariant

general relativity. This is surprising since the best known conformal gravity theory is the fourth-

order theory developed by Weyl [41, 42, 70–72] and Bach [43]. Wheeler recently showed when

a Palatini variation is applied to Weyl gravity, it becomes second-order, scale-invariant general

relativity.

The second gauging of the conformal group identified in these works is the biconformal

gauging. Leading to scale-invariant general relativity formulated on a 2n-dimensional symplectic

manifold, the approach took a novel twist for homogeneous spaces in [7]. There it is shown that,

because the biconformal gauging leads to a zero-signature manifold of doubled dimension, we

can start with the conformal symmetry of a non-Lorentzian space while still arriving at spacetime

gravity. We describe the resulting signature theorem in detail below, and considerably strengthen

its conclusions. In addition to necessarily developing a direction of time from a Euclidean-

signature starting point, we show these models give a group-theoretically driven candidate for

dark matter.

2.3. Quotient manifold method

We are interested in geometries – ultimately spacetime geometries – which have continuous

local symmetries. The structure of such systems is that of a principal fiber bundle with Lie group

fibers. The quotient method starts with a Lie group, G, with the desired local symmetry as a

proper Lie subgroup, H. To develop the local properties any representation will give equivalent

results, so without loss of generality we assume a linear representation, Vn+2, i.e. a vector

space, Vn+2, on which G acts. Typically this will be either a signature (p, q) (pseudo-)Euclidean

space or the corresponding spinor space. This vector space is useful for describing the larger

symmetry group, but is only a starting point and will not appear in the theory.
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The quotient method, laid out below, is identical in many respects to the approaches

of [40, 67]. The nice geometric interpretation of using a Klein space in place of a tangent

space to both characterize a curved manifold and take advantage of its metric structure are also

among the motivations for using the quotient method. In what follows, not all the manifolds we

look at will be interpreted as spacetime; so, we choose not to use the interpretation of a Klein

space moving around on spacetime in a larger ambient space. Rather, we directly generalize

the homogeneous space to add curvatures. The homogeneous space becomes a local model for

a more general curved space, similar to the way that Rn provides a local model for an n-dim

Riemannian manifold.

We include a concise introduction here, but the reader can find a more detailed exposition

in [59]. Our intention is to make it clear that our ultimate conclusions have rigorous roots in

group theory, rather than to present a comprehensive mathematical description.

2.3.1. Construction of a principal H-bundle B (G, π,H,M0) with connection

Consider a Lie group, G, and a nonnormal Lie subgroup, H, on which G acts effectively

and transitively on H. The quotient of these is a homogeneous manifold, M0. The points of

M0 are the left cosets, gH = {g′ | g′ = gh for some h ∈ H} , so, there is a natural one to one

mapping gH ↔ H. The cosets are disjoint from one another and together cover G. There is a

projection, π : G →M0, defined by π (g) = gH ∈M0. There is also a right action of G, gHG,

given, for all elements of G, by right multiplication.

Therefore, G is a principal H-bundle, B (G, π,H,M0), where the fibers are the left cosets.

This is the mathematical object required to carry a gauge theory of the symmetry group H.

Let the dimension of G be m, the dimension of H be k. Then the dimension of the quotient

manifold is n = m−k and we write M
(n)
0 . Choosing a gauge amounts to picking a cross section

of this bundle, i.e. one point from each of these copies of H. Local symmetry amounts to

dynamical laws, which are independent of the choice of cross section.

Lie groups have a natural Cartan connection given by the one-forms, ξA, dual to the group

generators, GA. Rewriting the Lie algebra in terms of these dual forms leads immediately to the
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Maurer-Cartan structure equations,

dξA = −1

2
cABCξ

B ∧ ξC , (2.1)

where cABC are the group structure constants, and ∧ is the wedge product. The integrabil-

ity condition for this equation follows from the Poincaré lemma, d2 = 0, and turns out to

be precisely the Jacobi identity. Therefore, the Maurer-Cartan equations together with their

integrability conditions are completely equivalent to the Lie algebra of G.

Let ξa (where a = 1, . . . , k) be the subset of one-forms dual to the generators of the

subgroup,H. Let the remaining independent forms be labeled χα. Then the ξa give a connection

on the fibers while the χα span the cotangent spaces to M
(n)
0 . We denote the manifold with

connection by M(n)
0 =

(
M

(n)
0 , ξA

)
.

2.3.2. Cartan generalization

For a gravity theory, we require in general a curved geometry, M(n). To achieve this,

the general method allows us to generalize both the connection and the manifold. Since the

principal fiber bundle from the quotient is a local direct product, this is not changed if we

allow a generalization of the manifold, M
(n)
0 → M (n). We will not consider such topological

issues here. Generalizing the connection is more subtle. If we change ξA = (ξa,χα) to a new

connection ξA → ωA, ξa → ωa,χα → ωα arbitrarily, the Maurer-Cartan equation is altered

to dωA = −1
2c
A
BCω

B ∧ ωC + ΩA, where ΩA is a two-form determined by the choice of

the new connection. We need restrictions on ΩA so it represents curvature of the geometry,

M(n) =
(
M (n),ωA

)
, and not of the full bundle, B. We restrict ΩA by requiring it to be

independent of lifting, i.e. horizontality of the curvature.

To define horizontality, recall the integral of the connection associated with G around a

closed curve in the bundle is given by the integral of ΩA over any surface bounded by the curve.

We require this integral to be independent of lifting, i.e. horizontal. This means the two-form

bases for the curvatures ΩA cannot include any of the one-forms, ωa, that span the fiber group,
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H. With the horizontality condition, the curvatures take the simpler form

ΩA =
1

2
ΩA
µνω

µ ∧ ων .

More general curvatures than this will destroy the homogeneity of the fibers, so we would no

longer have a principal H-bundle.

In addition to horizontality, we require integrability. Again using the Poincaré lemma,

d2ωA ≡ 0, we always find a term 1
2c
A
B[Cc

B
DE]ω

C ∧ ωD ∧ ωE , which vanishes by the Jacobi

identity, cAB[Cc
B
DE] ≡ 0, while the remaining terms give the general form of the Bianchi identi-

ties,

dΩA + cABCω
B ∧ΩC = 0.

2.3.3. Example: pseudo-Riemannian manifolds

To see how this works in a familiar example, consider the construction of the pseudo-

Riemannian spacetimes used in general relativity, for which we take the quotient of the 10-dim

Poincaré group by its six-dim Lorentz subgroup. The result is a principal Lorentz bundle over

R4. Writing the one-forms dual to the Lorentz (Ma
b) and translation (Pa) generators as ξab and

ωa, respectively, the 10 Maurer-Cartan equations are

dξab = ξcb ∧ ξac,

dωa = ωb ∧ ξab.

Notice the first describes a pure gauge spin connection, dξab = −Λ̄cbdΛac where Λac is a local

Lorentz transformation. Therefore, there exists a local Lorentz gauge such that ξab = 0. The

second equation then shows the existence of an exact orthonormal frame, which tells us the

space is Minkowski.

Now generalize the geometry,
(
M4

0 , ξ
A
)
→
(
M4,ωA

)
, where M4

0 = R4 and we denote the

new connection forms by ωA =
(
ωab, e

b
)
. In the structure equations, this leads to the presence
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of 10 curvature two-forms,

dωab = ωcb ∧ ωac + Ra
b,

dea = eb ∧ ωab + Ta.

Since the ωab span the Lorentz subgroup, horizontality is accomplished by restricting the curva-

tures to

Ra
b =

1

2
Rabcde

c ∧ ed,

Ta
b =

1

2
T abce

b ∧ ec.

That is, there are no terms such as, 1
2R

a c
b deω

d
c ∧ ee or 1

2T
a c e
b d ω

b
c ∧ ωde, for example. Finally,

integrability is guaranteed by the pair of Bianchi identities,

dRa
b + Rc

b ∧ ωac −Ra
c ∧ ωcb = 0,

dTa + Tb ∧ ωab + eb ∧Ra
b = 0.

By looking at the transformation of Ra
b and Ta under local Lorentz transformations, we find

despite originating as components of a single Poincaré-valued curvature, they are independent

Lorentz tensors. The translations of the Poincaré symmetry were broken when we curved the

base manifold (see [2–4], but note Kibble effectively uses a 14-dimensional bundle, whereas

ours and related approaches require only 10-dim). We recognize Ra
b and Ta as the Riemann

curvature and the torsion two-forms, respectively. Since the torsion is an independent tensor

under the fiber group, it is consistent to consider the subclass of Riemannian geometries, Ta = 0.

Alternatively, vanishing torsion follows from the tetradic Palatini action, S =
´

Rabecedεabcd.

With vanishing torsion, the quotient method has resulted in the usual solder form, ea, and

related metric-compatible spin connection, ωab,

dea − eb ∧ ωab = 0,
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the expression for the Riemannian curvature in terms of these,

Ra
b = dωab − ωcb ∧ ωac,

and the first and second Bianchi identities,

eb ∧Ra
b = 0,

DRa
b = 0.

This is a complete description of the class of Riemannian geometries.

In order to return to the usual language of general relativity we note we can endow the

manifold with an orthonormal Lorentzian inner product
〈
ea, eb

〉
≡ ηab, which gives a metric of

the form ηab = diag (−1, 1, 1, 1). We can pass between the orthonormal frame fields and the

coordinate frame by using the coefficients of the solder form, ea = e aµ dxµ. The coordinate

metric is then defined by the relationship gµν ≡ e aµ e bν ηab.

This is a nice point in the discussion to point out the difference between the quotient

method of [3, 4] that we use in this manuscript, and the method originally used to gauge the

Poincaré group used by Kibble [2]. Kibble’s original treatment effectively uses a 14-dimensional

bundle, see Figure 2.1, whereas ours and related approaches require only 10-dim. Kibble uses

the group manifold of the Poincaré group together with a four-dimensional manifold to describe

general relativity. He identifies the degrees of freedom of the frame fields, ea as the cotangent

space to the manifold, soldering the forms to the manifold.

P(Mab,Pa)Kibble

14-dim

M4

Need to solder ea Pa

L(Ma
b)Ne'emann

Regge
10-dim

M4

No need to solder

P/L= M4

Figure 2.1. These diagrams summarize the relationship between the two techniques to gauge
the Poincaré group. The figure on the left represents Kibble’s original construction [2], where
he has soldered the degrees of freedom of the frame fields to the manifold. The figure on the
right shows the quotient of the Poincaré by the Lorentz group and gives a cleaner description.
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2.3.4. Example: SO (3) /SO (2)

The following description of the Hopf fibration, becoming a well–regarded one in the grav-

itational Cartan geometry community, is originally due to Wise [40] and has recently been

extended in [67] and [73].

In the Poincaré example we demonstrated how the full connection of ISO (3, 1) can be

separated into an SO (3, 1) connection and a frame field. This homogeneous space is then used

to characterize a curved manifold of the same dimension. In order to understand the geometric

meaning of such a split we use a simpler example; the quotient of SO (3) /SO (2). This quotient

can be viewed as a sphere, S2. This sphere can then be used to characterize a two-manifold,

M, by rolling the sphere around on it. We can visualize the situation as a rodent ball (here a

gerbil) where the gerbil is standing over the point of contact, see Figure 2.2.

Figure 2.2. The gerbil in the ball is free to map out the geometry of the curved surface, M,
by rolling without slipping along its surface.

The information in the connection can be probed by allowing the gerbil to roll the ball over

M. The three different directions the gerbil can move the ball correspond to the three degrees

of freedom in SO (3), see Figure 2.3.

One of these, H = SO (2), stabilizes the point of contact on the manifold. This rotation, by

construction, does not change the point of contact withM and represents vertical motion in the

fiber bundle. The remaining degrees of freedom correspond to the two independent directions

the gerbil can move the ball. These horizontal directions give a natural metric structure on M.

A general Cartan geometry can then be thought of as a generalized ball, M0 = G/H, that can
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be rolled on an arbitrary manifold, M. The subgroup H, called the isotropy subgroup, then

stabilizes the point of contact of M0 on M.

Figure 2.3. The degree of freedom represented by the gerbil ball on the left is the SO(2)
rotation about the contact point. The degrees of freedom on the right are the remaining
degrees of freedom that tell how the gerbil is moving around on the curved surface.

2.4. Quotients of the conformal group

2.4.1. General properties of the conformal group

Physically, we are interested in measurements of relative magnitudes, so the relevant group

is the conformal group, C, of compactified Rn together with a metric. The one-point com-

pactification at infinity allows a global definition of inversion, with translations of the point at

infinity defining the special conformal transformation. Then C has a real linear representation in

n+2 dimensions, Vn+2; alternatively, we could choose the complex representation C2[(n+2)/2]
for

Spin (p+ 1, q + 1). The isotropy subgroup of Vn+2 is the rotations, SO (p, q), together with

dilatations. We call this subgroup the homogeneous Weyl group, W, and require our fibers to

contain it. There are then only three allowed subgroups: W itself; the inhomogeneous Weyl

group, IW, found by appending the translations; andW together with special conformal trans-

formations, isomorphic to IW. The quotient of the conformal group by either inhomogeneous

Weyl group, called the auxiliary gauging, leads most naturally to Weyl gravity (for a review,

see [68]). We concern ourselves with the only other meaningful conformal quotient, the bicon-

formal gauging: the principal W-bundle formed by the quotient of the conformal group by its

Weyl subgroup. To help clarify the method and our model, it is useful to consider both these
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gaugings.

All parts of this construction work for any (p, q) with n = p + q. The conformal group

is then SO (p+ 1, q + 1) (or Spin (p+ 1, q + 1) for the twistor representation). The Maurer-

Cartan structure equations are immediate. In addition to the n(n−1)
2 generators Mα

β of SO (n)

and n translational generators Pα, there are n generators of translations of a point at infinity

(special conformal transformations) Kα, and a single dilatational generator, D. Dual to these,

we have the connection forms ξαβ,χ
α,πα,δ, respectively. Substituting the structure constants

into the Maurer-Cartan dual form of the Lie algebra, eq.(2.1) gives

dξαβ = ξµβ ∧ ξ
α
µ + 2∆αµ

νβπµ ∧ χ
ν , (2.2)

dχα = χβ ∧ ξαβ + δ ∧ χα, (2.3)

dπα = ξβα ∧ πβ − δ ∧ πα, (2.4)

dδ = χα ∧ πα, (2.5)

where ∆αµ
νβ ≡

1
2

(
δαν δ

µ
β − δ

αµδνβ

)
antisymmetrizes with respect to the original (p, q) metric,

δµν = diag (1, . . . , 1,−1, . . . ,−1). These equations, which are the same regardless of the

gauging chosen, describe the Cartan connection on the conformal group manifold. Before

proceeding to the quotients, we note the conformal group has a nondegenerate Killing form,

KAB ≡ tr (GAGB) = cCADc
D
BC =



∆ac
db

0 δab

δab 0

1


.

This provides a metric on the conformal Lie algebra. As we show below, when restricted toM0,

it may or may not remain nondegenerate, depending on the quotient.

Finally, we note the conformal group is invariant under inversion. Within the Lie algebra,

this manifests itself as the interchange between the translations and special conformal trans-

formations, Pα ↔ δαβK
β, along with the interchange of conformal weights, D → −D. The
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corresponding transformation of the connection forms is easily seen to leave equations (2.2)–(2.5)

invariant. In the biconformal gauging below, we show this symmetry leads to a Kähler structure.

2.4.2. Specialized notation

Much of the notation used in this manuscript is standard for those working in Cartan

formalism. Bold-faced symbols represent one-forms. In any equation where there is more than

one differential form, it should be assumed they are multiplied with a wedge product. In other

words, ea ∧ eb and eaeb are equivalent. The conformal weights of connections and various

tensors are encoded in their index position. For instance, ea → eφea scales with a conformal

weight of +1, fa → e−φfa scales with a conformal weight of −1, while Ωa
b → Ωa

b has a

conformal weight of zero, since the number of contravariant and covariant indices are equal.

We denote differential forms associated with, what we eventually identify as the configuration

submanifold with an (x) and those associated with the momentum submanifold with a (y),

when it is not obvious from the index position or the presence of basis forms. This predicates

our eventual choice of Darboux coordinates, xα and yα for the configuration and momentum

subspaces respectively, such that ea = e aµ dxµ and fa = f µ
a dyµ.

In what follows, the terms Euclidean and Lorentzian will be used to distinguish between

the signatures of metric manifolds, while the term Riemannian will refer to a geometry with no

torsion, cotorsion (Cartan curvature of the cosolder form) or dilatational curvature, analogous

to the geometry on which general relativity is based. One of our major conclusions is, though

we start with the conformal symmetries of a Euclidean space in a fully general Cartan formalism,

we show the orthogonal, Lagrangian submanifolds have a Lorentzian metric with the structure

of a Riemannian geometry.

2.4.3. Curved generalizations

In this subsection and Section 2.5, we will complete the development of the curved auxiliary

and biconformal geometries and show how one can easily construct actions with the curvatures.

In this subsection, we construct the two possible fiber bundles, C/S where W ⊆ S. For each,

we carry out the generalization of the manifold and connection. The results in this subsection

depend only on whether the local symmetry is S = IW or S =W. In Section 3.1 and Section
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3.2 we will return to the uncurved case to present a number of new calculations characterizing

the homogenous space formed from the biconformal gauging.

The first subsection below describes the auxiliary gauging, given by the quotient of the

conformal group by the inhomogeneous Weyl group, IW. Since IW is a parabolic subgroup

of the conformal group, the resulting quotient can be considered a tractor space, for which

there are numerous results [74]. Tractor calculus is a version of the auxiliary gauging, where the

original conformal group is tensored with R(p+1,q+1). This allows for a linear representation of

the conformal group with (n+ 2)-dimensional tensorial (physical) entities called tractors. This

linear representation, first introduced by Dirac [75], makes a number of calculations much easier

and also allows for straightforward building of tensors of any rank. The main physical differences

stem from the use of Dirac’s action, usually encoded as the scale tractor squared in the n+ 2-

dimensional linear representation, instead of the Weyl action we introduce in Section 2.5.

In subsection 2.4.3, we quotient by the homogeneous Weyl group, giving the biconformal

gauging. This is not a parabolic quotient and therefore represents a less conventional option,

which turns out to have a number of rich structures not present in the auxiliary gauging. The

biconformal gauging will occupy our attention for the bulk of our subsequent discussion.

The auxiliary gauging: S = IW

Given the quotient C/IW, the one-forms
(
ξαβ,πµ, δ

)
span the IW-fibers, with βα span-

ning the cotangent space of the remaining n independent directions. This means M(n)
0 has the

same dimension, n, as the original space. Generalizing the connection, we replace
(
ξαβ,χ

α,πα, δ
)
→(

ωαβ, e
α,ωα,ω

)
and the Cartan equations now give the conformal curvatures in terms of the

new connection forms,

dωαβ = ωµβ ∧ ω
α
µ + 2∆αµ

νβωµ ∧ ω
ν + Ωα

β, (2.6)

deα = eβ ∧ ωαβ + ω ∧ eα + Tα, (2.7)

dωα = ωβα ∧ ωβ − ω ∧ ωα + Sα, (2.8)

dω = ωα ∧ ωα + Ω. (2.9)
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Up to local gauge transformations, the curvatures depend only on the n nonvertical forms, eα,

so the curvatures are similar to what we find in an n-dim Riemannian geometry. For example,

the SO (p, q) piece of the curvature takes the form Ωα
β = 1

2Ωα
βµνe

α ∧ eβ. The coefficients

have the same number of degrees of freedom as the Riemannian curvature of an n-dim Weyl

geometry.

Finally, each of the curvatures has a corresponding Bianchi identity, to guarantee integra-

bility of the modified structure equations,

0 = DΩα
β + 2∆αµ

νβ (Ωµ ∧ ων − ωµ ∧Ων) , (2.10)

0 = DTα − eβ ∧Ωα
β + Ω ∧ eα, (2.11)

0 = Ωα
β ∧ ωβ − ωβα ∧ Sβ + Sα ∧ ω − ωα ∧Ω + dSα, (2.12)

0 = DΩ + Tα ∧ ωα − ωα ∧ Sα, (2.13)

where D is the Weyl covariant derivative,

DΩα
β = dΩα

β + Ωµ
β ∧ ω

α
µ −Ωα

µ ∧ ω
µ
β,

DTα = dTα + Tβ ∧ ωαβ − ω ∧Tα,

DSα = dSα − ωβα ∧ Sβ + Sα ∧ ω,

DΩ = dΩ.

Equations (2.6-2.9) give the curvature two-forms in terms of the connection forms. We have,

therefore, constructed an n-dim geometry based on the conformal group with local IW sym-

metry.

We note no additional special properties of these geometries from the group structure. In

particular, the restriction (in square brackets, [ ], below) of the Killing metric, KAB, to M(n)
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vanishes identically, 

∆ac
db

[0] δab

δab 0

1



∣∣∣∣∣∣∣∣∣∣∣∣∣
M(n)

=

(
0

)
n×n

,

so there is no induced metric on the spacetime manifold. We may add the usual metric by hand,

of course, but our goal here is to find those properties, which are intrinsic to the underlying

group structures.

The biconformal gauging

We next consider the biconformal gauging, first considered by Ivanov and Niederle [6], given

by the quotient of the conformal group by its Weyl subgroup. The resulting geometry has been

shown to contain the structures of general relativity [50, 51].

Given the quotient C/W, the one-forms
(
ξαβ, δ

)
span theW-fibers, with (χα,πα) spanning

the remaining 2n independent directions. This means M(2n)
0 has twice the dimension of the

original space. Generalizing, we replace
(
ξαβ,χ

α,πα, δ
)
→
(
ωαβ,ω

α,ωα,D
)

and the modified

structure equations appear identical to Equations (2.6-2.9). However, the curvatures now depend

on the 2n nonvertical forms, (ωα,ωα), so there are far more components than for an n-dim

Riemannian geometry. For example,

Ωα
β =

1

2
Ωα
βµνω

µ ∧ ων + Ωα µ
β νωµ ∧ ω

ν +
1

2
Ωα µν
β ωµ ∧ ων .

The coefficients of the pure terms, Ωα
βµν and Ωα µν

β each have the same number of degrees

of freedom as the Riemannian curvature of an n-dim Weyl geometry, while the cross-term

coefficients Ωα µ
β ν have more, being asymmetric on the final two indices.

For our purpose, it is important to notice the spin connection, ξαβ, is antisymmetric with

respect to the original (p, q) metric, δαβ, in the sense that ξαβ = −δαµδβνξνµ. It is crucial to

note that ωαβ retains this property, ωαβ = −δαµδβνωνµ. This expresses metric compatibility

with the SO (p, q)-covariant derivative, since it implies Dδαβ ≡ dδαβ − δµβωµα − δαµωµβ = 0.
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Therefore, the curved generalization has a connection, which is compatible with a (p, q)-metric.

This relationship is general. If καβ is any metric, its compatible spin connection will satisfy

ωαβ = −καµκβνωνµ. Since we also have local scale symmetry, the full covariant derivative we

use will also include a Weyl vector term. The Bianchi identities, written as three-form equations,

also appear the same as Equations (2.10-2.13), but expand into more components.

In the conformal group, translations and special conformal transformations are related by

inversion. Indeed, a special conformal tranformation is a translation centered at the point at

infinity instead of the origin. Because the biconformal gauging maintains the symmetry between

translations and special conformal transformations, it is useful to name the corresponding con-

nection forms and curvatures to reflect this. Therefore, the biconformal basis will be described

as the solder form and the cosolder form, and the corresponding curvatures as the torsion and

cotorsion. Thus, when we speak of torsion-free biconformal space we do not imply the cotorsion

(Cartan curvature of the cosolder form) vanishes. In phase space interpretations, the solder

form is taken to span the cotangent spaces of the spacetime manifold, while the cosolder form

is taken to span the cotangent spaces of the momentum space. The opposite convention is

equally valid.

Unlike other quotient manifolds arising in conformal gaugings, the biconformal quotient

manifold possesses natural invariant structures. The first is the restriction of the Killing metric,

which is now nondegenerate,



∆ac
db  0 δab

δab 0


1



∣∣∣∣∣∣∣∣∣∣∣∣∣
M(2n)

=

 0 δab

δab 0


2n×2n

,

and this gives an inner product for the basis,

 〈ωα,ωβ〉 〈ωα,ωβ〉〈
ωα,ω

β
〉
〈ωα,ωβ〉

 ≡
 0 δαβ

δβα 0

 . (2.14)
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This metric remains unchanged by the generalization to curved base manifolds.

The second natural invariant property is the generic presence of a symplectic form. The

original fiber bundle always has this, because the structure equation (2.5) shows χα ∧ πα is

exact; hence, closed d2ω = 0, while it is clear the two-form product is nondegenerate because

(χα,πα) together span M(2n)
0 . Moreover, the symplectic form is in canonical form,

[Ω]AB =

 0 δβα

−δαβ 0

 ,
so χα and πα are canonically conjugate. The symplectic form persists for the two-form, ωα ∧

ωα+Ω, as long as it is nondegenerate, so curved biconformal spaces are generically symplectic.

Next, we consider the effect of inversion symmetry. As a

 1

1

 tensor, the basis inter-

change takes the form

IABχ
B =

 δαν

δβµ


 χµ

πν

 =

 δανπν

δβµχ
µ

 .

In order to interchange conformal weights, IAB must anticommute with the conformal weight

operator, which is given by

WA
Bχ

B =

 δαµ

−δνβ


 χµ

πν

 =

 +χα

−πβ

 .

This is the case: we easily check that {I,W}AB = IACW
C
B + WA

CI
C
B = 0. The commutator

gives a new object,

JAB ≡ [I,W ]AB =

 −δαβ

δαβ

 .

Squaring, JACJ
C
B = −δAB, we see JAB provides an almost complex structure. That the almost

complex structure is integrable follows immediately in this (global) basis by the obvious vanishing
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of the Nijenhuis tensor, NA
BC = JDC∂DJ

A
B − JDC∂DJAB − JAD

(
∂CJ

D
B − ∂BJDC

)
= 0.

Next, using the symplectic form to define the compatible metric g (u, v) ≡ Ω (u, Jv), we

find in this basis g =

 δαβ

δαβ

, and we check the remaining compatibility conditions of

the triple (g, J,Ω),

ω (u, v) = g (Ju, v) ,

J (u) = (φg)
−1 (φω (u)) ,

where φω and φg are defined by

φω (u) = ω (u, ·) ,

φg (u) = g (u, ·) .

These are easily checked to be satisfied, showing M(2n)
0 is a Kähler manifold. Notice, however,

the metric of the Kähler manifold is not the restricted Killing metric, which we use in the

following considerations.

Finally, a surprising result emerges if we requireM(2n)
0 to match our usual expectations for

a relativistic phase space. To make the connection to phase space clear, the precise requirements

were studied in [7], where it was shown the flat biconformal gauging of SO (p, q) in any dimension

n = p + q will have Lagrangian submanifolds that are orthogonal with respect to the 2n-dim

biconformal (Killing) metric and have nondegenerate n-dim restrictions only if the original space

is Euclidean or signature zero
(
p ∈

{
0, n2 , n

})
, and then the signature of the submanifolds is

severely limited (p→ p± 1), leading in the two Euclidean cases to Lorentzian configuration

space, and hence, the origin of time. For the case of flat, eight-dim biconformal space [7] has

the following theorem:

Flat eight-dim biconformal space is a metric phase space with Lagrangian submanifolds that

are orthogonal with respect to the 2n-dim biconformal (Killing) metric and have nondegenerate

n-dim metric restrictions if and only if the initial four-dim space we gauge is Euclidean or
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signature zero. In either of these cases the resulting configuration submanifold is necessarily

Lorentzian [7].

Thus, it is possible to impose the conditions necessary to make biconformal space a metric

phase space only in a restricted subclass of cases, and the configuration space metric must be

Lorentzian. In [7], it was found that with a suitable choice of gauge, the metric may be written

in coordinates yα as

hαβ =
1

(y2)2
(
2yαyβ − y2δαβ

)
, (2.15)

where the signature changing character of the metric is easily seen.

In [7], there is a restriction necessary to prove the signature theorem. In Section 4 of [7]

the conformal flatness of the momentum submanifold is assumed. This is then proven to result

in an expression for the metric similar to (2.15), but with a generic vector, ua. In Section 5

of [7] this generic vector is then related to the coordinates of the momentum space, ya. In

Chapter 3 we will arrive at the signature changing form of the metric without assuming the

conformal flatness of the momentum sector. In fact, we will show the momentum sector can be

consistently chosen to be fully flat.

In the metric above, (2.15), yα = Wα is the Weyl connection of the space. (This is

modified to a true vector in the new treatment.) This points to another unique characteristic

of flat biconformal space. The structures of the conformal group, treated as described above,

give rise to a natural direction of time, given by the gauge field of dilatations. The situation

is reminiscent of previous studies. In 1979, Stelle and West introduced a special vector field

to choose the local symmetry of the MacDowell-Mansouri theory. The vector breaks the de

Sitter symmetry, eliminating the need for the Wigner-Inönu contraction. Recently, Westman

and Zlosnik [45] have looked in depth at both the de Sitter and anti-de Sitter cases using a class

of actions, which extend that of Stelle and West by including derivative terms for the vector field

and, therefore, lead to dynamical symmetry breaking. In [76,77] and Einstein-Aether theory [49],

there is also a special vector field introduced into the action by hand that makes the Lorentzian

metric Euclidean. These approaches are distinct from that of the biconformal approach, where

the vector necessary for specifying the timelike direction occurs naturally from the underlying
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group structure. We will have more to say about this below, where we show explicitly the

Euclidean gauge theory necessarily possesses a special one-form, v = ω − 1
2ηabdη

bc. This

gives the time direction on a biconformal submanifold, which is necessarily Lorentzian. The full

manifold retains its original symmetry.

2.5. A brief note on gravitation

Notice our development to this point was based solely on group quotients and generalization

of the resulting principal fiber bundle. We have arrived at the form of the curvatures in terms of

the Cartan connection, and Bianchi identities required for integrability, thereby describing certain

classes of geometry. Within the biconformal quotient, the demand for orthogonal Lagrangian

submanifolds with nondegenerate n-dim restrictions of the Killing metric leads to the selection

of certain Lorentzian submanifolds. Our concern in Chapter 3 has to do with the geometric

background rather than with gravitational theories on those backgrounds. For continuity, we

briefly digress to specify the action functionals for gravity. The main results of Chapter 3 concern

only the homogeneous space, M(2n)
0 . We will return to the curved case, M(2n), in Chapter 4.

We are guided in the choice of action functionals by the example of general relativity. Given

the Riemannian geometries of Section 2.3, we may write the Einstein-Hilbert action and proceed.

More systematically, however, we may write the most general, even-parity action linear in the

curvature and torsion. This still turns out to be the tetradic Palatini action and, as noted above,

one of the classical field equations under a full variation of the connection
(
δeb, δωab

)
, implies

vanishing torsion. The latter, more robust approach is what we follow for conformal gravity

theories.

It is generally of interest to build the simplest class of actions possible, and we use the

following criteria:

1. The pure-gravity action should be built from the available curvature tensor(s) and other

tensors which occur in the geometric construction.

2. The action should be of lowest possible order ≥ 1 in the curvatures.

3. The action should be of even parity.
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These are of sufficient generality not to bias our choice. It may also be a reasonable assumption

to set certain tensor fields, for example, the spacetime torsion to zero. This can significantly

change the available tensors, allowing a wider range of action functionals.

Notice, if we perform an infinitesimal conformal transformation to the curvatures,(
Ωα

β,Ω
α,Ωβ,Ω

)
, they all mix with one another, since the conformal curvature is really a

single Lie-algebra-valued two-form. However, the generalization to a curved manifold breaks

the nonvertical symmetries, allowing these different components to become independent tensors

under the remaining Weyl group. Thus, to find the available tensors, we apply an infinitesimal

transformation of the fiber symmetry. Tensors are those objects which transform linearly and

homogeneously under these transformations.

2.5.1. The auxiliary gauging and Weyl gravity

According to our rules above, an action for the auxiliary gauging is constructible from the

available tensors, ec,ΩA
B, together with the invariant metric and Levi-Civita tensors, ηab, εabcd.

In 2n-dimensions, scale invariance requires n factors of the curvature, so it is the (p, q) = (4, 2)

case that is of interest here. Then the most general even parity, IW-invariant possibility is

uniquely determined (up to an overall multiple) to be

SIWauxiliary = α

ˆ
ΩA

B ∧ ∗ΩB
A

= α

ˆ (
Ωa

b ∧ ∗Ωb
a + 4Tc ∧ ∗Sc + 2Ω ∧ ∗Ω

)
,

where ΩA
B is the full SO (4, 2) curvature two-form. This leads to a Weyl-Cartan geometry

(i.e. one having nontrivial dilatation and torsion). To achieve Weyl gravity on the IW bundle,

we need to break the special conformal symmetry with our choice of the action (putting aside

the question of whether this might be done dynamically). Since the curvature has already

broken the translational symmetry, we expect both nondynamical torsion and nondynamical

special conformal curvature. Dropping the center term in SIWauxiliary, we have the W-invariant
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Weyl-Bach action [43],

SWauxiliary =

ˆ (
αΩa

b ∧ ∗Ωb
a + βΩ ∧ ∗Ω

)
. (2.16)

Various special cases of this action have been studied. With the absence of translations and

special conformal transformations, Ωa
b,T

a,Sa, and Ω all become independent tensors under

the remaining W symmetry, making the choice of α and β arbitrary. Bach [43] examined the

exceptional case β = 2α, for which the dilatation Ω is nontrivial. Assuming a suitable metric

dependence of the connection components
(
ωαβ, fα,ω

)
, metric variation leads to the fourth-

order Bach equation. In efforts to study superconformal gravity, two collaborations, [62–65, 78]

set β = 0, and showed the action reduces to the Weyl curvature squared. Both these sets of

investigations assumed vanishing torsion. Recently (with β 6= 2α) it has been shown when the

full connection is varied independently and the torsion set to zero only in the resulting field

equations, SWauxiliary leads to the locally dilatationally invariant generalization of the vacuum

Einstein equation [68].

In dimensions higher than four, our criteria lead to still higher order actions. Alternatively,

curvature-linear actions can be written in any dimension by introducing a suitable power of a

scalar field [75,79]. This latter reference [79] gives the φ2R action often used in tractor studies.

2.5.2. Gravity in the biconformal gauging

The biconformal gauging, based on C/W, also has tensorial basis forms (ωα,ωα). More-

over, each of the component curvatures
(
Ωα

β,Ω
α,Ωβ,Ω

)
becomes an independent tensor under

the Weyl group.

In the biconformal case, the volume form eρσ...λαβ...νω
α∧ωβ∧ . . .∧ων∧ωρ∧ωσ∧ . . .∧ωλ

has zero conformal weight. Since both Ωα
β and Ω also have zero conformal weight, there exists

a curvature-linear action [50] in any dimension. The most general case is

S =

ˆ (
αΩα

β + βΩδαβ + γωα ∧ ωβ
)
∧ eβρ...σαµ...νωµ ∧ . . . ∧ ων ∧ ωρ ∧ . . . ∧ ωσ.

Notice, we now have three important properties of biconformal gravity that arise because of the



35

doubled dimension: (1) the nondegenerate conformal Killing metric induces a non-degenerate

metric on the manifold, (2) the dilatational structure equation generically gives a symplectic

form, and (3) there exists a Weyl symmetric action functional linear in the curvature, valid in

any dimension.

There are a number of known results following from the linear action. In [50] torsion-

constrained solutions are found, which are consistent with scale-invariant general relativity.

Subsequent work along the same lines shows the torsion-free solutions are determined by the

spacetime solder form, and reduce to describe spaces conformal to Ricci-flat spacetimes on

the corresponding spacetime submanifold.2 A supersymmetric version is presented in [80], and

studies of Hamiltonian dynamics [81, 82] and quantum dynamics [83] support the idea that the

models describe some type of relativistic phase space determined by the configuration space

solution.

2.6. Summary of chapters

The characteristics of a given Cartan geometry depend exclusively on the structure of

the chosen homogenous space. This homogeneous space can then be used to characterize the

gravitational theory. In Chapter 3, we investigate the properties of flat biconformal space (BCS),

M0 = Conformal (n) /Weyl (n). Specifically, we look at BCS in the orthonormal version of

the basis found in [7]. The orthonormal basis clarifies a number of characteristics of the space,

making it easier to see how, though based on conformal symmetry, the submanifold structure

equations organize themselves to look just like the usual Riemannian geometry of GR, with

a Lorentzian signature. Chapter 3 will investigate extensively the characteristics of the spin

connection (identified with rotations and Lorentz boosts) in this new basis. A major point is

that the spin connection, in the time basis, is not fully antisymmetric with respect to the new

metric. There is a symmetric part, which transforms like a tensor. Another tensor, built from

the Weyl connection and the metric scale factor, can also be defined. We will use the general

flat solution of BCS to show the degrees of freedom of the symmetric part of the spin connection

are all due to this last tensor.

2http://www.physics.usu.edu/Wheeler/GaugeTheory/VanishingT03May12.pdf

http://www.physics.usu.edu/Wheeler/GaugeTheory/VanishingT03May12.pdf
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In Chapter 4, we look at curved biconformal space and the gravitational theory defined

by the Wehner-Wheeler action. We lay out the theory in full generality with all curvatures,

torsion, cotorsions and dilatational curvatures present. We show some of the Bianchi identities

(integrability conditions) of the theory are more restrictive than in a Riemannian geometry. The

consequences of combining the the full-field equations together with the Bianchi identities and

structure equations is investigated. We conclude by making a number of simplifying assumptions

and recover scale invariant general relativity on the cotangent bundle of spacetime. The chosen

assumptions turn out to be overly restrictive.

In Chapter 5, we summarize the conclusions of the manuscript and discuss future directions

of research.
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CHAPTER 3

DARK MATTER FROM EUCLIDEAN CONFORMAL SYMMETRIES

3.1. Homogeneous biconformal space in a conformally orthonormal, symplectic basis

The central goal of this chapter is to examine properties of the homogeneous manifold,

M(2n)
0 , which become evident in a conformally orthonormal basis; that is, a basis which is

orthonormal up to an overall conformal factor. Generically, the properties we discuss will be

inherited by the related gravity theories as well.

As noted above, biconformal space is immediately seen to possess several structures not

seen in other gravitational gauge theories: a nondegenerate restriction of the Killing metric,1

a symplectic form, and Kähler structure. In addition, the signature theorem in [7] shows if

the original space has signature ±n or zero, the imposition of involution conditions leads to

orthogonal Lagrangian submanifolds that have nondegenerate n-dim restrictions of the Killing

metric. Further, constraining the momentum space to be as flat as permitted requires the

restricted metrics to be Lorentzian. We strengthen these results in this Section and the next.

Concerning ourselves only with elements of the geometry of the Euclidean (s = ±n) cases

(as opposed to the additional restrictions of the field equations, involution conditions, or other

constraints), we show the presence of exactly such Lorentzian signature Lagrangian submanifolds

without further assumptions.

We go on to study the transformation of the spin connection when we transform the basis

of an eight-dim biconformal space to one adapted to the Lagrangian submanifolds. We show,

in addition to the Lorentzian metric, a Lorentzian connection emerges on the configuration

and momentum spaces and there are two new tensor fields. Finally, we examine the curvature

of these Lorentzian connections and find both a cosmological constant and cosmological dust.

While it is premature to make quantitative predictions, these new geometric features provide

novel candidates for dark energy and dark matter.

1There are nondegenerate restrictions in anti-de Sitter and de Sitter gravitational gauge theories.
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3.1.1. The biconformal quotient

We start with the biconformal gauging of Section 2.4, specialized to the case of compacti-

fied, Euclidean R4 in a conformally orthonormal, symplectic basis. The Maurer-Cartan structure

equations are

dωαβ = ωµβ ∧ ω
α
µ + 2∆αµ

νβωµ ∧ ω
ν , (3.1)

dωα = ωβ ∧ ωαβ + ω ∧ ωα, (3.2)

dωα = ωβα ∧ ωβ + ωα ∧ ω, (3.3)

dω = ωα ∧ ωα, (3.4)

where the connection one-forms represent SO (4) rotations, translations, special conformal trans-

formations and dilatations, respectively. The projection operator ∆αµ
γβ ≡

1
2

(
δαγ δ

µ
β − δ

αµδγβ

)
in

equation (3.1) gives that part of any
(
1
1

)
-tensor antisymmetric with respect to the original

Euclidean metric, δαβ. As discussed in Section 2.4.3, this group has a nondegenerate, 15-dim

Killing metric. We stress the structure equations and Killing metric – and hence, their restrictions

to the quotient manifold – are intrinsic to the conformal symmetry.

The gauging begins with the quotient of this conformal group, SO (5, 1), by its Weyl

subgroup, spanned by the connection forms, ωαβ (here dual to SO(4) generators) and ω. The

cotangent space of the quotient manifold is then spanned by the solder form, ωα, and the

cosolder form, ωα, and the full conformal group becomes a principal fiber bundle with local

Weyl symmetry over this eight-dim quotient manifold. The independence of ωα and ωα in

the biconformal gauging makes the two-form, ωα ∧ ωα, nondegenerate, and equation (3.4)

immediately shows ωα ∧ ωα is a symplectic form.

The involution evident in equation (3.2) shows the solder forms, ωα, span a submanifold,

and from the simultaneous vanishing of the symplectic form, this submanifold is Lagrangian.

Similarly, equation (3.3) shows the ωβ span a Lagrangian submanifold. However, notice neither

of these submanifolds, spanned by either ωα or ωα alone, has an induced metric, since by
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equation (2.14),
〈
ωα,ωβ

〉
= 〈ωα,ωβ〉 = 0. The orthonormal basis will make the Killing metric

block diagonal, guaranteeing its restriction to the configuration and momentum submanifolds

have well-defined, nondegenerate metrics.

It was shown in [7] it is consistent (for signatures ±n, 0 only) to impose involution condi-

tions and momentum flatness in this rotated basis in such a way that the new basis still gives

Lagrangian submanifolds. Moreover, the restriction of the Killing metric to these new subman-

ifolds is necessarily Lorentzian. In what follows, we do not need the assumptions of momentum

flatness or involution, and work only with intrinsic properties of M(2n)
0 . This section describes

the new basis and resulting connection, while the next establishes that for initial Euclidean sig-

nature, the principal results of [7] follow necessarily. Our results show the time-like directions in

these models arise from intrinsically conformal structures. We now change to a new canonical

basis, adapted to the Lagrangian submanifolds.

3.1.2. The conformally-orthonormal Lagrangian basis

In [7] the (ωα,ωα) basis is rotated so the metric, hAB becomes block diagonal

 0 δαβ

δαβ 0

⇒ [hAB] =

 hab 0

0 −hab

 ,
while the symplectic form remains canonical. This makes the Lagrangian submanifolds orthog-

onal with a nondegenerate restriction to the metric. Here we use the same basis change, but

in addition define coefficients, h αa , to relate the orthogonal metric to one conformally orthonor-

mal on the submanifolds, ηab = h αa hαβh
β
b , where ηab is conformal to diag (±1,±1,±1,±1).

From [7] we know hab is necessarily Lorentzian, hab = ηab = e2φdiag (−1, 1, 1, 1) = e2φη0ab, and

we give a more general proof below. Notice the definition of ηab includes an unknown conformal

factor. The required change of basis is then

ea = h aα

(
ωα +

1

2
hαβωβ

)
, (3.5)

fa = h αa

(
1

2
ωα − hαβωβ

)
(3.6)
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with inverse basis change

ωα =
1

2
h αa

(
ea − ηabfb

)
, (3.7)

ωα = h aα

(
fa + ηabe

b
)
. (3.8)

Using (2.14), the Killing metric is easily checked to be

 〈ea, eb〉 〈ea, fb〉〈
fa, e

b
〉
〈fa, fb〉

 =

 h aα h
b
βh

(αβ) 0

0 −h αa h
β
b h(αβ)


=

 e−2φηab0 0

0 −e2φη0ab

 ,
where hαβ = h(αβ), and hαβhβγ = δαγ .

By transforming the dilatation equation (3.4) to find dω = eafa, we immediately see

these submanifolds are Lagrangian. We refer to the fa = 0 and ea = 0 submanifolds as the

configuration and momentum submanifolds, respectively.

3.1.3. Properties of the structure equations in the new basis

We now explore the properties of the biconformal system in this adapted basis. Rewriting

the remaining structure equations (3.1 3.2, 3.3), in terms of ea and fa, we show some striking

cancelations that lead to the emergence of a connection compatible with the Lorentzian metric,

and two new tensors.

We begin with the exterior derivative of equation (3.5), using structure equations (3.2) and

equation (3.3), and then using the basis change equations (3.7, 3.8). Because equations (3.7,

3.8) involve the sum and difference of ea and fb, separating by these new basis forms leads to

a separation of symmetries. This leads to a cumbersome expansion, which reduces considerably

and in significant ways, to

dea = eb ∧Θad
cb τ

c
d − ηbcfc ∧ Ξaedbτ

d
e +

1

2
ηbcdη

ab ∧ ec +
1

2
dηab ∧ fb + 2ηabfb ∧ ω, (3.9)
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where we define projections Θac
db ≡

1
2 (δadδ

c
b − ηacηbd) and Ξadcb ≡

1
2

(
δac δ

d
b + ηadηcb

)
that separate

symmetries with respect to the new metric ηab rather than δαβ. These give the antisymmetric

and symmetric parts, respectively, of a
(
1
1

)
-tensor with respect to the new orthonormal metric,

ηab. Notice that these projections are independent of the conformal factor on ηab.

The significance of the reduction lies in how the symmetries separate between the different

subspaces. Just as the curvatures split into three parts, equation (3.9) and each of the remaining

structure equations splits into three parts. Expanding these independent parts separately allows

us to see the Riemannian structure of the configuration and momentum spaces. It is useful to

first define

τ ab ≡ αab + βab, (3.10)

where αab ≡ Θad
cb τ

c
d and βab ≡ Ξadcb τ

c
d. Then, to facilitate the split into ea ∧ eb, ea ∧ fb, and

fa ∧ fb parts, we partition the spin connection and Weyl vector by submanifold, defining

αab ≡ σab + γab = σabce
c + γa cb fc, (3.11)

βab ≡ µab + ρab = µabce
c + ρa cb fc, (3.12)

ω ≡ Wae
a +W afa. (3.13)

We also split the exterior derivative, d = d(x) + d(y), where coordinates xα and yα are used

on the ea = e a
α dxα and fa = f α

a dyα submanifolds, respectively. Using these, we expand

each of the structure equations into threeW-invariant parts. The complete set (with curvatures

included for completeness) is given in Appendix A.

The simplifying features and notable properties include:

1. The new connection: The first thing is that all occurrences of the spin connection, ωαβ,

may be written in terms of the combination

τ ab ≡ h aαωαβh
β
b − h

α
b dh aα , (3.14)
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which, as we show below, transforms as a Lorentz spin connection. Although the basis

change is not a gauge transformation, the change in the connection has a similar in-

homogeneous form. Because h aα is a change of basis rather than local SO (n) or local

Lorentz, the inhomogeneous term has no particular symmetry property, so τ ab will have

both symmetric and antisymmetric parts.

2. Separation of symmetric and antisymmetric parts: Notice in equation (3.9) how the anti-

symmetric part of the new connection, αab, is associated with eb, while the symmetric part,

βab, pairs with fc. This surprising correspondence puts the symmetric part into the cross

terms while leaving the connection of the configuration submanifold metric compatible,

up to the conformal factor.

3. Cancellation of the submanifold Weyl vector: The Weyl vector terms cancel on the con-

figuration submanifold, while the fa terms add. The expansion of the dfa structure

equation shows the Weyl vector also drops out of the momentum submanifold equations.

Nonetheless, these submanifold equations are scale invariant because of the residual met-

ric derivative. Recognizing the combination of dh terms that arises as dηab, and recalling

that ηab = e2φη0ab, we have −1
2dηacηcb = δabdφ. When the metric is rescaled, this term

changes with the same inhomogeneous term as the Weyl vector.

4. Covariant derivative and a second Weyl-type connection: It is natural to define the τ bc-

covariant derivative of the metric. Since ηcbαac + ηacαbc = 0, it depends only on βac and

the Weyl vector,

Dηab ≡ dηab + ηcbτ ac + ηacτ bc − 2ωηae, (3.15)

= dηab + 2ηcbβac − 2ωηab. (3.16)

This derivative allows us to express the structure of the biconformal space in terms of the

Lorentzian properties.
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When all of the identifications and definitions are included, and carrying out similar calculations

for the remaining structure equations, the full set becomes

dτ ab = τ cb ∧ τ ac + ∆ae
dbηece

c ∧ ed −∆ac
ebη

edfc ∧ fd + 2∆ae
fbΞ

fc
defc ∧ ed, (3.17)

dea = ec ∧αac +
1

2
ηcbdη

ac ∧ eb +
1

2
Dηab ∧ fb, (3.18)

dfa = αba ∧ fb +
1

2
ηbcdηab ∧ fc −

1

2
Dηab ∧ eb, (3.19)

dω = ea ∧ fa, (3.20)

with the complete W-invariant separation in Appendix A.

3.1.4. Gauge transformations and new tensors

The biconformal bundle now allows local Lorentz transformations and local dilatations on

M(2n)
0 . Under local Lorentz transformations, Λac, the connection τ ab changes with an inhomo-

geneous term of the form Λ̄cbdΛac. Since this term lies in the Lie algebra of the Lorentz group, it

is antisymmetric with respect to ηab, Θac
db

(
Λ̄ecdΛde

)
= Λ̄ebdΛae and therefore, only changes the

corresponding Θac
db-antisymmetric part of the connection, with the symmetric part transforming

homogeneously:

α̃ab = Λacα
c
dΛ̄

d
b − Λ̄cbdΛac,

β̃
a
b = Λacβ

c
dΛ̄

d
b.

Having no inhomogeneous term, βab is a Lorentz tensor. In Appendix B, we go through the

gauge transformations of all of the structure equations. This new tensor field, βab, necessarily

includes degrees of freedom from the original connection that cannot be present in αab, the

total equaling the degrees of freedom present in τ ab. As there is no obvious constraint on the

connection αab, we expect βab to be highly constrained. Clearly, αcd transforms as a Lorentzian

spin connection, and the addition of the tensor, βab, preserves this property, so τ ab is a local

Lorentz connection.

Transformation of the connection under dilatations reveals another new tensor. The Weyl
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vector transforms inhomogeneously in the usual way, ω̃ = ω + df , but, as noted above, the

expression 1
2ηcbdη

ac also transforms, 1
2 η̃cbdη̃

ac = δabdφ̃ = δab (dφ− df), so the combination

v = ω + dφ is scale invariant, see Appendix B. Notice the presence of two distinct scalars

here. Obviously, given 1
2η

acdηcb = δabdφ, we can choose a gauge function, f1 = −φ, such that

1
2η

acdηcb = 0. We also have dω = 0 on the configuration submanifold, so ω = df2, for some

scalar f2, and this might be gauged to zero instead. But while one or the other of ω or dφ can

be gauged to zero, their sum is gauge invariant. As we show below, it is the resulting vector,

v, that determines the timelike directions.

Recall certain involution relationships must be satisfied to ensure spacetime and momentum

space are each submanifolds. The involution conditions in homogeneous biconformal space are

0 = µab ∧ eb − v(x) ∧ ea, (3.21)

0 = ρba ∧ fb − u(y) ∧ fa, (3.22)

where v ≡ v(x) + u(y) ≡ vaea + uafa. These were imposed as constraints in [7], but are shown

below to hold automatically in Euclidean cases.

3.2. Riemannian spacetime in Euclidean biconformal space

The principal result of [7] was to show the flat biconformal space, M(2n)
0 , arising from any

SO (p, q) symmetric biconformal gauging can be identified with a metric phase space only when

the initial n-space is of signature ±n or zero. To make the identification, involution of the

Lagrangian submanifolds was imposed, and it was assumed the momentum space is conformally

flat. With these assumptions the Lagrangian configuration and momentum submanifolds of the

signature ±n cases are necessarily Lorentzian.

Here we substantially strengthen this result, by considering only the Euclidean case. We

are able to show further assumptions are unnecessary. The gauging always leads to Lorentzian

configuration and momentum submanifolds, the involution conditions are automatically satisfied

by the structure equations, and both the configuration and momentum spaces are conformally

flat. We make no assumptions beyond the choice of the quotient C/W and the structures that
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follow from these groups. Because this result shows the development of the Lorentzian metric

on the Lagrangian submanifolds, we give details of the calculation.

3.2.1. Solution of the structure equations

A complete solution of the structure equations in the original basis, equations (3.1-3.4), is

given in [51] and derived in [50], with a concise derivation presented in [81]. By choosing the

gauge and coordinates (wα, sβ) appropriately, where Greek indices now refer to coordinates and

will do so for the remainder of this manuscript,6 the solution may be given the form

ωαβ = 2∆αµ
νβ sµdw

ν , (3.23)

ωα = dwα, (3.24)

ωα = dsα −
(
sαsβ −

1

2
s2δαβ

)
dwβ, (3.25)

ω = −sαdwα, (3.26)

as is easily checked by direct substitution. Our first goal is to express this solution in the adapted

basis and find the resulting metric. See Appendix C for detailed calculations.

From the original form of the Killing metric, equation (2.14), we find

 〈dwα,dwβ〉 〈dwα,dsβ〉〈
dsα,dw

β
〉
〈dsα,dsβ〉

 =

 0 δαβ

δβα −kαβ

 ,
where we define kαβ ≡ s2δαβ − 2sαsβ. This shows dwα and dsα do not span orthogonal

subspaces. We want to find the most general set of orthogonal Lagrangian submanifolds, and

the restriction of the Killing metric to them.

Suppose we find linear combinations of the orginal basis κβ,λα that make the metric

block diagonal, with λα = 0 and κβ = 0 giving Lagrangian submanifolds. Then any further

6The connection forms could be written with distinct indices, for example as ωa = δaαdwα, but this is
unnecessarily cumbersome.
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transformation,

κ̃α = Aαβκ
β,

λ̃α = Bβ
αλβ,

leaves these submanifolds unchanged and is therefore equivalent. Now suppose one of the linear

combinations is

λ̃α = αAβαdsβ + βC̃αµdw
µ

= Aβα (αdsβ + βCβµdw
µ) ,

where C = A−1C̃ and the constants are required to keep the transformation nondegenerate.

Then λα = αdsα + βCαβdw
β spans the same subspace. A similar argument holds for κ̃β, so

if we can find a basis at all, there is also one of the form

λα = αdsα + βCαβdw
β,

κα = µdwα + νBαβdsβ.

Now check the symplectic condition,

καλα = (µβCαµ) dwαdwµ + αµ
(
δβµ − νβCαµBαβ

)
dwµdsβ +

(
ναBαβ

)
dsβdsα.

To have καλα = dwαdsα, Bαβ and Cαβ must be symmetric and

B = Bt =
αµ− 1

νβ
C−1 ≡ αβC̄.

Replacing Bαβ in the basis, we look at orthogonality of the inner product, requiring

0 = 〈κα,λβ〉

=

〈
µdwα +

αµ− 1

β
C̄αµdsµ, αdsβ + βCβνdw

ν

〉
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= (2αµ− 1) δαβ −
1

β
α (αµ− 1) C̄αµkµβ,

with solution Cαβ = α(αµ−1)
β(2αµ−1)kαβ. Therefore, the basis

λα = αdsα +
α (αµ− 1)

(2αµ− 1)
kαβdw

β,

κα = µdwα +
2αµ− 1

α
kαβdsβ

satisfies the required properties and is equivalent to any other basis which does.

The metric restrictions to the submanifolds are now immediate from the inner products:

〈
κα,κβ

〉
=

2αµ− 1

α2
kαβ,

〈λα,λβ〉 = − α2

2αµ− 1
kαβ.

This shows the metric on the Lagrangian submanifolds is proportional to kαβ, and we normalize

the proportionality to 1 by choosing µ = 1+kα2

2α and β ≡ kα, where k = ±1. This puts the

basis in the form

κα =
k

2β

((
kβ2 + 1

)
dwα + 2kβ2kαβdsβ

)
.

λα =
1

2β

(
2kβ2dsα +

(
kβ2 − 1

)
kαβdw

β
)
.

Now that we have established the metric kαβ = s2
(
δαβ − 2

s2
sαsβ

)
, where δαβ is the

Euclidean metric and s2 = δαβsαsβ > 0, and have found one basis for the submanifolds, we

may form an orthonormal basis for each, setting ηab = h αa h
β
b kαβ.

ea =
k

2β
h aα

((
1 + kβ2

)
dwα + 2kβ2kαβdsβ

)
, (3.27)

fa =
1

2β
h αa

(
2kβ2dsα −

(
1− kβ2

)
kαβdw

β
)
. (3.28)

We see from the form kαβ = s2
(
δαβ − 2

s2
sαsβ

)
that at any point s0α, a rotation that takes

1√
sw
s0α to a fixed direction n̂ will take kαβ to s2diag (−1, 1, . . . , 1) so the orthonormal metric
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ηab is Lorentzian. This is one of our central results. Since equations (3.23-3.26) provide an

exact, general solution to the structure equations, the induced configuration and momentum

spaces of Euclidean biconformal spaces are always Lorentzian, without restrictions. We now find

the connections forms in the orthogonal basis and check the involution conditions required to

guarantee the configuration and momentum subspaces are Lagrangian submanifolds.

3.2.2. The connection in the adapted solution basis

We have defined τ ab in equation (3.14) with antisymmetric and symmetric parts αab and

βab, subdivided between the ea and fa subspaces, equations (3.11, 3.12). All quantities may

be written in terms of the new basis. We calculate these transformations in explicit detail in

Appendix C. We will make use of sa ≡ h αa sα and δab ≡ h αa h
β
b δαβ. In terms of these, the

orthonormal metric is ηab = s2
(
δab − 2

s2
sasb

)
, where s2 ≡ δabsasb > 0. Solving for δab, we

find δab = 1
s2
ηab + 2

s2
sasb. Similar relations hold for the inverses, ηab, δab, see Appendix C. In

addition, we may invert the basis change to write the coordinate differentials,

dwβ = kβh βa

(
ea − kηabfb

)
,

dsα =
1

2β
h aα

((
1− kβ2

)
ηabe

b + k
(
1 + kβ2

)
fa

)
.

The known solution for the spin connection and Weyl form, equations (3.23,3.26) immediately

become

ωab = 2∆ac
dbsckβ

(
ed − kηdefe

)
, (3.29)

ω = −kβsaea + βηabsafb, (3.30)

where we easily expand the projection ∆ac
db in terms of the new metric. Substituting this expan-

sion to find τ ab, results in

τ ab = β (2Θac
dbsc + 2ηaeηbdse + 2ηaesesbsd)

(
ked − ηdgfg

)
− h αb dh aα .



49

The antisymmetric part is then αab ≡ Θad
cb τ

c
d = −Θad

cb h
α
d dh cα with the remaining terms cancel-

ing identically. Furthermore, as described above, h cα is a purely sα-dependent rotation at each

point. Therefore, the remaining h αd dh cα term will lie totally in the subspace spanned by dsα,

giving the parts of αab as

σab = −1− kβ2

2β
Θad
cb

(
h αb

∂

∂sβ
h aα

)
h cβ ηcde

d, (3.31)

γab = −k + β2

2β
Θad
cb

(
h αb

∂

∂sβ
h aα

)
h cβ fc. (3.32)

Recall the value of k or β in these expressions is essentially a gauge choice and should be

physically irrelevant. If we choose β2 = 1, we get either σab = 0 or γab = 0, depending on the

sign of k.

Continuing, we are particularly interested in the symmetric pieces of the connection since

they constitute a new feature of the theory. Applying the symmetric projection to τ ab, we

expand βab ≡ Ξadcb τ
c
d. Using Ξcdab

(
h µd dh aµ

)
= 1

2h
c
αh

β
b k

αµdkµβ (see Appendix C) to express the

derivative term in terms of va, we find the independent parts

µab =
(
−kβδab sc + βγ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec,

ρab =
(
βδab η

cdsd + kβγ−

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fc,

where γ± ≡ 1
2β

(
1± kβ2

)
. Written in this form, the tensor character of µab and ρab is not

evident, but since we have chosen ηab orthonormal (referred to later as the orthonormal gauge),

φ = 0, and v = ω + dφ = ω we have v(e) + u(f) = −kβsaea + βηabsafb so we may equally

well write

µab =

(
δab vc − kγ+

(
δab vc + δac vb + ηadηbcvd +

2

β2
ηadvbvcvd

))
ec, (3.33)

ρab =

(
δabu

c + kγ−

(
δabu

c + δcbu
a + ηacηbdu

d +
2

β2
ηbdu

aucud
))

fc, (3.34)

which are manifestly tensorial.
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The involution conditions, equations (3.21-3.22), are easily seen to be satisfied identically by

equations (3.33, 3.34). Therefore, the fa = 0 and ea = 0 subspaces are Lagrangian submanifolds

spanned respectively by ea and fa. There exist coordinates such that these basis forms may be

written

ea = e a
µ dxµ, (3.35)

fa = f µ
a dyµ. (3.36)

To find such submanifold coordinates, the useful thing to note is d
(
sα
s2

)
= δανk

µνdsµ, so the

basis may be written as

ea = h aαd
(
kγ+w

α + βδαβ
(sα
s2

))
≡ h aαdxα,

fa =
(
h αa kαβδ

βµ
)

d
(
kβ
(sµ
s2

)
− γ−δµνwν

)
≡ f µ

a dyµ,

with xα = kγ+w
α + βδαβ

(
sα
s2

)
and yµ = kβ

( sµ
s2

)
− γ−δµνwν . This confirms the involution.

3.3. Curvature of the submanifolds

The nature of the configuration or momentum submanifold may be determined by restricting

the structure equations by fa = 0 or ea = 0, respectively. To aid in the interpretation of

the resulting submanifold structure equations, we define the curvature of the antisymmetric

connection αab

Ra
b ≡ dαab −αcb ∧αac (3.37)

=
1

2
Rabcde

c ∧ ed +Ra cb dfc ∧ ed +
1

2
Ra cdb fc ∧ fd. (3.38)

While all components of the overall Cartan curvature, ΩA = (Ωa
b ,T

a,Sa,Ω) are zero on

M(2n)
0 , the curvature, Ra

b, and in particular the curvatures 1
2R

a
bcde

c ∧ ed and 1
2R

a cd
b fc ∧ fd

on the submanifolds, may or may not be. Here, we examine this question using the structure

equations to find the Riemannian curvature of the connections, σab and γab , of the Lorentzian
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submanifolds.

3.3.1. Momentum space curvature

To see the Lagrangian submanifold equations describe a Riemannian geometry, we set

ea = 0 in the structure equations, (3.17-3.20), and choose the φ = 0 (orthonormal) gauge (or

see Appendix A, equations (A.13-A.16), with the Cartan curvatures set to zero). Then, taking

the Θac
db projection, we have

0 =
1

2
Ra cdb fc ∧ fd − ρcb ∧ ρac + Θac

dbη
ac∆eb

cf fb ∧ fa, (3.39)

0 = d(y)fb − γab ∧ fa.

These are the structure equations of a Riemannian geometry with additional geometric terms,

−ρcb∧ρac+Θac
dbη

ac∆eb
cf fb∧fa, reflecting the difference between Riemannian curvature and Cartan

curvature. The symmetric projection is

D(y)ρab = −kΞacdb∆
df
ecη

egff ∧ fg,

d(y)u(f) = 0,

where u(f),γ
a
b and ρab are given by equations (3.30,3.32,3.34), respectively. Rather than com-

puting Ra cdb directly from γab, which requires a complicated expression for the local rotation,

h aα , we find it using the rest of equation (3.39).

Letting β = eλ so that

k + γ2− =

 cosh2 λ k = 1

sinh2 λ k = −1
,

the curvature is

1

2
Ra cdb fcfd =

 cosh2 λΘag
cb

(
ηcf + 2ηcdηfesdse

)
ff ∧ fg k = 1

sinh2 λΘag
cb

(
ηcf + 2ηcdηfesdse

)
ff ∧ fg k = −1

.
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Now consider the symmetric equations. Notice the Weyl vector has totally decoupled, with

its equation showing that u(f) is closed, a result that also follows from its definition. For the

symmetric projection, we find Ξacdbη
ac∆eb

cf fbfa ≡ 0. Then, contraction of Daρa c
b with ηadηceu

aue,

together with d(y)u(f) = 0 shows ua is covariantly constant, Da
(y)u

b = 0.

If we choose k = −1 and λ = 0, the Riemann curvature of the momentum space vanishes.

This is a stronger result than in [7], where only the Weyl curvature could consistently be set to

zero. In this case, the Lagrangian submanifold becomes a vector space and there is a natural

interpretation as the cotangent space of the configuration space. However, the orthonormal

metric in this case, 〈fa, fb〉 = ηab, has the opposite sign from the metric of the configuration

space,
〈
ea, eb

〉
= −ηab. This reversal of sign of the metric, together with the the units,

suggests the physical (momentum) tangent space coordinates are related to the geometrical

ones by pα ∼ i~yα. This has been suggested previously [84] and explored in the context of

quantization [83].

Leaving β and k unspecified, we see that in general, momentum space has nonvanishing

Riemannian curvature of the connection γab, a situation suggested long ago for quantum gravity

[85,86]. We consider this further in Section 7.3. Whatever the values of β and k, the momentum

space is conformally flat. We see this from the decomposition of Riemannian curvature into the

Weyl curvature, Ca
b, and Schouten tensor, Ra, given by

Ra
b = Ca

b − 2Θae
dbRee

d.

The Schouten tensor,Ra ≡ 1
n−2

(
Rab − 1

2(n−1)Rηab

)
eb is algebraically equivalent to the Ricci

tensor, Rab. It is easy to prove that when the curvature two-form can be expressed as a

projection in the form Ra
b = −2Θae

dbXee
d, then Xa is the Schouten tensor, and the Weyl

curvature vanishes. Vanishing Weyl curvature implies conformal flatness.

3.3.2. Spacetime curvature and geometric curvature

The curvature on the configuration space takes the same basic form. Still in the orthonor-

mal gauge, and separating the symmetric and antisymmetric parts as before, we again find a
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Riemannian geometry with additional geometric terms,

0 = Ra
b (σ)− µcbµac −Θac

db∆
de
fcηege

gef , (3.40)

0 = d(x)e
a − ebσab, (3.41)

together with

0 = D(x)µ
a
b − Ξacdb∆

de
fcηege

gef ,

0 = d(x)v.

Looking first at all the Θad
cb -antisymmetric terms and substituting in (3.33) for µab, we find

the Riemannian curvature is

Ra
b =

(
γ2+ − k

)
Θac
db (ηce + 2scse) edee,

so the Weyl curvature vanishes and the Schouten tensor is

Ra =
1

2

(
γ2+ − k

)
(ηab + 2sasb) eb. (3.42)

The vanishing Weyl curvature tensor shows the spacetime is conformally flat. This result is

discussed in detail below.

The equation, d(x)v = 0 shows v is hypersurface orthogonal. Expanding the remaining

equation with d(x)v = 0, D(x)ηab = 0 and D(x)e
a = 0, contractions involving ηab and va

quickly show

D(x)
a vb = 0.

This, combined with D(y)ua = 0 and ua = −kηabvb shows the full covariant derivative vanishes,

Davb = 0. The scale vector is, therefore, a covariantly constant, hypersurface orthogonal, unit

timelike Killing vector of the spacetime submanifold.
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3.3.3. Curvature invariant

Substituting β = eλ as before, the components of the momentum and configuration cur-

vatures become

ηdfηegR
a fg
b =

 cosh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηfc + 2sfsc) k = 1

sinh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηfc + 2sfsc) k = −1

,

and

Rabde =

 sinh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηfc + 2sfsc) k = 1

cosh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηfc + 2sfsc) k = −1

.

Subtracting these,

ηdfηegR
a fg
b −Rabde = k

(
Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηfc + 2sfsc)

so the difference of the configuration and momentum curvatures is independent of the linear

combination of basis forms used. This coupling between the momentum and configuration space

curvatures adds a sort of complementarity that goes beyond the suggestion by Born [85, 86]

that momentum space might also be curved. As we continuously vary β2, the curvature moves

between momentum and configuration space but this difference remains unchanged. We may

even make one or the other Lagrangian submanifold flat.

For the Einstein tensors,

ηacηbdG
cd
(y) −G

(x)
ab =

1

2
k ((n− 3) ηab + (n− 2) sasb) .

3.3.4. Candidate dark matter

There is a surprising consequence of the tensor µab in the Lorentz structure equation. The

structure equations for the configuration Lagrangian submanifold above describe an ordinary

curved Lorentzian spacetime with certain extra terms from the conformal geometry that exist

even in the absence of matter. We gain some insight into the nature of these additional terms
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from the metric and Einstein tensor. In coordinates, the metric takes the form

hαβ = s2
(
δαβ −

2

s2
sαsβ

)
,

which is straightforwardly boosted to s2η0αβ at a point. Since the spacetime is conformally flat,

gradients of the conformal factor must be in the time direction, sα, so we may rescale the time,

dt′ =
√
s2dt to put the line element in the form

ds2 = −dt′2 + s2
(
t′
) (
dx2 + dy2 + dz2

)
.

That is, the vacuum solution is a spatially flat FRW cosmology. Putting the results in terms of

the Einstein tensor and a coordinate basis, we expect an equation of the form G̃αβ = κTmatterαβ

where the Cartan Einstein tensor is modified to

G̃αβ ≡ Gαβ − 3 (n− 2) s2sαsβ +
3

2
(n− 2) (n− 3) s2hαβ, (3.43)

where Gαβ is the familiar Einstein tensor. The new geometric terms may be thought of as a com-

bination of a cosmological constant and a cosmological perfect fluid. With this interpretation,

we may write the new cosmological terms as

κT cosmαβ = (ρ0 + p0) vαvβ + p0hαβ − Λhαβ,

where κT cosmab ≡ 3 (n− 2) s2vαvβ−3
2 (n− 2) (n− 3) s2hαβ. In n = four-dimensions, 1

2 (ρ0 + p0) =

Λ−p0, with the equation of state and the overall scale undetermined. If we assume an equation

of state p0 = wρ0, this becomes

1

2
(1 + 3w) ρ0 = Λ.

This relation alone does not account for the values suggested by the current Planck data: about

0.68 for the cosmological constant, 0.268 for the density of dark matter, and vanishing pressure,

w = 0. However, these values are based on standard cosmology, while we have not yet included
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matter terms in equation (3.43). Moreover, the proportions of the three geometric terms in

equation (3.43) may change when curvature is included. Such a change is suggested by the

form of known solutions in the original basis, where hαβ is augmented by a Schouten term. If

this modification also occurs in the adapted basis, the ratios above will be modified. We are

currently examining such solutions.

3.4. Discussion

Using the quotient method of gauging, we constructed the class of biconformal geometries.

The construction starts with the conformal group of an SO (p, q)-symmetric pseudo-metric

space. The quotient by W (p, q) ≡ SO (p, q) × dilatations gives the homogeneous manifold,

M2n
0 . We show this manifold is metric and symplectic (as well as Kähler with a different

metric). Generalizing the manifold and connection while maintaining the local W invariance,

we display the resulting biconformal spaces, M2n [5, 6, 51].

This class of locally symmetric manifolds becomes a model for gravity when we recall the

most general curvature-linear action [50].

It is shown in [7] that M(2n)
0 (p, q) in any dimension n = p + q will have Lagrangian

submanifolds that are orthogonal with respect to the 2n-dim biconformal (Killing) metric and

have nondegenerate n-dim metric restrictions on those submanifolds only if the original space

is Euclidean or signature zero
(
p ∈

{
0, n2 , n

})
, and then the signature of the submanifolds is

severely limited (p→ p± 1). This leads in the two Euclidean cases to Lorentzian configuration

space, and hence the origin of time [7]. For the case of flat, eight-dim biconformal space, the

Lagrangian submanifolds are necessarily Lorentzian.

Our investigation explores properties of the homogeneous manifold, M2n
0 (n, 0). Starting

with Euclidean symmetry, SO (n), we clarify the emergence of Lorentzian signature Lagrangian

submanifolds. We extend the results of [7], eliminating all but the group-theoretic assump-

tions. By writing the structure equations in an adapted basis, we reveal new features of these

geometries. We summarize our new findings below.

A new connection

There is a natural SO (n) Cartan connection onM2n
0 . Rewriting the biconformal structure
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equations in an orthogonal, canonically conjugate, conformally orthonormal basis automati-

cally introduces a Lorentzian connection and decouples the Weyl vector from the submanifolds.

The submanifold equations remain scale invariant because of the residual metric derivative,

1
2dηacηcb = δabdφ. When the metric is rescaled, this term changes with the negative of the

inhomogeneous term acquired by the Weyl vector. This structure emerges directly from the

transformation of the structure equations, as detailed in points 1 through 4 in Section 3.1.3.

Specifically, we showed all occurrences of the SO (4) spin connection ωαβ may be written

in terms of the new connection, τ ab ≡ h aαω
α
βh

β
b − h

α
b dh aα , which has both symmetric and

antisymmetric parts. These symmetric and antisymmetric parts separate automatically in the

structure equations, with only the Lorentz part of the connection, αab = Θac
dbτ

d
c describing the

evolution of the configuration submanifold solder form. The spacetime and momentum space

connections are metric compatible, up to a conformal factor.

Two new tensors

It is especially striking how the Weyl vector and the symmetric piece of the connection

are pushed from the basis submanifolds into the mixed basis equations. These extra degrees of

freedom are embodied in two new Lorentz tensors.

The factor δabdφ, which replaces the Weyl vector in the submanifold basis equations, allows

us to form a scale-invariant one-form, v = ω+dφ, in the mixed basis equations. It is ultimately

this vector that determines the time direction.

We showed the symmetric part of the spin connection, βab, despite being a piece of the

connection, transforms as a tensor. The solution of the structure equations shows the two

tensors, v and βab are related, with βab constructed cubically, purely from v and the metric.

Although the presence of βab changes the form of the momentum space curvature, we find the

same signature changing metric as found in [7]. Rather than imposing vanishing momentum

space curvature as in [7], we make use of a complete solution of the Maurer-Cartan equations to

derive the metric. The integrability of the Lagrangian submanifolds, the Lorentzian metric and

connection, and the possibility of a flat momentum space are all now seen as direct consequences

of the structure equations, without assumptions.
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Riemannian spacetime and momentum space

The configuration and momentum submanifolds have vanishing dilatational curvature, mak-

ing them gauge equivalent to Riemannian geometries. Together with the signature change from

the original Euclidean space to these Lorentzian manifolds, we arrive at a suitable arena for

general relativity in which time is constructed covariantly from a scale-invariant Killing field.

This field is provided automatically from the group structure.

Effective cosmological fluid and cosmological constant

Though we work in the homogeneous space, M2n
0 , so that there are no Cartan curvatures,

there is a net Riemannian curvature remaining on the spacetime submanifold. We show this

to describe a conformally flat spacetime with the deviation from flatness provided by additional

geometric terms of the form

G̃αβ ≡ Gαβ − ρ0vαvβ + Λhαβ = 0; (3.44)

that is, a background dust and a cosmological constant. The values ρ0 = 3 (n− 2) s2 and

Λ = 3
2 (n− 2) (n− 3) s2 give, in the absence of physical sources, the relation (2 + 3w) ρ0 = Λ

for an equation of state p0 = wρ0. An examination of more realistic cosmological models

involving matter fields and curved biconformal spaces, M2n, is underway.



59

CHAPTER 4

BICONFORMAL GRAVITY WITH EMERGENT LORENTZIAN STRUCTURE

4.1. Introduction

In the previous chapters, we have shown flat biconformal space, the homogeneous space

formed from the quotient of the conformal group by the rotation group cross dilatations,

SO (5, 1) /SO (4) × R+, possesses two new tensors and a natural Lorentz spin connection.

The thrust of the current chapter is to show how these natural structures meld with a gravi-

tational action principle in this geometry. General relativity on curved biconformal space has

been shown to arise from the Wehner–Wheeler action [50]. This action is conformally invari-

ant, despite linearity in the curvatures. More recently, it has been shown the torsion–free case

generically gives rise to general relativity. This work was done in a context where the Lorentzian

signature of the submanifolds was imposed by starting with a Lorentzian signature before gaug-

ing. Here we examine solutions to biconformal gravity in the basis where the Lorentzian structure

emerges directly from the gauge theoretic construction when we start from Euclidean space. We

show that with a simple ansatz, we again regain general relativity, but on both submanifolds.

This is due to a complete symmetry between the two Lagrangian submanifolds, interpreted as

configuration and momentum space. We can break that symmetry to show biconformal grav-

ity reproduces, in a special case, general relativity. The solution will be kept as general as

possible through the early development of this manuscript. Not until Sections (4.4) and (4.5)

will we make some simplifying assumptions. For a comprehensive review of the construction of

homogeneous biconformal space see Chapter 3.

There exists a torsion-free solution to biconformal space [50] that reproduces all of general

relativity; however, the current work focuses on showing general relativity emerge in the time

basis of [7]. Unfortunately, when the basis is rotated, the torsion and cotorsions mix nontrivially,

so we are unable to use the existing solution in the same way we used the existing solution of

the homogeneous space in Chapter 3 to find the symmetric parts of the spin connection. Instead

we use an ansatz, inspired by the homogeneous solution, that simplifies the system of equations

extensively.
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4.1.1. Notation

We follow the same notational conventions as in the previous chapters of this manuscript.

Of particular importance in this chapter will be the positions of the last two indices on curvatures.

The last two indices will always appear in their original positions; all metrics will be explicit.

This then means Rabcd, Ra cb d, and Ra cdb are distinct tensors, referring to the configuration,

mixed-basis and momentum curvatures, respectively.

4.1.2. Organization of chapter

The organization of the chapter is as follows. In Section 4.2, we first review the structure

equations of curved biconformal space in the orthonormal, Lagrangian basis. Then we survey the

integrability conditions of these equations, which will turn out to strongly couple the curvatures.

The last part of Section 4.2 looks at the curvature-linear action of [50] and the field equations

therefrom. In Section 4.3, we show how the combination of the field equations and structure

equations dictate submanifold structures very similar to two Riemannian geometries, but which,

in general, have a number of new structures. Through this section, we still consider the fully

general biconformal space. In Section 4.4, we investigate the consequences of choosing a simple

linear ansatz for one of these new structures, the tensorial, symmetric part of the spin connection.

In Section 4.5, we will show general relativity on a cotangent bundle is a special case of curved

biconformal space, by choosing a number of the torsion and cotorsion tensors to vanish. In the

last section we make some concluding remarks.

4.2. Curved biconformal space in the orthonormal canonical basis

In Chapter 3, we laid out the construction of biconformal space in the Lagrangian, orthonor-

mal frame. The quotient manifold method gives us a manifold described by the Maurer-Cartan

structure equations of the conformal group and possessing local Weyl symmetry (SO(n) and

scale). Those structure equations, now expanded in terms of the basis forms, can be generalized

to include curvatures for each of the connection types. These break out into four types.

1. The curvature of the spin connection, which is referred to as the SO(4) curvature.
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2. The curvature of only the antisymmetric part of the spin connection, referred to as the

Riemannian curvature.

3. The curvature of the Weyl connection, referred to here as the dilatational curvature.

4. The curvature of the ea basis forms is referred to as the torsion.

5. The curvature of the fa basis forms is referred to as the cotorsion.

Since the scale vector is tensorial, it is useful to substitute out the Weyl vector wherever possible.

Therefore, we will work with the following version of the dilatational structure equation.

dω = d
(
ω(x) + ω(y)

)
= d

(
v + d(x)φ+ u + d(y)φ

)
dv + du = eafa + Ω, (4.1)

where φ is the scale factor on the metric, as in Section 3.1.4. This will prove especially useful

in the calculations of the Bianchi identities we undertake in Section 4.2.1. Following the same

conventions and notation of Chapter 3, the structure equations written out in the orthonormal

basis, with the scale vector and symmetric spin connection written out explicitly are

dτ ab = τ cbτ
a
c + ∆ah

gb ηhje
jeg −∆ah

gb η
gifhfi + 2∆ah

gbΞgijhfie
j + Ωa

b,

dea = ebσab + d(x)φea +
1

2
T abce

bec

−γacec + d(y)φea + ηadµbdfb − ηabvfb + T ab cfbe
c

+ηadρbdfb − ηacufc +
1

2
T abcfbfc,

dfa = γbafb − d(y)φfa +
1

2
S bc
a fbfc

+σbafb − d(x)φfa + ηaeρ
e
be
b − ηabueb + S b

a cfbe
c

−vea + µabe
b +

1

2
ηabSbcde

ced,

dv + du = eafa +
1

2
Ωabe

aeb + Ωa
bfae

b +
1

2
Ωabfafb.
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Here, we have only expanded the Cartan curvatures1 explictly. To see the equations expanded

fully into the configuration (eaeb), momentum (fafb), and mixed (fae
b) bases, see Appendix A.

Since there is no index on the scale vector one-form the covariant derivative is equivalent to the

exterior derivative. The relationship between the two is highlighted by equation 4.1. Notice the

combinations δabv−µab and δabu− ρab appear throughout the basis structure equations. These

terms are equivalent to the full Weyl-covariant derivative of a conformally orthonormal metric

(with both the symmetric and antisymmetric parts of the spin connection).

Dηab ≡ dηab + ηcbτ ac + ηacτ bc − 2ωηae = dηab + 2ηcbβac − 2ωηab

= 2
(
ηcbβac − vηab

)
. (4.2)

Note, the covariant derivative that we will use in the remainder of this manuscript, appearing

with an (x) or (y), is the scale covariant derivative defined by the basis (dea and dfa) equations

D(x)ea = d(x)ea − ebσab − d(x)φea =
1

2
T abce

bec,

D(y)fa = d(y)fa − γbafb + d(y)φfa =
1

2
S bc
a fbfc.

4.2.1. Bianchi identities

The integrability conditions on the structure equations with curvature, referred to here

as the Bianchi identities, will prove useful in the following calculations. These conditions are

generated by enforcing the integrability of the structure equations using the Poincaré lemma,

d2 = 0. In the generic Cartan formalism, these integrability conditions relate the Cartan

curvatures and their covariant derivatives. In Section 4.5, we set a number of conditions on the

Bianchi identities, while the field equations will give us other relations.

Submanifold basis Bianchi identities

In Chapter 3, the Bianchi identities on the submanifolds have been calculated in the case of

no torsion (the flat case). Here they would simply generalize to include the submanifold torsion

1By Cartan curvature we mean all four types of curvature, Ωa
b, Ta, Sa, and Ω.
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and cotorsion

1

2
Rabcde

beced = D(x)

(
1

2
T abce

bec
)
,

1

2
Rb cda fbfcfd = −D(y)

(
1

2
S bc
a fbfc

)
.

Without the submanifold torsion and cotorsion they lead to the familiar first Bianchi identity of

Riemannian geometry that tells us the triply antisymmetrized Riemann tensor is zero, and the

Ricci tensor is symmetric. Note, the curvature appearing in these equations is not the Cartan

curvature of the spin connection, Ωa
b, appearing in the spin connection structure equation. It

turns out to be the case in all the Bianchi identities, except the integrability condition of the

spin connection, not included here, that Ra
b appears naturally.

Involution Bianchi identities

The involution condition sets the momentum part of the exterior derivative of the solder

form and configuration part of the exterior derivative of the cosolder form to zero, dea|ff = 0

and dfa|ee = 0, see equations (A.7) and (A.15) in Appendix A. These equations relate the

scale vector to the symmetric part of the spin connection. When we look at the integrability

conditions

0 = D(x) (µab − δabv) eb + (δaev − µae)
1

2
T ebce

bec + D(x)

(
1

2
ηabSbcde

ced
)
,

0 = D(y)

(
ρba − δbau

)
fb +

(
δdau− ρda

) 1

2
S bc
d fbfc + D(y)

(
1

2
ηadT

dbcfbfc

)
,

we see they involve the covariant derivative of the symmetric spin connection and the submani-

fold dilatational curvature, D(x)v = Ω(x). These will later be combined with the field equations

to show the symmetric spin connection sources the dilatational curvature.

Mixed basis Bianchi identities

The full expressions are

Ra cb dfce
deb = ηadD(x)

(
µbd − δbdv

)
fb



64

+ (δadv − µad)
(
ρdb − δdbu

)
eb + (δedv − µed) ηadS b

e cfbe
c

+D(x)

(
T ab cfbe

c
)

+ D(y)

(
1

2
T abce

bec
)
,

−Rb ca dfbfced = ηaeD(y) (ρeb − δebu) eb

+
(
ρda − δdau

)(
δbdv − µbd

)
fb +

(
ηaeu− ηafρfe

)
T eb cfbe

c

+D(x)

(
1

2
S bc
a fbfc

)
+ D(y)

(
S b
a cfbe

c
)
,

1

2
Ra dec fdfee

c = ηadD(y)

(
µbd − δbdv

)
fb + ηadD(σ)

(
ρbd − δbdu

)
fb

− (δacu− ρac) (δcbu− ρcb) eb

+
(
ηaev − ηadµed

) 1

2
S bc
e fbfc +

(
ηaeu− ηadρed

)
S b
e cfbe

c

+D(x)

(
1

2
T abcfbfc

)
+ D(y)

(
T ab cfbe

c
)
,

−1

2
Rbacdfbe

ced = ηacD(y) (µcb − δcbv) eb + ηaeD(x) (ρeb − δebu) eb

− (δcav − µca)
(
δbcv − µbc

)
fb

+
(
ηafu− ηaeρef

)(1

2
T fbce

bec
)

+ (ηaev − ηacµce)T eb cfbec

+D(x)

(
S b
a cfbe

c
)

+ D(y)

(
1

2
ηabSbcde

ced
)
.

In our example solutions to follow, the last two identities will prove very useful for simplification

of the geometry.

The integrability conditions of the mixed basis structure equations lead to relationships

between the mixed torsion and the momentum Riemannian curvature and the mixed cotorsion

and the configuration Riemannian curvature. Since these appear as either eaebfc or eafbfc we

are able to strip off the basis forms without having to triply antisymmetrize the curvature. This

gives stronger relationships between the curvatures than a “normal” Bianchi identity would. For

example,

−1

2
Rbacd = ηaeD

b
(y)

(
µe[dc] − δ

e
[dvc]

)
+ · · · .
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Dilatation Bianchi identities

On the submanifolds the Bianchi identities for the dilatational curvature

0 = d(x)

(
1

2
Ωabe

aeb
)
,

0 = d(y)

(
1

2
Ωabfafb

)
,

show the submanifold dilatational curvatures are closed. In the mixed basis the Bianchi identities

T ab ce
cfafb = d(y)

(
Ωa
bfae

b
)

+ d(x)

(
1

2
Ωabfafb

)
,

−S b
a cfbe

aec = d(x)

(
Ωa
bfae

b
)

+ d(y)

(
1

2
Ωabe

aeb
)
,

show the x and y derivatives of the dilatational curvatures are related to the anti-symmetric

part of the mixed cotorsion and mixed torsion.

Closure of dilatational curvature and symplectic form

Since the dilatational curvature is closed on the submanifolds the full dilatational structure

equation generically defines a symplectic form over the full biconformal space. Since d2v = 0,

the RHS of the Weyl connection structure equation is closed, while eafa spans the cotangent

space of biconformal space. We can interpret the RHS of dv = eafa + Ω = χ as a symplectic

form except for the special case when the mixed dilatational curvature is such that χ is de-

generate. When the dilatational curvature is closed, dΩ = 0, over the whole manifold, we are

free to interpret the two-form eafa as the symplectic form. We will use the appearance of this

condition later to find Darboux coordinates for the manifold.

4.2.2. Field equations

Until this point, we have been exploring only the geometry of curved biconformal space.

The gravitational theory we consider in this chapter is based on the Wehner–Wheeler action

in [50]. There, it was shown one can write an action that is linear in the curvatures in biconformal
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space. The action, in terms of curvature two-forms, is

S =

ˆ
(αΩa

b + βδabΩ + γeafb) εac...dε
be...fec . . . edfe . . . ff , (4.3)

where Ωa
b is the curvature associated with SO(n) transformations and Ω is the dilatational

curvature. The torsion, Ta, and cotorsion, Sa cannot appear in a linear, conformally invariant

action, but do appear in the field equations. The classical extrema of the action are then found

by doing a Palatini (first order) variation of all the connection forms. Here we survey the various

field equations we obtain from the Palatini variation. See Appendix F for explicit details of the

variation of the Wehner-Wheeler action.

Dilatation and SO(4) curvature field equations

There are four field equations relating traces of the Cartan curvature of the spin connection,

Ωa
b, the dilatational curvature, Ω, and the metric. These come from varying the basis forms ea

and fa.

0 = αΩa
bac + βΩbc − α

1

2

(
(n− 2) ηbc + δbc

(
δadηda

))
, (4.4)

0 = αΩa b
b c − αδacΩd b

b d + βΩa
c − βδacΩb

b + δac

(
α

1

2
n− β + γn2

)
+α

1

2
δadηdc

(
δbhη

hb
)
− αηahδhc

(
δdgηgd

)
, (4.5)

0 = αΩc a
b c − αδabΩc d

d c + βΩa
b − βδabΩc

c + δab

(
α

1

2
n− β + γn2

)
+α

1

2
ηadδdb (δcgηgc)− αδagηgb

(
δchη

hc
)
, (4.6)

0 = αΩa cb
c + βΩab − α1

2

(
(n− 2) ηab + δab

(
δdcη

dc
))

. (4.7)

There are four because δea ∼ Aabe
b + Babfb and δfa ∼ Cabe

b + D b
a fb. There is one each for

the submanifolds and two for the mixed basis. It has been shown these field equations, in the

original basis, lead to general relativity on the cotangent bundle of spacetime [50]. In that case,

combining these submanifold field equations with the basis equation integrability conditions

leads to the vanishing of the dilatational curvature generically and the Einstein field equation
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on the submanifolds. We will show the same result through a different route, using a simple

linear ansatz for the symmetric spin connection.

Torsion/ cotorsion field equations

There are two sets of field equations that relate the torsion, cotorsion, symmetric spin

connection and the scale vector. One set comes from the variation of the Weyl connection

0 = β
(
T ba b − T ab b + S ab

b

)
,

0 = β
(
T bab + S b

a b − S b
b a

)
,

and the other set comes from the variation of the spin connection,

0 = ∆ap
qb

(
T cb a − δcaT eb e − δcaS be

e

)
+∆ap

qb

(
−1

2
∂aη

cb +
1

2
δca∂fη

bf − ηcdµbda + δcaη
bdµfdf +Waη

cb − δcaηbfWf

)
+∆ap

qb

(
−1

2
ηcd∂bηad +

1

2
δcaη

bd∂eηed + ρc ba − δcaρb ee
)
,

0 = ∆ap
qb

(
S b
c a − δbcS e

e a + δbcT
e
ae

)
+∆ap

qb

(
−1

2
∂bηac + δbc

1

2
∂eηea + ηecρ

e b
a − δbcηdaρd ee − ηacW b + δbcηeaW

e

)
+∆ap

qb

(
1

2
ηcd∂aη

bd − 1

2
δbcηad∂fη

df + ηcdη
deµbea − δbcηadηdeµ

f
ef

)
.

Note, the torsion and cotorsion from the involution conditions, T abc and Sabc, do not appear

in the field equations and are therefore, in general, undetermined by them. The symmetric

part of the spin connection and the scale vector can, and do, appear in the field equations

precisely because they transform tensorially. We immediately combine the trace equations with

the trivalent equations to give the following set of field equations.

0 = ∆ap
qb

(
T cb a − δcaT be e

)
+ ∆ap

qb

(
ρc ba − δcaρb ee − ηcdµbda + δcaη

bdµfdf

)
+∆ap

qb

(
ηcbva − δcaηbfvf

)
, (4.8)

0 = ∆ap
qb

(
S b
c a − δbcS e

a e

)
+ ∆ap

qb

(
µbca − δbcµ

f
af + ηecρ

e b
a − δbcηdaρd ee

)
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+∆ap
qb

(
δbcηeau

e − ηacub
)
. (4.9)

We have also replaced the partial derivatives of the metric and the Weyl vector with the scale

vector as defined above and in Chapter 3. We preemptively write the equations with three

terms.

These field equations will be shown to restrict the form of the metric in the example

solutions worked out in this chapter. In that example, the curvature/dilatational curvature

field equations (4.4 - 4.7) give us the vanishing of the dilatational curvature generically and the

vacuum Einstein field equations, which are exactly the results we would hope for. The balance

between the conditions set by these torsion field equations with the ansatz for the form of the

symmetric spin connection gives us the remaining restrictions on the solution.

4.3. Combining the field equations and structure equations

Once we define the curvature of the anti-symmetric part of the spin connection, Ra
b, as in

equation (3.37), we can write the SO(n) structure equation in three parts

1

2
Ωa
bcde

ced =
1

2
Rabcde

ced + D(x)µ
a
b − µebµae −∆ah

db ηhce
ced,

Ωa c
b dfce

d = Ra cb dfce
d + D(y)µ

a
b + D(x)ρab − µebρae − ρebµae − 2∆ah

gbΞgijhfie
j ,

1

2
Ωa cd
b fcfd =

1

2
Ra cdb fcfd + D(y)ρ

a
b − ρebρae + ∆ac

ebη
edfcfd,

where the covariant derivatives can be written equivalently as Lorentz covariant or Weyl covariant

derivatives, since the conformal weight of µab and ρab are zero. When written in this form, it is

easy to see there is a relationship between the natural, overall curvature of biconformal space,

Ωa
b and the naturally defined Riemannian curvature on the submanifolds, Ra

b.

4.3.1. Configuration submanifold

When we combine the submanifold field equations (4.4 - 4.7) with the spin connection

structure equation, a number of simplifications occur. First, it replaces the trace of the SO(n)
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curvature of the conformal group,

Ωf
bfd = Rfbfd +D

(x)
f µfbd −D

(x)
d µfbf − µ

e
bfµ

f
ed + µebdµ

f
ef +

1

2
(n− 2) ηbd +

1

2
δdb

(
ηefδ

fe
)
,

with the Ricci curvature defined from the antisymmetric spin connection.

0 = Rfbfd +
β

α
Ωbd +D

(x)
f µfbd −D

(x)
d µfbf − µ

e
bfµ

f
ed + µebdµ

f
ef .

Notice the metric terms also cancel. We are left with a relationship between the Ricci curvature,

the dilatational curvature and the symmetric spin connection. Since the Ricci curvature is sym-

metric by the Bianchi identity and the dilatational curvature is antisymmetric by definition the

equation separates into two independent parts, which relate these curvatures to the symmetric

spin connection

Rfbfd = D
(x)
(d µ

f
b)f −D

(x)
f µf(bd) + µfe(dµ

e
b)f − µ

e
(bd)µ

f
ef ,

β

α
Ωbd = D

(x)
[d µ

f
b]f −D

(x)
f µf[bd] + µfe[dµ

e
b]f − µ

e
[bd]µ

f
ef .

As usual, the parentheses and square brackets on the indices mean the parts symmetric and anti-

symmetric, respectively, on those indices, A(ab) ≡ 1
2 (Aab +Aba) and A[ab] ≡ 1

2 (Aab −Aba).

4.3.2. Momentum submanifold

In the momentum sector we get an analogous expression by combining the field equations

and the structure equations. Again it relates the curvature of the anti-symmetric spin connection,

the dilatational curvature and the symmetric spin connection.

0 = Ra fdf +
β

α
Ωab +Df

(y)ρ
a d
f −Dd

(y)ρ
a f
f − ρ

e f
f ρ

a d
e + ρe df ρ

a f
e .

This also decomposes into a symmetric and antisymmetric part.

Ra fdf = D
(d
(y)ρ

a) f
f −Df

(y)ρ
(a d)
f + ρe ff ρ

(a d)
e − ρe (df ρa) fe ,
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β

α
Ωab = D

[d
(y)ρ

a] f
f −D

f
(y)ρ

[a d]
f + ρe ff ρ

[a d]
e − ρe [df ρa] fe .

4.3.3. Mixed-basis equations

The mixed-basis field equations can similarly be used to substitute out the Riemannian

curvature in the mixed basis spin connection structure equations. We refrain from including

them here until we set some simplifying conditions.

Note the combination of the field equations and structure equations has completely de-

coupled Ωa
b from the Riemannian curvature naturally defined on the submanifolds. This will

prove important both from a physical standpoint and because this decoupling allows for the

time metric to be derived from the form of Ωa
b even when Ra cdb = 0.

4.4. Vector ansatz

Here we examine a solution of biconformal gravity with the aim of recovering general

relativity. We motivate the use of a vector ansatz for the symmetric spin connection by looking

at the involution conditions in the homogeneous space.

It can be shown a spin connection of the form

µab = Aδab vce
c + (A− 1)

(
δac vb + ηbcη

advd

)
ec +Bηadvdvbvce

c, (4.10)

ρab = Cδabu
cfc + (C − 1)

(
ηacηbdu

d + δcbu
a
)

fc +Duaηbdu
ducfc (4.11)

has the same symmetries as βab and satisfies the involution conditions of homogeneous bicon-

formal space. The form of µab and ρab in Chapter 3 are special cases of this general vector form

where A = −1, B = −4, C = 0, and D = −2. By satisfying the involution conditions in the

homogeneous case, an ansatz of this form sets the torsion and cotorsion that appear in the invo-

lution conditions of the curved case identically to zero. Here the form of the Bianchi identities

illustrates the relationship between βab and v can be used to greatly simplify the geometry. In

this chapter, motivated by the Bianchi identities and the goal of regaining general relativity, we
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will look in detail at the consequences of choosing the simplest linear vector ansatz,

µab = δab vce
c, (4.12)

ρab = δabu
cfc, (4.13)

which amounts to setting A = B = 1 and C = D = 0. From the point of view of finding a

solution, this is a straightforward choice given the cascade of simplifications it gives in the Bianchi

identities, structure equations and field equations. Another reason, even more geometrically

motivated, is that equations (4.12-4.13) are equivalent to setting the τ -covariant derivative of

the orthonormal metric to zero. Choosing the above ansatz is equivalent to ensuring the entire

connection, τ ab, is metric compatible. This greatly simplifies the mixed torsion and cotorsion

field equations, (4.8-4.9), canceling the symmetric spin connection terms with the scale vector

terms,2 and leaving

0 = ∆ap
qb

(
T cb a − δcaT be e

)
,

0 = ∆ap
qb

(
S b
c a − δbcS e

a e

)
.

4.4.1. Spin connection structure equations

Possibly the most important effect of this ansatz is to greatly simplify the spin connection

structure equation. This ansatz cancels the βcbβ
a
c terms. We can also rewrite the derivative

term as the dilatational curvature so the three parts of the Lorentz structure equation now look

like

1

2
Ωa
bcde

ced =
1

2
Rabcde

ced +
1

2
δabΩcde

ced −∆ah
db ηhce

ced,

Ωa c
b dfce

d = Ra cb dfce
d + δab

(
Ωc
dfce

d − δcdfced
)
− 2∆ah

gbΞgijhfie
j ,

1

2
Ωa cd
b fcfd =

1

2
Ra cdb fcfd +

1

2
δabΩcdfcfd + ∆ac

ebη
edfcfd.

2Note, if the original Euclidean metric was the effective metric of this space, then these equations would
look very similar to the field equation one gets from Einstein-Cartan theory.
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When the field equations are folded in with the traces of these equations, we are left with

the following four relationships on the submanifolds.

Rfbfd = 0,

Ra fdf = 0,(
1 +

β

α

)
Ωbd = 0,(

1 +
β

α

)
Ωab = 0.

These relationships elucidate two very important results. First, the field equations are now

the vacuum Einstein field equations on the submanifolds. The second important result is the

dilatational curvature vanishes generically on the submanifolds.3

The mixed-basis terms of the field equations are now

0 = Ra ff d −R
e a
d e + 2δaeηec

(
δfhη

hf
)
− 2ηaeδec

(
δfgηgf

)
, (4.14)

0 = Ra ff d +Re ad e + 2

(
1 +

β

α

)
Ωa
d

−δad
2

(n− 1)

(
1

2
n2 − β

α
+
γ

α
n2
)

+ δad
1

(n− 1)
(δgeη

ge)
(
δfhηfh

)
, (4.15)

where we have written the equations as the symmetrized and antisymmetrized pieces of the

mixed curvature.

4.4.2. Bianchi identities

The Bianchi identities are substantially simplified by the simple vector ansatz. They now

only relate the various Cartan curvatures and their covariant derivatives. The dilatational Bianchi

identities now have the following form,

T ab ce
cfafb = d(y)

(
Ωa
bfae

b
)
, (4.16)

−S b
a cfbe

aec = d(x)

(
Ωa
bfae

b
)
. (4.17)

3We choose to work in the generic case and save the β
a
= −1 case for later work.
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The configuration Bianchi identities have the following form,

1

2
Rabcde

beced = D(x)

(
1

2
T abce

bec
)
, (4.18)

Ra cb dfce
deb = D(x)

(
T ab cfbe

c
)

+ D(y)

(
1

2
T abce

bec
)
, (4.19)

1

2
Ra dec fdfee

c = D(y)

(
T ab cfbe

c
)
. (4.20)

And, the momentum Bianchi identities have the following form,

1

2
Rb cda fbfcfd = −D(y)

(
1

2
S bc
a fbfc

)
, (4.21)

Rb ca dfce
dfb = −D(x)

(
1

2
S bc
a fbfc

)
−D(y)

(
S b
a cfbe

c
)
, (4.22)

1

2
Rbacdfbe

ced = −D(x)

(
S b
a cfbe

c
)
. (4.23)

Note, this ansatz sets the involution torsion (T abc) and cotorsion (Sabc) to zero, automatically

satisfying the involution conditions. The Bianchi identities now reveal the Riemannian curvatures

are related to the covariant derivative of the four remaining torsions and cotorsions. Since ea

and fa are distinguishable, we may strip the odd form off of the nonstandard submanifold Bianchi

identities (4.20) and (4.23). This shows the curvatures are highly restricted by the choices of

torsion and cotorsion, since we are dealing with the full curvatures. The anti-symmetric part

of the mixed torsion and cotorsion are in turn related to the covariant derivative of the mixed

dilatational curvature, (4.16) and (4.17).

4.4.3. Mixed basis structure equations

This ansatz also simplifies the mixed basis equations greatly. When we make the substitu-

tion we are left with

T ab cfbe
c = d(y)e

a +
(
γa b
c + δac ∂

bφ
)

fbe
c,

S b
a cfbe

c = d(x)fa +
(
σbac + δba∂cφ

)
fbe

c.
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We can relate these to the submanifold equations by using the definitions of the Christoffel

symbols (which can be found in Appendix D).

e µc ∂be
a
µ + σacb + δba∂cφ− Γ̃acb = 0,

f c
µ ∂

bf µ
a − γc ba − δca∂bφ+ Γ̃c ba = 0.

These show the mixed torsion/cotorsion are, in fact, the submanifold Christoffel symbols written

in the orthonormal basis

T ab c = Γ̃a bc +
(
e µc ∂

be aµ − f µ
c ∂

bf a
µ

)
,

S b
a c = Γ̃bac +

(
e bµ∂ce

µ
a − f b

µ ∂cf
µ
a

)
, (4.24)

where the terms in parenthesis encode information about the symplectic structure of the space

and vanish when the coordinates are Darboux.

4.5. Vanishing torsion solution

The ansatz we have chosen above gives us a much simpler set of equations to work with,

while at the same time elucidating the relationship between the torsions/cotorsions and the

Riemannian curvatures. Here, we will take advantage of these relationships by looking at the

solution when the most physically relevant torsion/cotorsions vanish. The submanifold torsion,

T abc, is the one that appears in Einstein-Cartan theory and has yet to be measured. We will

immediately set it and the analogous cotorsion on the momentum submanifold, S bc
a , to zero.

The mixed torsion and cotorsion are the only remaining components. Again, motivated

by finding general relativity within biconformal gravity, we set the mixed torsion to zero. We

immediately see (4.20) sets the momentum Riemannian curvature to zero. Having a momentum

sector with no curvature allows us to regard it as a vector space. We can then interpret it as

the cotangent bundle to spacetime. The only nonvanishing tensor from the basis structure

equations is the mixed cotorsion, S b
a c. It is easy to see why we choose not to set the mixed

basis cotorsion to zero by looking at (4.23). If S b
a c = 0, then there would be no configuration
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Riemannian curvature. We investigate this below.

4.5.1. Time metric

In [7] and in Chapter 3, it was shown the homogeneous biconformal space the Killing metric

on the configuration space is Lorentzian, despite the Euclidean starting place. Here the vanishing

torsion, through the Bianchi identities, sets the Riemannian part of the curvature to zero on the

momentum submanifold.

1

2
Ωa cd
b fcfd = ∆ac

ebη
edfcfd.

This allows us to use the result of [7] to show the presence of the time metric. There the

Weyl curvature of Ra cdb was set to zero to make the momentum sector as flat as possible.

Here Ra cdb = 0 by the Bianchi identity and the vanishing torsion condition. Instead we set the

traceless part of Ωa cd
b to zero, i.e. its Weyl curvature. From here the calculation is analogous

to the one in [7] and leads to the same time form of the metric

ηab = χ

(
δab −

2

z2
zazb

)
. (4.25)

Since we are in an orthonormal basis and the vector is normalized explicitly, the conformal factor

must be unity in the orthonormal gauge. The field equation Ωa cb
c = 1

2

[
(n− 2) ηab + δab

(
δdcη

dc
)]

keeps us from setting the trace to zero, since this would make the new metric proportional to the

old metric, breaking involution. Unlike in Chapter 3, the vector in the metric is not necessarily

the scale vector, Wa − ∂aφ.

Notice here the restriction of the momentum submanifold curvature Ra cdb = 0 is not as

problematic as it is in the case of the homogeneous space. Here the Riemannian curvature is

zero on the momentum sector because we have set the torsion on the mixed sector to zero

and they are related through a Bianchi identity, (4.20). In the homogeneous space the solution

gives a more complicated form of the symmetric part of the spin connection. This leads to a

form for the momentum curvature that is only zero in a special case, see Section 3.3.3. This

leads to an interesting tension between the solution found in this chapter, using the simplest
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ansatz possible, and the solution found using an already known solution to biconformal space.

This tension points in the direction of further work using a more complicated form of the the

symmetric spin connection to find other gravitational solutions.

4.5.2. Mixed basis curvatures

We also see the mixed Riemannian curvature antisymmetrized on its lower indices is zero

Ra cb d − Ra cd b = 0, again from the Bianchi identities (4.19). Note this makes one of the traces

vanish,4 Re cb e = 0. In turn this simplifies (4.14) and (4.15) to give

0 = Ra ff d + 2δaeηec

(
δfhη

hf
)
− 2ηaeδec

(
δfgηgf

)
,

0 = Ra ff d + 2

(
1 +

β

α

)
Ωa
d

−δad
(

2

(n− 1)

(
1

2
n2 − β

α
+
γ

α
n2
)
− 1

(n− 1)
(δgeη

ge)
(
δfhηfh

))
.

We can actually show the entire mixed Riemannian curvature vanishes in two different ways.

Taking the antisymmetric and symmetric projections of the equations above would reveal that

Ra ff d = 0. Alternatively, equation (4.20) shows us the Riemannian curvature of the momentum

submanifold, Ra dec , is zero if there is no mixed torsion. This leads to a cascade of simplifications.

First, since Ra dec = 0, we are free to gauge the momentum spin connection away, γab = 0. The

momentum submanifold basis is then exact, with respect to y-derivatives, d(y)fa = 0. The

mixed Riemannian curvature is greatly simplified by gauging away γab,

Ra cb dfce
d = d(y)σab + d(x)γab − σcbγac − γcbσac = d(y)σab.

Looking at the mixed basis equation, we see d(y)e
a = 0, which means the tetrad coefficients,

e aµ = e aµ (x), are only functions of the configuration coordinates. Since the configuration

submanifold is a Riemannian geometry, we can solve for the spin connection, σab, in terms of

the tetrad and its de‘rivatives, σab (e, ∂e). Therefore, the spin connection on the configuration

side is only a function of the x-coordinates as well. This makes the last remaining term in the

4Re ae b = 0 from the antisymmetry of αab
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definition of the mixed Riemannian curvature vanish and we have Ra cb d = 0. We then have

0 = δaeηec

(
δfhη

hf
)
− ηaeδec

(
δfgηgf

)
,

Ωa
d =

α

α+ β

(
1

(n− 1)

(
1

2
n2 − β

α
+
γ

α
n2
)
− 1

2

1

(n− 1)
(δgeη

ge)
(
δfhηfh

))
δad

= κδad .

We choose to work in the orthonormal gauge where the scale factor on the metric is one. This

gives us a form of the metric where the trace is constant. Therefore, all the terms on the

RHS of the above equation are constant, dκ = 0. Since the mixed dilatational curvature is

constant, we then see the Bianchi identity concerning its x-derivative (4.17) puts a condition

on the anti-symmetric part of the mixed cotorsion, S b
[a c] = 0. The only piece left of any of

the torsions or cotorsions is now the symmetric part of the mixed cotorsion, S b
(a c).

4.5.3. Symplectic structure

We are now in a much simpler geometry where most of the torsions and cotorsions are

zero, T ab c = T abc = T abc = S bc
a = Sabc = 0, two of the dilatational curvatures are zero,

Ωab = Ωab = 0, and two of the curvatures are zero, Ra cdb = Ra cb d = 0. The only curvatures

that remain are S b
(a c), Ωa

d, and Rabcd. Since the mixed dilatational curvature is constant it

is closed and we are able to interpret eafa as a symplectic form. The Darboux theorem then

allows us to choose a set of coordinates such that dω = dxαdyα. This implies e aµ = f a
µ . In

this basis the already simplified mixed basis equations (4.24) show the mixed cotorsion is equal

to the configuration Christoffel symbol, Γabc.

The Bianchi identity relating the configuration curvature to the mixed cotorsion (4.23) is

then identically satisfied.

1

2
Rbacdfbe

ced = −D(x)

(
S b
a cfbe

c
)

= D(x)

(
Γbacfbe

c
)

= D(x)Γ
b
acfbe

c + ΓbacD(x)fbe
c

= D(x)Γ
b
acfbe

c + ΓeadS
b
e cfbe

ced

= D(x)Γ
b
acfbe

c + ΓeadΓ
b
ecfbe

ced.
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This works because the covariant derivative of the cotetrad is again the mixed cotorsion. This

cancels the extra Γ-squared pieces from the covariant derivative.

4.5.4. Mixed cotorsion field equation

Finally, we look at the consequences of the remaining field equations. The field equation

for the mixed torsion is identically satisfied; however, the field equation for the only remaining

cotorsion gives conditions on the configuration Christoffel symbol, and hence, the metric. The

mixed cotorsion field equation puts a condition on the derivatives of the metric since the mixed

cotorsion is equal to the Christoffel symbol (written in the orthonormal frame). We therefore

have the following condition

0 = ∆ap
qb

(
Γbca − δbcΓeae

)
.

See Appendix E for a detailed discussion of the role of the Christoffel symbol in the extrinsic

curvature on submanifolds. If we look at the time metric of the form ηab = χ
(
δab − 2

z2
zazb

)
,

where za defines the time coordinate via zα ∂
∂xα = ∂

∂t , then we can write the condition in the

following form,

0 =
1

2
(∂νgβπ − ∂βgνπ)− 1

2
(gπβsν − gνπsβ)

−Z2

(
Z2δ0νδ

0
βg

σ0gα0 − 1

2
δ0νg

σ0δαβ −
1

2
δσν g

α0δ0β

)
(∂πgασ + ∂αgσπ − ∂σgαπ)

+Z2
(
2Z2δ0νδ

0
πδ

0
βg

α0 − δ0νδ0πδαβ − δ0βgνπgα0
)
sα,

where Γρβρ = 1
2g
ερ∂βgρε = ∂β ln

√
|g| = ∂βs ≡ sβ, Z2 = zazbη

ab and 0 index designates the

time direction. Looking at the various components of this, we get the following conditions

0 = ∂igk0 − ∂kgi0 − g0ksi + gi0sk,

0 = ∂igjk − ∂kgij − gjksi + gijsk.

The first condition is the one necessary to write the metric as block diagonal diag (g00, gij).

The second condition shows the metric times a conformal factor, e−sgij , comes from a potential.
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When the metric is written as block diagonal, then 0 = sµ. We then have

0 = ∂igjk − ∂kgij ⇒ gij = ∂iχj ,

where χj is some vector potential. See Appendix G for a detailed list of the conditions from

this field equation on the coordinate metric.

4.6. Discussion

In this chapter, we have looked at curved biconformal space and the gravitational theory

defined by the curvature-linear action, 4.3. Biconformal gravity has been laid out in full generality

with all possible Cartan curvatures present. In 2n-dimensional biconformal space, the Bianchi

identities turn out to be very restrictive of the n-dimensional curvatures. The consequences of

combining the full field equations together with the Bianchi identities and structure equations is

investigated. Section 4.3 shows the general approach to investigating this class of geometries.

This section allows a straightforward starting point from which to work toward any solution to

biconformal gravity.

The simple linear ansatz, µab = δab vce
c and ρab = δabu

cfc, shows how we can recover a

subset of scale invariant general relativity on the cotangent bundle of spacetime. We then look

specifically at torsion-free solutions. We are then left with a geometry where

0 = T ab c = T abc = T abc = S bc
a = Sabc,

0 = Ra cdb = Ra cb d = Rebed,

0 = Ωab = Ωab.

Note, the configuration subspace is Ricci flat, but the whole Riemann tensor is not zero. The

chosen assumptions turn out to be overly restrictive and give us general relativity restricted to

those solutions where the coordinate metric can be written in the form diag (g00, gij) and where

gij = ∂iχj . Since we know the torsion-free solution should give us all of general relativity [50],

we assume the simple linear ansatz must be loosened in order to incorporate more generality.
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Unlike in general relativity (where there is only T abc), we are unable to set all the torsions

and cotorsions to zero and still have a gravitational theory with any curvature. This means

the torsions and cotorsions play a slightly different role in biconformal space. By looking at a

more general theory, where we do not restrict them so stringently, we should be able to better

understand the role they play.

Note, the case where S b
a c = 0 results in a flat (in the Riemannian sense) configuration

space, Rabcd = 0, but not in a homogeneous space. The mixed dilatational curvature, Ωa
d = κδad ,

and the Cartan curvature associated with the SO(n) rotations are nonzero.

This work has shown the time result of Chapter 3 is fully compatible with scale invariant

general relativity. We hope the interesting results of that chapter, that the Einstein tensor con-

tains purely geometrical source terms, can be reproduced within the framework of a gravitational

theory we have established here.
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CHAPTER 5

CONCLUSION

In this dissertation, we have laid out the current status of biconformal geometry, based

on the Cartan geometry of the homogeneous manifold M0 = Conformal (p, q) /Weyl (p, q)

looking specifically at the interesting Euclidean case, p = n, q = 0. Though biconformal spaces

are endowed with more symmetries (and hence more connections) than a Riemannian space,

we see Riemannian geometry as the effective geometry on the Lagrangian submanifolds of any

given biconformal space. This is in one of the major advancements in the work presented here.

By casting the original basis in a conformally-orthonormal Lagrangian, one can easily prove the

connection on the submanifolds is that of a Riemannian geometry. It can be written as the

spin connection plus a trivial scale factor term, that is not the Weyl connection. Once these

Riemannian structures are recognized, the next step is to look at how the whole of biconformal

geometry relates to these Riemannian geometries. The astonishing result is instead of the

biconformal submanifolds looking like Minkowski space, as expected, the resulting Ricci tensor

has an effective stress energy term corresponding to that of a perfect fluid.

In Chapter 2, we have shown how biconformal space is constructed as a special case of

Cartan geometry. There it was shown how biconformal space fits in to the spectrum of a number

of other active lines of research. The biconformal quotient is unique in giving a homogeneous

space endowed naturally with both a Killing metric and a symplectic form. These stem directly

from the properties of the conformal group and the chosen quotient.

In Chapter 3, we investigated the properties of the homogeneous space referred to as

flat biconformal space. We have outlined the methods of [7] to show these spaces have a

characteristic heretofore unknown in other geometries, a geometric mechanism whereby the

spacetime signature on the n-dimensional submanifolds is different from those of the original

space considered.

Specifically, we looked at biconformal space in the orthonormal version of the basis found

in [7]. The orthonormal basis clarifies a number of characteristics of the space, making it

easier to see how, though based on conformal symmetry, the submanifold structure equations
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organize themselves to look just like the usual Riemannian geometry of general relativity, with

a Lorentzian signature. We have shown the spin connection in this new basis, though not fully

antisymmetric with respect to the new metric, naturally separates in the structure equations.

The antisymmetric part appears naturally in the submanifold basis equations where it helps

define a trivial Weyl geometry, which we are free to gauge to a run-of-the-mill Riemannian

geometry. The symmetric part of the spin connection, which transforms like a tensor, can be

cast in terms of another tensor, the scale vector, that defines the direction of time in the solution.

This vector appears as part of an effective source to the Einstein field equation. The form is

characteristic of a perfect fluid. These results are intriguing, but need to be cast as part of a

full gravitational theory in order to be correctly interpreted.

The existence of these Riemannian submanifolds leads the way for the latter research in this

dissertation. The basis we use in Chapter 3 is used in Chapter 4 to outline an efficient way to

approach investigations of a gravitational theory with biconformal geometry as the background.

We looked at curved biconformal space and the gravitational theory defined by the Wehner–Wheeler

action. We laid out the theory in full generality with all curvatures, torsion, cotorsions and dilata-

tional curvatures present. We showed some of the Bianchi identities (integrability conditions)

of the theory are more restrictive of the Riemannian curvatures on the submanifolds than in a

Riemannian geometry, determining them in terms of other fields. The consequences of combin-

ing the field equations with the Bianchi identities and structure equations is investigated. We

concluded by making a number of simplifying assumptions and recovering scale invariant general

relativity on the cotangent bundle of spacetime. The assumptions chosen turn out to be overly

restrictive and give us general relativity restricted to metrics of the form gµν = (g00, gij).

Unlike in general relativity (where there is only T abc), we are unable to set all the torsions and

cotorsions to zero and still have a gravitational theory with curvature. This means the torsions

and cotorsions play a slightly different role in biconformal space. By looking at a more general

theory, where we do not restrict them so stringently, we should be able to better understand the

role that they play.

In Chapter 4, we demonstrated general relativity can emerge as a subsector of biconformal
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gravity. We know from the work of Wehner and Wheeler [50] that torsion-free biconformal

gravity generically leads to all of general relativity. Their result was not derived in the time

basis, but was done without restricting the form of the symmetric spin connection. The next

obvious calculation is to use the symmetric spin connection calculated in Chapter 3 as the ansatz

in the curved space. Presumably this will again lead to an effective energy-momentum tensor

for a perfect fluid. In the curved case, we will then be able to interpret this as a source to the

Einstein field equation.

The quantization of the gravitational interaction to produce a predictive theory is still an

active area of research within the theoretical physics community. Weyl gravity has a storied

history as a direction to help with the quantization of gravity. The theory has been shown

to be more well-behaved, from a quantization perspective, than the Einstein-Hilbert action

in that it is renormalizable [87] and its Poisson algebra closes [88]. Others have worked out

the one-loop corrections to the theory [89]. However, the physicality of the theory has been

questioned for a long time, mostly due to the fact the Bach equation is a fourth-order equation

whose correlation functions, upon quantization, lead to ghosts (negative norm states) [90–92].

Recently the work of Wheeler [68] has shown, when the Weyl action is looked at as being fully

conformally symmetric with all of the connections of the conformal group varied independently,

using a Palatini variation, the theory is equivalent to general relativity.

This result opens the door to the question, of how we reconcile the following facts:

1. Weyl gravity is perturbatively renormalizable, but has problems owing to its the fourth-

order field equations, i.e. probably has ghost fields.

2. General relativity is not perturbatively renormalizable, but is a well-behaved theory with

second-order field equations, i.e. no ghosts.

Quantum mechanics seems to follow as a natural consequence of the characteristics of bicon-

formal space [83, 84]. It has many structures that make it amenable to quantization. The

canonical-orthonormal basis, by construction, has a natural phase space structure. There is also

a Kähler structure to the manifold, which might allow for straightforward geometric quantiza-

tion of the manifold. The natural notion of a time direction defined by the scale vector would
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allow an ADM-type decomposition of the action in order to look at canonical quantization.

Lastly, since time emerges as a part of the theory, it might be possible to try and quantize the

theory before gauging, without time, and then see what this quantized theory looks like, thereby

skirting the problem of time altogether.
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Appendix A

Structure equations in the orthonormal, Lagrangian basis

Here, we write the structure equations, including Cartan curvature. We expand the con-

figuration, mixed and momentum terms separately. Note, the fafb part of the dea equation

and the eaeb part of the dfa equation are set to zero. These are the involution conditions,

which guarantee the configuration and momentum subspaces are integrable submanifolds by the

Frobenius theorem.

In the conformal-orthonormal basis, we have gabdgbc = e−2φηabd
(
e2φηbc

)
= 2δacdφ. The

structure equations in the conformal-orthonormal basis are

dτ ab = τ cbτ
a
c + ∆ae

dbηece
ced −∆ac

ebη
edfcfd + 2∆ae

fbΞ
fc
defce

d + Ωa
b, (A.1)

dea = ecαac +
1

2
ηcbdη

aceb +
1

2
Dηabfb + Ta, (A.2)

dfa = αbafb +
1

2
ηbcdηabfc −

1

2
Dηabe

b + Sa, (A.3)

dω = eafa + Ω. (A.4)

We then define

D(x)µab ≡ d(x)µab − µcbσac − σcbµac,

D(x)ρab ≡ d(x)ρab − ρcbσac − σcbρac,

D(y)µab ≡ d(y)µab − µcbγac − γcbµac,

D(y)ρab ≡ d(y)ρab − ρcbγac − γcbρac,

allowing the separation of the structure equations into independent parts.

A.1. Configuration space:

1

2
Ωa
bcde

ced = d(x)σab − σcbσac + D(x)µab − µcbµac − k∆ac
ebηcde

dee, (A.5)

1

2
T abce

bec = d(x)e
a − ebσab +

1

2
ηacd(x)ηcbe

b, (A.6)
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1

2
Sabce

bec = kηabe
c

(
µbc − δbcWde

d +
1

2
ηced

(x)ηbe
)
, (A.7)

1

2
Ωabe

aeb = d(x) (Wae
a) . (A.8)

A.2. Cross-term:

Ωa c
b dfce

d = d(y)σab + d(x)γab − γcbσac − σcbγac

+D(x)ρab + D(y)µab − ρcbµac − µcbρac

−2∆ac
dbΞ

fd
ce ffe

e, (A.9)

T abc fbe
c = d(y)ea − ebγab +

1

2
ηacd(y)ηcbe

b

−kηac
(
µbcfb +Wdfce

d − 1

2
ηbdd(x)ηcdfb

)
, (A.10)

S b
a cfbe

c = d(x)fa − σbafb −
1

2
ηcbd(x)ηacfb

+kηab

(
ecρbc +W cfce

b +
1

2
ηbcd(y)ηcde

d

)
, (A.11)

Ωa
bfae

b = d(y) (Wae
a) + d(x) (W afa)− eafa. (A.12)

A.3. Momentum space:

1

2
Ωa cd
b fcfd = d(y)γab − γcbγac + Dρab − ρcbρac + k∆ac

ebη
edfcfd, (A.13)

1

2
S bc
a fbfc = d(y)fa − γbafb −

1

2
ηcbd(y)ηacfb, (A.14)

1

2
T abcfbfc = −kηac

(
ρbcfb −W bfbfc −

1

2
ηbdd(y)ηcdfb

)
, (A.15)

1

2
Ωbcfbfc = d(y) (W afa) . (A.16)
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Appendix B

Gauge transformations in the orthonormal, Lagrangian basis

B.1. Definitions

In the conformally orthonormal frame our structure equations are given by equations (A.1)

through (A.4), where the ec components of Dηab become

Dηab = d(x)η
ab + ηcbαac + ηacαbc − 2Wce

cηab

= d(x)η
ab + ηcb (σac + µac) + ηac

(
σbc + µbc

)
− 2Wce

cηab

= d(x)η
ab +

(
ηcbσac + ηacσbc

)
+ ηcbµac + ηacµbc − 2Wce

cηab

= d(x)η
ab + 2ηacµbc − 2Wce

cηab.

We assume the involution equations are already satisfied. Similarly, for the third equation, we

need only the fa components,

Dηab = d(y)ηab − ηcbβca − ηacβcb + 2W cfcη
ab

= d(y)ηab − ηcb (γca + ρca)− ηac (γcb + ρcb) + 2W cfcη
ab

= d(y)ηab − ηcbγca − ηacγcb − ηcbρca − ηacρcb + 2W cfcη
ab

= d(y)ηab − 2ηacρ
c
b + 2W cfcηab

= D(y,γ)ηab − 2ηacρ
c
b + 2W cfcηab.

B.2. Lorentz transformations

The basis equations

We compute the gauge transformation properties of the different pieces of the connection.

Notice first we have the antisymmetry of the inhomogeneous part of the transformation,

ηab = ηefΛeaΛ
f
b

δcb = ηcaηefΛeaΛ
f
b
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δcbΛ̄
b
d = ηcaηefΛeaΛ

f
bΛ̄

b
d

Λ̄cd = ηcaηdeΛ
e
a

ηacη
deΛ̄cd = Λea

ηdeΛ̄cd = ηcdΛed.

Therefore,

Λ̄be∂
dΛec = Λ̄be∂

d
(
ηefηcgΛ̄

g
f

)
= ηefηcgΛ̄

b
e∂
dΛ̄gf

= ηebηcgΛ
f
e∂
dΛ̄gf

Λ̄be∂
dΛec = −ηebηcgΛ̄gf∂

dΛfe

δbgδ
e
c Λ̄

g
f∂

dΛfe + ηebηcgΛ̄
g
f∂

dΛfe = 0

Ξebcg

(
Λ̄gf∂

dΛfe

)
= 0.

Now consider the basis equations (dropping the involution terms),

dea = ebΘac
dbτ

d
c +

1

2
ηcbdη

aceb +
1

2
Dηaefe + Ta

d(x)e
a + d(y)e

a = eb (σab + γab) +
1

2
ηcb
(
d(x)η

ac + d(y)η
ac
)
eb

+
1

2

(
d(x)η

ab + 2ηacµbc − 2Wce
cηab

)
fb

+T ab cfbe
c +

1

2
T abce

bec,

dfa = Θbc
daτ

d
cfb +

1

2
ηbcdηabfc −

1

2
Dηace

c + Sa

d(x)fa + d(y)fa =
(
σba + γba

)
fb +

1

2
ηbc
(
d(x)ηab + d(y)ηab

)
fc

−1

2

(
d(y)ηab − 2ηacρbc + 2W cfcη

ab
)

eb

+S b
a cfbe

c +
1

2
S bc
a fbfc,
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so we have two pieces from each equation

d(x)e
a = ebσab +

1

2
ηcb
(
d(x)η

ac
)
eb +

1

2
T abce

bec,

d(y)e
a = ebγab + ηacµbcfb −Wce

cηabfb + T ab cfbe
c

+
1

2
ηcbd(y)η

aceb +
1

2
d(x)η

abfb

=
(
−γa b

c − ηadµbdc +Wcη
ab + T ab c

)
fbe

c

+
1

2
ηcbd(y)η

aceb +
1

2
d(x)η

abfb,

d(y)fa = γbafb +
1

2
ηbc
(
d(y)ηab

)
fc +

1

2
S bc
a fbfc,

d(x)fa = σbafb +
1

2
ηbc
(
d(x)ηab

)
fc −

1

2

(
d(y)ηab − 2ηacρ

c
b + 2W cfcηab

)
eb

+S b
a cfbe

c.

Transforming the configuration basis equation

If we choose a different orthonormal basis, ẽa = Λabe
b, η̃ab = ηab, and fb = Λ̄cbfc, the first

piece becomes

d(x)

(
Λabe

b
)

=
(

Λbce
c
)
σ̃ab +

1

2
ηcb
(
d(x)η

ac
) (

Λbde
d
)

+
1

2
T̃ abcΛ

b
dΛ

c
ee
dee

Λabd(x)e
b = Λbce

c
(
σ̃ab + Λ̄dbd(x)Λ

a
d

)
+

1

2
ηcb
(
d(x)η

ac
)

Λbde
d +

1

2
T̃ abcΛ

b
dΛ

c
ee
dee

Λabe
cσbc = −1

2
Λabηdc

(
d(x)η

bd
)

ec − 1

2
ΛabT

b
cde

ced

+Λbce
c
(
σ̃ab + Λ̄dbd(x)Λ

a
d

)
+

1

2
ηcb
(
d(x)η

ac
)

Λbde
d +

1

2
T̃ abcΛ

b
dΛ

c
ee
dee.

So combining like terms,

0 = Λaee
cΛ̄dbΛ

b
cσ

e
d − Λbce

c
(
σ̃ab + Λ̄dbd(x)Λ

a
d

)
+

1

2

(
Λabηcd

(
d(x)η

bc
)
− ηcbΛbd

(
d(x)η

ac
))

ed +
1

2

(
ΛabT

b
de − T̃ abcΛbdΛce

)
edee

= Λbce
c
(

ΛaeΛ̄
d
bσ

e
d − Λ̄dbd(x)Λ

a
d − σ̃ab

)
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+
1

2

(
Λabηcd

(
d(x)η

bc
)
− ηcbΛbd

(
d(x)η

ac
))

ed +
1

2

(
ΛabT

b
de − T̃ abcΛbdΛce

)
edee,

we may identify

σ̃ab = ΛaeΛ̄
d
bσ

e
d − Λ̄dbd(x)Λ

a
d,

σ̃abc = ΛaeΛ̄
d
bσ
e
df Λ̄fc − Λ̄dbΛ̄

f
c∂fΛad,

T̃ abc = ΛafT
f
deΛ̄

d
bΛ̄

e
c,

Λabηcd

(
d(x)η

bc
)
− ηcbΛbd

(
d(x)η

ac
)

= Λabe
2ϕη0cd

(
−2e−2ϕd(x)ϕη

bc
0

)
−e2ϕη0cbΛbd

(
−2e−2ϕd(x)ϕη

ac
0

)
= −2Λabη

bc
0 η0cdd(x)ϕ+ 2ηac0 η0cbΛ

b
dd(x)ϕ

= −2Λadd(x)ϕ+ 2Λadd(x)ϕ

≡ 0.

These are the expected transformation properties.

Transforming the momentum basis equation

Now we repeat the calculation for the momentum submanifold. Starting with,

d(y)fa = γbafb +
(
d(y)ϕ

)
fa +

1

2
S bc
a fbfc,

we gauge to

d(y)

(
Λ̄cafc

)
= γ̃b d

a fd
(
Λ̄cbfc

)
+

1

2
ηbc0 e

−2ϕ (d(y)η
0
abe

2ϕ
) (

Λ̄dcfd

)
+

1

2
S̃ bc
a

(
Λ̄dbfd

) (
Λ̄ecfe

)
0 = γ̃b d

a Λ̄cbfdfc −
(
d(y)Λ̄

c
a

)
fc + d(y)ϕ

(
Λ̄dafd

)
+

1

2
S̃ bc
a Λ̄dbΛ̄

e
cfdfe − Λ̄cad(y)fc

= γ̃b d
a Λ̄cbfdfc − d(y)Λ̄

c
afc + d(y)ϕ

(
Λ̄dafd

)
+

1

2
S̃ bc
a Λ̄dbΛ̄

e
cfdfe
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−Λ̄ca

(
γbcfb +

(
d(y)ϕ

)
fc +

1

2
S̃ bd
c fbfd

)
.

Comparing like terms

0 = γ̃b d
a Λ̄cbfdfc − d(y)Λ̄

c
afc − Λ̄caγ

b d
c fdfb

+d(y)ϕ
(

Λ̄dafd

)
− Λ̄ca

(
d(y)ϕ

)
fc

+
1

2
S bc
a Λ̄dbΛ̄

e
cfdfe − Λ̄ca

1

2
S bd
c fbfd,

so the metric terms cancel. We then have

γ̃ba = ΛbcΛ̄
d
aγ

c
d − Λ̄cad(y)Λ

b
c

γ̃b e
a = ΛbcΛ

e
f Λ̄daγ

c f
d − Λ̄caΛ

e
f∂

fΛbc

S̃ bc
a = Λ̄faS

de
f ΛbdΛ

c
e.

This leaves the two cross-terms, where we have now determined the transformations of σab and

γab.

Transforming the first cross-term equation

The first cross-term,

d(y)e
a =

(
−γa b

c − ηadµbdc +Wcη
ab + T ab c

)
fbe

c

+
1

2
ηcbd(y)η

aceb +
1

2

(
d(x)η

ab
)

fb

=
(
−γa b

c − ηadµbdc +Wcη
ab + T ab c

)
fbe

c

−
(
d(y)ϕ

)
ea − ηabd(x)ϕfb,

becomes

d(y)

(
Λabe

b
)

=
(
−γ̃a b

c − ηadµ̃bdc + W̃cη
ab + T̃ ab c

) (
Λ̄ebfe

) (
Λcfe

f
)

−
(
d(y)ϕ

)
Λabe

b − d(x)ϕ
(
ηabΛ̄cbfc

)
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0 =
(
−γ̃a b

c − ηadµ̃bdc + W̃cη
ab + T̃ ab c

) (
Λ̄ebfe

) (
Λcfe

f
)

−
(
d(y)ϕ

)
Λabe

b − d(x)ϕ
(
ηabΛ̄cbfc

)
−d(y)Λ

a
be
b − Λabd(y)e

b

=
(
−γ̃a b

c Λ̄ebΛ
c
f − ηadµ̃bdcΛ̄ebΛcf + W̃cη

abΛ̄ebΛ
c
f + T̃ ab cΛ̄

e
bΛ

c
f

)
fee

f

−d(y)Λ
a
be
b +

(
Λabγ

b e
c + Λabη

bdµedc − ΛabWcη
be − ΛabT

be
c

)
fee

c

−
(
d(y)ϕ

)
Λabe

b − d(x)ϕ
(
ηabΛ̄cbfc

)
+ Λab

(
d(y)ϕ

)
eb + Λabη

bcd(x)ϕfc.

Checking the metric terms,

−
(
d(y)ϕ

)
Λabe

b + Λab
(
d(y)ϕ

)
eb = 0

−d(x)ϕ
(
ηabΛ̄cbfc

)
+ Λabη

bcd(x)ϕfc = Λab

(
ηbc − ηdeΛ̄bdΛ̄ce

)
d(x)ϕfc

= 0.

Then, there remains

0 =
(
−γ̃a b

c Λ̄ebΛ
c
f − ηadµ̃bdcΛ̄ebΛcf + W̃cη

abΛ̄ebΛ
c
f + T̃ ab cΛ̄

e
bΛ

c
f

)
fee

f

−d(y)Λ
a
be
b +

(
Λabγ

b e
f + Λabη

bdµedf − ΛabWfη
be − ΛabT

be
f

)
fee

f

0 = −
(

ΛagΛ
b
hΛ̄dcγ

g h
d − Λ̄gcΛ

b
h∂

hΛag

)
Λ̄ebΛ

c
f − ∂eΛaf + Λabγ

b e
f

−ηadµ̃bdcΛ̄ebΛcf + Λabη
bdµedf − ΛabWfη

be + W̃cη
abΛ̄ebΛ

c
f

+T̃ ab cΛ̄
e
bΛ

c
f − ΛabT

be
f

= −Λagγ
g e
f + ∂eΛaf − ∂eΛaf + Λabγ

b e
f

−
(
ηadµ̃bdcΛ̄

e
bΛ

c
f − Λabη

bdµedf

)
+ Λab

(
W̃cΛ

c
f −Wf

)
ηbe

+
(
T̃ ab cΛ̄

e
bΛ

c
f − ΛabT

be
f

)

and we, therefore, have

µ̃abc = µdefΛadΛ̄
e
bΛ̄

f
c,
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W̃c = Λ̄bcWb,

T̃ ab c = T cd eΛ
a
cΛ

b
dΛ̄

e
c.

Transforming the momentum cross-term equation

Finally, we look at the cross-term from the momentum basis,

d(x)fa = σbafb +
1

2
ηbc
(
d(x)ηab

)
fc

−1

2

(
d(y)ηab − 2ηacρ

c
b + 2W cfcηab

)
eb + S b

a cfbe
c.

Changing the basis, this turns into

d(x)

(
Λ̄cafc

)
= σ̃bad

(
Λdee

e
) (

Λ̄cbfc
)

+
1

2
ηbcΛdee

e∂dηab

(
Λ̄fcff

)
−1

2

(
Λ̄fcff

)(
Λbde

d
)
∂cηab + ηacρ̃

c e
b

(
Λ̄feff

)(
Λbde

d
)

−W̃ c
(

Λ̄fcff

)
ηab

(
Λbde

d
)

+ S̃ b
a c

(
Λ̄fbff

)(
Λcde

d
)

0 =
(

ΛbeΛ̄
d
aσ

e
d − Λ̄dad(x)Λ

b
d

)
Λ̄cbfc −

(
d(x)Λ̄

f
aff

)
− Λ̄cad(x)fc

+
1

2
ηbcΛdee

e∂dηab

(
Λ̄fcff

)
− 1

2

(
Λ̄fcff

)(
Λbde

d
)
∂cηab

+ηacρ̃
c e
b

(
Λ̄feff

)(
Λbde

d
)
− W̃ c

(
Λ̄fcff

)
ηab

(
Λbde

d
)

+S̃ b
a c

(
Λ̄fbff

)(
Λcde

d
)

0 =
1

2
ηbcΛdeΛ̄

f
c∂dηabe

eff +
1

2
Λ̄fcΛ

b
e∂
cηabe

eff

−ηacρ̃c d
b Λ̄fdΛ

b
ee
eff + W̃ cΛ̄fcηabΛ

b
ee
eff

−S̃ b
a cΛ̄

f
bΛ

c
ee
eff −

1

2
Λ̄caη

bf (∂eηcb) eeff −
1

2
Λ̄ca∂

fηcee
eff

+Λ̄caηcdρ
d f
e eeff − Λ̄caW

fηcee
eff + Λ̄caS

f
c ee

eff .

Substituting the known transformations and collecting terms

0 = Λ̄fa

(
Λde∂̃dϕ− ∂eϕ

)
+ Λ̄baηeb

(
Λ̄fc∂̃

cϕ− ∂fϕ
)

−Λ̄fdΛ
b
eηac

(
ρ̃c d
b − Λcgρ

g k
h ΛdkΛ̄

h
b

)
+Λ̄daηde

(
Λ̄fcW̃

c −W f
)
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−Λ̄fbΛ
c
e

(
S̃ b
a c − Λ̄caS

g
c hΛbgΛ̄

h
c

)
,

we have the transformations

ρ̃c d
b = Λcgρ

g k
h ΛdkΛ̄

h
b,

W̃ c = ΛcfW
f ,

S̃ b
a c = Λ̄caS

g
c hΛbgΛ̄

h
c.

Summary of Lorentz transformations

Summarizing, we have the connection transformations

σ̃ab = ΛaeΛ̄
d
bσ

e
d − Λ̄dbd(x)Λ

a
d,

γ̃ba = ΛbcΛ̄
d
aγ

c
d − Λ̄cad(y)Λ

b
c,

and tensors,

T̃ abc = ΛafT
f
deΛ̄

d
bΛ̄

e
c, (B.1)

µ̃abc = µdefΛadΛ̄
e
bΛ̄

f
c, (B.2)

W̃c = Λ̄bcWb, (B.3)

T̃ ab c = T cd eΛ
a
cΛ

b
dΛ̄

e
c, (B.4)

ρ̃c d
b = Λcgρ

g k
h ΛdkΛ̄

h
b, (B.5)

W̃ c = ΛcfW
f , (B.6)

S̃ bc
a = Λ̄faS

de
f ΛbdΛ

c
e, (B.7)

S̃ b
a c = Λ̄caS

g
c hΛbgΛ̄

h
c. (B.8)
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B.3. Dilatations

Conformal change of basis

Now consider a dilatation. Once again, start with the basis equations

dea = ebΘac
dbτ

d
c +

1

2
ηcbdη

aceb +
1

2
Dηaefe + Ta

d(x)e
a + d(y)e

a = eb (σab + γab) +
1

2
ηcb
(
d(x)η

ac + d(y)η
ac
)
eb

+
1

2

(
d(x)η

ab + 2ηacµbc − 2Wce
cηab

)
fb

+T ab cfbe
c +

1

2
T abce

bec,

dfa = Θbc
daτ

d
cfb +

1

2
ηbcdηabfc −

1

2
Dηace

c + Sa

d(x)fa + d(y)fa =
(
σba + γba

)
fb +

1

2
ηbc
(
d(x)ηab + d(y)ηab

)
fc

−1

2

(
d(y)ηab − 2ηacρ

c
b + 2W cfcηab

)
eb

+S b
a cfbe

c +
1

2
S bc
a fbfc,

and let the new basis forms be

ẽa = eφea,

f̃a = e−φfa;

and therefore,

η̃ab =
〈
ẽa, ẽb

〉
= e2φ

〈
ea, eb

〉
= e2φηab,

η̃ab = e−2φηab,

W̃µ = Wµ + ∂µφ,

W̃a = ẽ µ
a (Wµ + ∂µφ)

= e−φe µ
a (Wµ + ∂µφ)
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= e−φ (Wa + ∂aφ) ,

W̃µ = Wµ + ∂µφ,

W̃ a = ẽ a
µ (Wµ + ∂µφ)

= eφ (W a + ∂aφ) .

Dilatation of the solder form structure equation

The transformed configuration equation becomes

d(x)

(
eφea

)
+ d(y)

(
eφea

)
=

(
eφeb

)
(σ̃ab + γ̃ab)

+
1

2
ηcbe

−2φ
(
d(x)

(
e2φηac

)
+ d(y)

(
e2φηac

))
eφeb

+
1

2
d(x)

(
e2φηab

)
e−φfb + e2φηacµ̃bce

−φfb

−W̃ce
3φecηabe−φfb + T̃ ab cfbe

c +
1

2
T̃ abce

2φebec

0 = eφebσ̃ab + eφebγ̃ab

+ηcbe
φd(x)φη

aceb +
1

2
ηcbe

φd(x)η
aceb

+eφδabd(y)φeb +
1

2
ηcbe

φd(y)η
aceb

+eφηabd(x)φfb +
1

2
eφd(x)η

abfb + eφηacµ̃bcfb

− (Wc + ∂cφ) eφηabecfb + T̃ ab cfbe
c

+
1

2
T̃ abce

2φebec

−eφd(x)φea − eφd(y)φea

−eφebσab − eφebγab

−1

2
eφηcbd(x)η

aceb − 1

2
eφηcbd(y)η

aceb

−1

2
eφd(x)η

abfb − eφηacµbcfb + eφWce
cηabfb

−eφT ab cfbec − eφ
1

2
T abce

bec,

so

0 = eφeb (σ̃ab − σab)
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+eφηac
(
µ̃bc − µbc

)
fb + eφ

(
ebγ̃ab − ebγab

)
+
(
T̃ ab c − eφT ab c

)
fbe

c +
1

2
e2φ
(
T̃ abc − e−φT abc

)
ebec;

and therefore,

σ̃ab = σab,

µ̃bc = µbc,

γ̃ab = γab,

T̃ ab c = eφT ab c,

T̃ abc = e−φT abc.

Dilatations of the cosolder structure equation

The cosolder equation,

d(x)fa + d(y)fa =
(
σba + γba

)
fb +

1

2
ηbc
(
d(x)ηab + d(y)ηab

)
fc

−1

2

(
d(y)ηab − 2ηacρ

c
b + 2W cfcηab

)
eb

+S b
a cfbe

c +
1

2
S bc
a fbfc,

transforms into

d(x)

(
e−φfa

)
+ d(y)

(
e−φfa

)
=

(
σ̃ba + γ̃ba

)
e−φfb

+
1

2
e2φηbc

(
d(x)

(
e−2φηab

))
e−φfc

+
1

2
e2φηbc

(
d(y)

(
e−2φηab

))
e−φfc

−1

2

(
d(y)

(
e−2φηab

)
− 2

(
e−2φηac

)
ρ̃cb

)
eφeb

−1

2

(
2eφ (W c + ∂cφ) e−φfc

(
e−2φηab

))
eφeb

+S̃ b
a cfbe

c +
1

2
e−2φS̃ bc

a fbfc

0 = σ̃bae
−φfb + γ̃bae

−φfb − e−φd(x)φfa
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+
1

2
e−φηbcd(x)ηabfc − e−φd(y)φfa

+
1

2
e−φηbcd(y)ηabfc + e−φd(x)φfa

−e−φd(x)fa + e−φd(y)φfa − e−φd(y)fa

+e−φηabd(y)φeb − 1

2
e−φd(y)ηabe

b

+e−φηacρ̃
c
be
b

−e−φηabW cfce
b − e−φηab∂cφfce

b

+S̃ b
a cfbe

c +
1

2
e−2φS̃ bc

a fbfc,

so

0 = σ̃bae
−φfb − e−φσbafb + γ̃bae

−φfb − e−φγbafb

+e−φηacρ̃
c
be
b − e−φηacρcbeb

+S̃ b
a cfbe

c − e−φS b
a cfbe

c +
1

2
e−2φS̃ bc

a fbfc −
1

2
e−φS bc

a fbfc;

and therefore,

σ̃ba = σba,

γ̃ba = γba,

ρ̃cb = ρcb,

S̃ b
a c = e−φS b

a c,

S̃ bc
a = eφS bc

a .

We conclude the only nontensors are σba and γba under Lorentz transformations, and Wa

and W a under dilatations.
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Appendix C

Homogeneous biconformal solution in the orthonormal basis

C.1. Making the known solution block diagonal

Orthogonal Lagrangian basis

We have the known solution

ωαβ = 2∆αµ
νβ sµdw

ν ,

ωα = dwα,

ωα = dsα +
1

2

(
δαβs

2 − sαsβ
)
dwβ

= dsα +
1

2
kαβdw

β,

ω = −sβdwβ.

Suppose we find linear combinations of these κβ,λα that make the metric block diagonal, with

λα = 0 and κβ = 0 giving Lagrangian submanifolds. Then any further transformation,

κ̃α = Aαβκ
β,

λ̃α = Bβ
αλβ,

leaves these submanifolds unchanged and is therefore equivalent. Now suppose one of the linear

combinations is

λ̃α = αAβαdsβ + βC̃αµdw
µ

= Aβααdsβ + βAβαCβµdw
µ

= Aβα (αdsβ + βCβµdw
µ) ,

where the constants are required to keep the transformation nondegenerate. Then

λα = αdsα + βCαβdw
β
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spans the same subspace. A similar argument holds for κ̃β, so if we can find a basis at all, there

is also one of the form

λα = αdsα + βCαβdw
β,

κα = µdwα + νBαβdsβ.

Now check the symplectic condition,

καλα =
(
µdwα + νBαβdsβ

)
(αdsα + βCαµdw

µ)

= αµdwαdsα + µβCαµdw
αdwµ + ναBαβdsβdsα + νβCαµB

αβdsβdw
µ.

To have καλα = dwαdsα, Bαβ and Cαβ must be symmetric and

αµ1− νβBtC = 1,

B = Bt =
αµ− 1

νβ
C−1 ≡ αβC̄.

We then have

λα = αdsα + βCαβdw
β,

κα = µdwα +
αµ− 1

β
C̄αβdsβ.

Now look at the inner products. We know

 〈dwα,dwβ〉 〈dwα,dsβ〉〈
dsα,dw

β
〉
〈dsα,dsβ〉

 ≡

 0 δαβ

δβα −kαβ

 ,
so

0 = 〈κα,λβ〉

=

〈
µdwα +

αµ− 1

β
C̄αµdsµ, αdsβ + βCβνdw

ν

〉
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= 〈µdwα, αdsβ〉+

〈
αµ− 1

β
C̄αµdsµ, αdsβ

〉
+

〈
αµ− 1

β
C̄αµdsµ, βCβνdw

ν

〉
= µαδαβ −

1

β
α (αµ− 1) C̄αµkµβ + (αµ− 1) C̄αµCβµ

= (2αµ− 1) δαβ −
1

β
α (αµ− 1) C̄αµkµβ

(2αµ− 1) δαβ =
1

β
α (αµ− 1) C̄αµkµβ

Cνβ =
α (αµ− 1)

β (2αµ− 1)
kνβ

C̄αβ =
β (2αµ− 1)

α (αµ− 1)
kαβ.

Therefore, if the required basis exists, then there is an equivalent one of the form

λα = αdsα +
α (αµ− 1)

(2αµ− 1)
kαβdw

β,

κα = µdwα +
2αµ− 1

α
kαβdsβ.

The metric

The metric on the submanifolds, in the given coordinates, now follows from the remaining

inner products,

〈
κα,κβ

〉
=

〈
µdwα +

2αµ− 1

α
kαµdsµ, µdwβ +

2αµ− 1

α
kβνdsν

〉
=

〈
µdwα,

2αµ− 1

α
kβνdsν

〉
+

〈
2αµ− 1

α
kαµdsµ, µdwβ

〉
+

〈
2αµ− 1

α
kαµdsµ,

2αµ− 1

α
kβνdsν

〉
= 2µ

2αµ− 1

α
kαβ − kµν

(
2αµ− 1

α

)2

kαµkβν

=
2αµ− 1

α2
kαβ,
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and

〈λα,λβ〉 =

〈
αdsα +

α (αµ− 1)

(2αµ− 1)
kαµdw

µ, αdsβ +
α (αµ− 1)

(2αµ− 1)
kβνdw

ν

〉
= 〈αdsα, αdsβ〉+

〈
αdsα,

α (αµ− 1)

(2αµ− 1)
kβνdw

ν

〉
+

〈
α (αµ− 1)

(2αµ− 1)
kαµdw

µ, αdsβ

〉
= −α2kαβ +

α2 (αµ− 1)

(2αµ− 1)
kβα +

α2 (αµ− 1)

(2αµ− 1)
kαβ

= − α2

2αµ− 1
kαβ.

This shows the metric on the Lagrangian submanifolds is proportional to kαβ, and we normalize

with

2αµ− 1

α2
= k ≡ ±1

2αµ− 1 = α2k

µ =
1 + kα2

2α
.

Therefore, we have a block diagonalization of the form

κα =
k

2α

((
α2 + k

)
dwα + 2α2kαβdsβ

)
,

λα =
1

2α

(
2α2dsα +

(
α2 − k

)
kαβdw

β
)
.

Let α = kβ,

κα =
k

2β

((
kβ2 + 1

)
dwα + 2kβ2kαβdsβ

)
,

λα =
1

2β

(
2kβ2dsα +

(
kβ2 − 1

)
kαβdw

β
)
.

Now that we have established the metric

kαβ = s2
(
δαβ −

2

s2
sαsβ

)
,



111

where δαβ is the Euclidean metric and s2 = δαβsαsβ > 0, and have found one basis for the

submanifolds, we may form the orthonormal basis for each. Since the metrics are inverse, the

coefficient matrices will be inverse as well,

ea =
k

2β
h aα

((
1 + kβ2

)
dwα + 2kβ2kαβdsβ

)
,

fa =
1

2β
h αa

(
2kβ2dsα −

(
1− kβ2

)
kαβdw

β
)
.

This is a one-parameter class of allowed bases, and determining the orthonormal metric,

ηab = h αa h
β
b kαβ

= h αa h
β
b s

2

(
δαβ −

2

s2
sαsβ

)
,

which is clearly Lorentzian.

It is convenient to define

δab ≡ h αa h
β
b δαβ

sa ≡ h αa sα.

We check the inner product of the orthonormal basis. The symplectic form is

eafa =
k

2β
h aα

((
1 + kβ2

)
dwα + 2kβ2kαβdsβ

) 1

2β
h βa
(
2kβ2dsβ −

(
1− kβ2

)
kβµdw

µ
)

=
k

4β2

((
1 + kβ2

)
2kβ2dwαdsα + 2kβ2

(
1− kβ2

)
dwβdsβ

)
=

2kβ2k

4β2
(
1 + kβ2 + 1− kβ2

)
dwαdsα

= dwαdsα,

and the inner products are

〈
ea, eb

〉
=

1

4β2
h aα h

b
β

(〈(
1 + kβ2

)
dwα, 2kβ2kβνdsν

〉
+
〈

2kβ2kαµdsµ,
(
1 + kβ2

)
dwβ

〉)



112

+
1

4β2
h aα h

b
β

(〈
2kβ2kαµdsµ, 2kβ

2kβνdsν

〉)
=

1

4β2
h aα h

b
β

(
2kβ2

(
1 + kβ2

)
kβα +

(
1 + kβ2

)
2kβ2kαβ − 2kβ2kαµkµν2kβ2kβν

)
=

1

4β2
h aα h

b
β

(
2kβ2

(
1 + kβ2

)
+ 2kβ2

(
1 + kβ2

)
− 4β4

)
kαβ

=
1

4β2
h aα h

b
β

(
2kβ2 + 2kβ2

)
kαβ

= kh aα h
b
β k

αβ

= kηab,

〈ea, fb〉 =
k

4β2
h aα h

β
b

(
2kβ2

(
1 + kβ2

)
δαβ − 4β4δαβ − 2kβ2

(
1− kβ2

)
δαβ
)

=
1

2

(
1 + kβ2 − 2kβ2 − 1 + kβ2

)
δab

= 0,

〈fa, fb〉 =
1

4β2
h αa h

β
b

〈
2kβ2dsα −

(
1− kβ2

)
kαβdw

β, 2kβ2dsβ −
(
1− kβ2

)
kβνdw

ν
〉

=
2kβ2

4β2
h αa h

β
b

(
−2kβ2 −

(
1− kβ2

)
−
(
1− kβ2

))
kαβ

=
2kβ2

4β2
h αa h

β
b (−2) kαβ

= −kh αa h
β
b kαβ

= −kηab,

as expected.

Inverting for the coordinate differentials

We solve for the coordinate differentials in terms of ea, fb. Compute the linear combination

ea + ληabfb =
k

2β
h aα

((
1 + kβ2

)
dwα + 2kβ2kαβdsβ

)
+ηab

λ

2β
h αb

(
2kβ2dsα −

(
1− kβ2

)
kαβdw

β
)

=
1

2β

((
k + β2

)
h aβ − λ

(
1− kβ2

)
ηabh αb kαβ

)
dwβ

+βh aα

(
kαβ + kλkαβ

)
dsβ,
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so with λ = −k,

ea − kηabfb =
1

2β

((
k + β2

)
h aβ + k

(
1− kβ2

)
h aµ η

cbh µc h
α
b kαβ

)
dwβ

=
1

2β

(
k + β2 + k − β2

)
h aβ dwβ

=
k

β
h aβ dwβ.

To solve for dsα, we use this in fa,

fa =
1

2β
h αa

(
2kβ2dsα −

(
1− kβ2

)
kαβdw

β
)

=
1

2β
h αa

(
2kβ2dsα −

(
1− kβ2

)
kαβkβh

β
b

(
eb − kηbcfc

))
= kβh αa dsα −

(
1− kβ2

) 1

2

(
kηabe

b − fa

)
kβh αa dsα = fa +

1

2

(
1− kβ2

)
kηabe

b − 1

2

(
1− kβ2

)
fa

=
1

2

(
1 + kβ2

)
fa +

1

2

(
1− kβ2

)
kηabe

b

dsα =
k

2β

(
1 + kβ2

)
h aα fa +

1

2β

(
1− kβ2

)
h aα ηabe

b.

Then, we have

dwα = kβh αa

(
ea − kηabfb

)
,

dsα =
1

2β
h aα

(
k
(
1 + kβ2

)
fa +

(
1− kβ2

)
ηabe

b
)
.

Finally, we check that these are independent. If they were not, linear dependence implies

the existence of κ such that

kβα
(
k

2β

(
1 + kβ2

)
h aα fa +

1

2β

(
1− kβ2

)
h aα ηabe

b

)
= κkβh βa

(
ea − kηabfb

)
k

2β

(
1 + kβ2

)
ηabfa +

1

2β

(
1− kβ2

)
eb = κkβ

(
eb − kηbcfc

)
(
k + β2

)
ηabfa +

(
1− kβ2

)
eb = 2κkβ2

(
eb − kηbcfc

)
k + β2

1− kβ2
ηabfa + eb =

2κkβ2

(1− kβ2)

(
eb − kηbcfc

)
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k + β2

1− kβ2
+

2kβ2

(1− kβ2)
κk

)
ηabfa +

(
1− 2kβ2

(1− kβ2)
κ

)
eb = 0.

Linear dependence requires both coefficients to vanish,

κ =
1− kβ2

2kβ2
,

κ = −1 + kβ2

2kβ2
,

which is impossible. The orthonormal basis is therefore linearly independent, as required.

C.2. The spin connection

The entire spin connection is defined as

τ ab ≡ h aαω
α
βh

β
b − h

α
b dh aα ,

with antisymmetric and symmetric parts αab ≡ Θad
cb τ

c
d and βab ≡ Ξadcb τ

c
d. Each of these, as

well as the Weyl vector, further subdivides between the ea and fa subspaces,

αab ≡ σab + γab = σabce
c + γa cb fc,

βab ≡ µab + ρab = µabce
c + ρa cb fc,

ω ≡ Wae
a +W afa.

All quantities may be written in terms of the new basis. We will make use of sa ≡ h αa sα and

δab ≡ h αa h
β
b δαβ. In terms of these, we easily find

ηab = s2
(
δab −

2

s2
sasb

)
,

ηab =
1

s2

(
δab − 2

s2
δacδbdscsd

)
,

δab =
1

s2
(ηab + 2sasb) ,

δab = s2ηab +
2

s2
δacδbdscsd
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= s2
(
ηab + 2ηacscη

adsd

)
.

The basis change from the known solution to a solution in terms of an orthonormal basis on

Lagrangian submanifolds is

dwβ = kβh βa

(
ea − kηabfb

)
,

dsα =
1

2β
h aα

((
1− kβ2

)
ηabe

b + k
(
1 + kβ2

)
fa

)
,

where the solution for the spin connection and Weyl form is

ωαβ = 2∆αµ
νβ sµdw

ν ,

ω = −sαdwα.

These immediately become

ωab = 2∆ac
dbsckβ

(
ed − kηdefe

)
,

ω = −βsakea + ηabβsafb,

and we easily expand the projection ∆ac
db in terms of the new metric. Substituting to find τ ab

results in

τ ab = 2∆ac
dbsckβ

(
ed − kηdefe

)
− h αb dh aα

= (δadδ
c
b − δacδdb) sckβ

(
ed − kηdefe

)
− h αb dh aα

=

(
δadδ

c
b − s2

(
ηac + 2ηafsfη

cgsg

)( 1

s2
(ηbd + 2sbsd)

))
sckβ

(
ed − kηdefe

)
−h αb dh aα

=
(

2Θac
db − 2ηacsbsd − 2ηafsfη

cgsgηbd − 4ηafsfη
cgsgsbsd

)
sckβ

(
ed − kηdefe

)
−h αb dh aα

= β
(

2Θac
dbsc + 2ηafsfηbd + 2ηacsbscsd

)
ked − h αb dh aα
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−β
(

2Θac
dbsc + 2ηafηbdsf + 2ηacsbscsd

)
ηdefe,

so

τ ab = β (2Θac
dbsc + 2ηaeηbdse + 2ηaesesbsd)

(
ked − ηdgfg

)
− h αb dh aα .

Antisymmetric projection

The antisymmetric part is then

αab ≡ Θad
cb τ

c
d

= Θad
cb (β (2Θcm

nd sm + 2ηceηdnse + 2ηcesesdsn) (ken − ηngfg)− h αd dh cα)

= β
(

2Θam
nb sm +

(
δac δ

d
b − ηadηbc

)
ηceηdnse +

(
δac δ

d
b − ηadηbc

)
ηcesesdsn

)
(ken)

−β
(

2Θam
nb sm +

(
δac δ

d
b − ηadηbc

)
ηceηdnse +

(
δac δ

d
b − ηadηbc

)
ηcesesdsn

)
(ηngfg)

−Θad
cb h

α
d dh cα

= β
(
δansb − ηamηbnsm + ηbnη

aese − δansb + ηaesesbsn − ηadηbcηcesesdsn
)

(ken)

−β
(
δansb − ηamηbnsm + ηbnη

aese − δansb + ηaesesbsn − ηadηbcηcesesdsn
)

(ηngfg)

−Θad
cb h

α
d dh cα

= −Θad
cb h

α
d dh cα ,

with the remaining terms cancelling identically. Furthermore, since h cα is a purely sα-dependent

rotation at each point, the remaining h αd dh cα term will be of the form

h αd dh cα =

(
h αd

∂

∂sβ
h cα

)
dsβ

=

(
h αd

∂

∂sβ
h cα

)
1

2β
h aβ

((
1− kβ2

)
ηabe

b +
(
k + β2

)
fa

)
,

giving the parts of αab as

σab = −1− kβ2

2β
Θad
cb

(
h αb

∂

∂sβ
h aα

)
h cβ ηcde

d, (C.1)
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γab = −k + β2

2β
Θad
cb

(
h αb

∂

∂sβ
h aα

)
h cβ fc. (C.2)

Notice we may make one or the other of these, but not both, equal to zero by choosing β2 = 1

and either sign for k.

Symmetric projection

Continuing, we are particularly interested in the symmetric pieces of the connection since

they constitute a new feature of the theory. Applying the symmetric projection to τ ab, we expand

βab ≡ Ξadcb τ
c
d

= βΞadcb (2Θcm
nd sm + 2ηceηdnse + 2ηcesesdsn) (ken − ηngfg)− Ξadcb h

α
d dh cα

= β
((
δac δ

d
b + ηadηbc

)
ηceηdnse +

(
δac δ

d
b + ηadηbc

)
ηcesesdsn

)
(ken − ηngfg)

−Ξadcb h
α
d dh cα

= β
(
ηaeηbnse + δansb + ηaesesbsn + ηadηbcη

cesesdsn

)
(ken − ηngfg)− Ξadcb h

α
d dh cα

= β (ηacηbdsc + δadsb + 2ηacsbscsd)
(
ked − ηdefe

)
− Ξadcb h

α
d dh cα .

We need to express the symmetric part, Ξadcb h
α
d dh cα , in terms of the metric. First we can show

kαµdkµβ = kαµd
(
h aµ h

b
β ηab

)
= h αc h

µ
d η

cd
(
dh aµ h

b
β ηab + h aµ dh bβ ηab

)
= h αc h

µ
d h

b
β η

cdηabdh
a
µ + h αb dh bβ

= h αc h
b
β η

cdηab
(
h µd dh aµ

)
+ h αb h

c
β

(
h µc dh bµ

)
= h αc h

b
β η

cdηab
(
h µd dh aµ

)
+ h αb h

c
β δ

d
c δ
b
a

(
h µd dh aµ

)
= h αc h

b
β

(
ηcdηab + δdb δ

c
a

) (
h µd dh aµ

)
= 2h αc h

b
βΞcdab

(
h µd dh aµ

)
.
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Therefore,

Ξadcb
(
h µd dh cµ

)
=

1

2
h aα h

β
b k

αµdkµβ

=
1

2
h aα h

β
b k

αµd
(
s2δµβ − 2sµsβ

)
=

1

2
h aα h

β
b

1

s2

(
δαµ − 2

s2
δασsσδ

µλsλ

)
(2δµβδ

νρsρdsν − 2dsµsβ − 2sµdsβ)

= h aα h
β
b

1

s2

(
δαµ − 2

s2
δασsσδ

µλsλ

)(
δµβδ

νρsρ − δνµsβ − δνβsµ
)
dsν

= h aα h
β
b

1

s2

(
δαβ δ

νρsρ −
2

s2
δασδνρsσsβsρ − δανsβ

)
dsν

+h aα h
β
b

1

s2

(
2

s2
δασδνλsσsλsβ − δνβδαµsµ + 2δνβδ

ασsσ

)
dsν

= h aα h
β
b

1

s2
(
δαβ δ

νρsρ − δανsβ + δνβδ
αµsµ

)
dsν

=
1

s2

(
δab δ

cdsd − δacsb + δcbδ
adsd

)
h νc dsν

=
1

2β

1

s2

(
δab δ

cdsd − δacsb + δcbδ
adsd

)((
1− kβ2

)
ηcfe

f + k
(
1 + kβ2

)
fc

)
=

1

2β

1

s2

(
δab s

2
(
ηcd + 2ηceseη

dfsf

)
sd

)((
1− kβ2

)
ηcfe

f
)

− 1

2β

1

s2

(
s2
(
ηac + 2ηceseη

afsf

)
sb

)((
1− kβ2

)
ηcfe

f
)

+
1

2β

1

s2

(
δcbs

2
(
ηad + 2ηaeseη

dfsf

)
sd

)((
1− kβ2

)
ηcfe

f
)

+
1

2β

1

s2

(
δab s

2
(
ηcd + 2ηceseη

dfsf

)
sd

) (
k
(
1 + kβ2

)
fc
)

− 1

2β

1

s2

(
s2
(
ηac + 2ηceseη

afsf

)
sb

) (
+k
(
1 + kβ2

)
fc
)

+
1

2β

1

s2

(
δcbs

2
(
ηad + 2ηaeseη

dfsf

)
sd

) (
k
(
1 + kβ2

)
fc
)

= − 1

2β

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηafηcesbsesf

) (
1− kβ2

)
ηcfe

f

− 1

2β

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηafηcesbsesf

)
k
(
1 + kβ2

)
fc.

Substituting this back into the symmetric part of the spin connection we get

βab = β (ηacηbdsc + δadsb + 2ηacsbscsd)
(
ked − ηdefe

)
− Ξadcb h

α
d dh cα

= kβ (ηacηbdsc + δadsb + 2ηacsbscsd) ed
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+
(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηaeηcdsbsdse

) 1

2β

(
1− kβ2

)
ηcfe

f

−β (ηacηbdsc + δadsb + 2ηacsbscsd) η
defe

+
(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηaeηcdsbsdse

) k

2β

(
1 + kβ2

)
fc

=

(
−kβδab sc +

1

2β

(
1 + kβ2

) (
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec

+

(
βδab η

cdsd +
k

2β

(
1− kβ2

) (
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fc.

Now define the coefficients,

γ± ≡
1

2β

(
1± kβ2

)
,

so

βab =
(
−kβδab sc + γ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec

+
(
βδab η

cdsd + kγ−

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fc.

The independent parts are

µab =
(
−kβδab sc + γ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec,

ρab =
(
βδab η

cdsd + kγ−

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fc.

C.3. Involution conditions

Finally, check the involution conditions,

0 = µabe
b − v(x)e

a,

0 = ρbafb − u(y)fa.

For the first,

0 = µabe
b − v(x)e

a

=
(
−kβδab sc + γ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
eceb + βsbke

bea
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= −kβδab sceceb + βsbke
bea

= −kβscecea + kβsbe
bea

= 0,

while for the second,

0 =
(
βδab η

cdsd + kγ−

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fcfa − ηacβsafcfb

= βηacsafcfb − ηacβsafcfb

= 0.

The involution conditions are identically satisfied for all values of β and both signs.

C.4. Riemannian curvature of the Lagrangian submanifolds

Momentum submanifold

On the ea = 0 Lagrangian submanifold, the Θac
db projection gives

0 =
1

2
Ra cdb fcfd − ρcbρac + kΘac

db∆
df
ecη

egff fg,

0 = d(y)fb − γabfa,

while the symmetric projection is

D(y)ρab = −kΞacdb∆
df
ecη

egff fg,

d(y)u(f) = 0,

where we now have

ρab =
(
βδab η

cdsd + kγ−

(
δab η

cdsd + δcbη
adsd + ηacsb + 2ηadηcesbsdse

))
fc,

u(f) = ηacβsafc,
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γab = −k + β2

2β
Θad
cb

(
h αb

∂

∂sβ
h aα

)
h cβ fc.

Rather than computing Ra cdb directly from γab, which requires the rather complicated local basis

change h aα , we find it using the RHS of the equation,

1

2
Ra cdb fcfd = ρcbρ

a
c − kΘac

db∆
df
ecη

egff fg

=
(
βδcbη

fdsd + kγ−

(
δcbη

fdsd + δfb η
cdsd + ηcfsb + 2ηcdηefsbsdse

))
×
(
βδac η

ghsh + kγ−

(
δac η

ghsh + δgcη
ahsh + ηagsc + 2ηahηkgscshsk

))
ff fg

−1

4
(δadδ

c
b − ηacηdb) ηeg

(
δdeδ

f
c

)
ff fg

+
1

4
(δadδ

c
b − ηacηdb) ηegs2

(
ηdf + 2ηdhshη

fksk

) 1

s2
(ηec + 2scse) ff fg,

where, again

ηab = s2
(
δab −

2

s2
sasb

)
,

ηab =
1

s2

(
δab − 2

s2
δacδbdscsd

)
,

δab =
1

s2
(ηab + 2sasb) ,

δab = s2ηab +
2

s2
δacδbdscsd

= s2
(
ηab + 2ηacscη

adsd

)
.

Then

1

2
Ra cdb fcfd = kβγ−

(
ηacsc

(
δgbη

fdsd + δfb η
gdsd

)
+
(
ηagηfdsd + ηafηgdsd

)
sb

)
ff fg

+γ2−

(
−δfb η

ag − δfb η
gdηahsdsh

)
ff fg

+γ2−

(
ηafηegsbse − ηagηefsbse + ηagηfdsdsb

)
ff fg

+
1

2
k
(
ηafδgb − η

agδfb + ηefδgbη
acscse − ηegδfb η

acscse

)
ff fg

+
1

2
k
(
ηegηafsbse − ηefηagsbse

)
ff fg

= Θag
cb γ

2
−

(
ηcf + 2ηcdηefsdse

)
ff fg
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+Θag
cb k
(
ηfc + 2ηcdηefsdse

)
ff fg

=
1

s2
Θag
cb

(
k + γ2−

)
δcf ff fg,

where the constant is

k + γ2− = k +
1

4β2
(
1− 2kβ2 + β4

)
= k − k

2
+

1

4β2
+

1

4
β2

=
k

2
+

1

4β2
+

1

4
β2.

This may vanish if we have k = −1 and β2 = 1. Let β = eλ so

k + γ2− =
1

4
β2 +

k

2
+

1

4β2

=
e2λ + 2k + e−2λ

4

=

(
eλ + ke−λ

2

)2

=

 cosh2 λ k = 1

sinh2 λ k = −1
.

Curvature of the configuration submanifold

For the configuration space

Ra
b ≡ d(x)σab − σcbσac

= −D(x)µab + µcbµ
a
c + k∆ac

ebηcde
dee,

with antisymmetric and symmetric parts,

Ra
b = µcbµ

a
c + kΘac

db∆
df
ecηfge

gee,

0 = −D(x)µab + kΞacdb∆
df
ecηfge

gee,
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where

µab =
(
−kβδab sc + γ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec.

For the antisymmetric part,

µcbµ
a
c =

(
−kβδebsc + γ+

(
δebsc + δecsb + ηedηbcsd + 2ηedsbscsd

))
×
(
−kβδaesg + γ+

(
δaesg + δagse + ηafηegsf + 2ηafsesgsf

))
eceg

= β2δab scsge
ceg

−kβγ+
(
δab scsg + δagscsb + ηafηbgscsf + 2ηafscsbsgsf

)
eceg

−kβγ+
(
δab sgsc + δac sgsb + ηadηbcsgsd + 2ηadsgsbscsd

)
eceg

+γ2+

(
δebsc + δecsb + ηedηbcsd + 2ηedsbscsd

)
×
(
δaesg + δagse + ηafηegsf + 2ηafsesgsf

)
eceg

= −kβγ+
((
δagsc + δac sg

)
sb + ηad (ηbgsc + ηbcsg) sd

)
eceg

+γ2+

(
δagscsb + ηafηbgscsf + ηadηbcsdsg − δagηbc

)
eceg

+γ2+

(
ηafηbcsgsf − 2ηafηbcsgsf − 2δagsbsc

)
eceg

= γ2+ (−δadηbc − δadsbsc − ηaeηbcsdse) eced

= −γ2+
(

1

2
(δadδ

e
b − ηaeηbd) ηce +

1

2
(δadδ

e
b − ηaeηbd) 2scse

)
eced

= −γ2+Θae
db (ηce + 2scse) eced,

and

kΘac
db∆

df
ecηfge

gee =
1

4
k (δadδ

c
b − ηacηbd)

(
δdeδ

f
c − δecδdf

)
ηfge

gee

= −1

2
k (δadδ

c
b − ηacηbd)

(
δdgηce + δdgsesc + ηdhηceshsg

)
egee

= −k
(

1

2

(
δagδ

c
b − ηacηbg

)
ηce +

1

2

(
δagδ

c
b − ηacηbg

)
2sesc

)
egee

= −kΘac
db (ηce + 2sesc) edee,
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so

Ra
b = µcbµ

a
c + kΘac

db∆
df
ecηfge

gee

=
(
k − γ2+

)
Θae
db (ηec + 2scse) eced

=
(
γ2+ − k

)
s2Θac

dbδcee
dee.

We have

γ+ ≡ 1

2β

(
1 + kβ2

)
(
γ2+ − k

)
s2 =

1

4β2
(
1 + 2kβ2 + β4 − 4β2k

)
s2

=
1

4β2
(
1− 2kβ2 + β4

)
s2,

so with β = eλ,

(
γ2+ − k

)
=

1

4

(
e−2λ − 2k + e2λ

)
=

(
eλ − ke−λ

2

)2

=

 sinh2 λ k = 1

cosh2 λ k = −1
.

Combining the two curvatures, we have

Ra
(x) b =

(
γ2+ − k

)
s2Θac

dbδcee
dee

Rabde =
1

2

(
γ2+ − k

)
s2 (Θac

dbδce −Θac
ebδcd)

=
1

2

(
γ2+ − k

)
s2
(

Θac
db

1

s2
(ηce + 2scse)−Θac

eb

1

s2
(ηcd + 2scsd)

)
=

1

2

(
γ2+ − k

) (
Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηcf + 2scsf ) ,

Ra deb =
1

2

1

s2
(
k + γ2−

) (
Θae
cb δ

cd −Θad
cb δ

ce
)

ηdfηegR
a de
b =

1

2

1

s2
(
k + γ2−

) (
Θae
cb ηdfηegs

2
(
ηcd + 2ηchshη

dksk

))
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−1

2

1

s2
(
k + γ2−

) (
Θad
cb ηdfηegs

2
(
ηce + 2ηchshη

eksk

))
=

1

2

(
k + γ2−

) (
Θae
fb (ηeg + 2sesg)−Θae

gb (ηef + 2sesf )
)

ηdfηegR
a fg
b =

1

2

(
k + γ2−

) (
Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηcf + 2scsf ) .

Therefore,

ηdfηegR
a fg
b −Rabde =

1

2
k
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)
(ηcf + 2scsf ) ,

so the difference of the configuration and momentum curvatures is independent of the linear

combination of basis forms used.

For the Einstein tensors,

ηacηbdR
c de
e −

1

2
ηabR(y) −Rcacb +

1

2
ηabR(x) =

1

2
k (n− 2) (ηab + sasb)−

1

2
ηabk

=
1

2
k ((n− 3) ηab + (n− 2) sasb) .

Symmetric curvature equation and constancy of the scale vector

The symmetric field equation is

0 = −D(x)µab + kΞacdb∆
df
ecηfge

gee.

Computing the second term,

kΞacdb∆
df
ecηfge

gee = kΞacdb∆
df
ecηfge

gee

=
k

4
(δadδ

c
b + ηacηbd)

(
δdeδ

f
c − δdfδec

)
ηfge

gee

=
k

4
δadδ

c
b

(
δdeδ

f
c − s2

(
ηdf + 2ηdgsgη

fhsh

) 1

s2
(ηce + 2sesc)

)
ηfge

gee

+
k

4
ηacηbd

(
δdeδ

f
c − s2

(
ηdf + 2ηdgsgη

fhsh

) 1

s2
(ηce + 2sesc)

)
ηfge

gee

=
k

4
(−2sb (δaesk + δakse)− 2ηacsc (ηbkse + ηbesk)) ekee

= 0.
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Therefore, with d(x)v = 0 and D(x)ηab = 0,

0 = D(x)µab

= D(x)
[(
−kβδab sc + γ+

(
δab sc + δac sb + ηadηbcsd + 2ηadsbscsd

))
ec
]

= −kβδab sc;eeeec

+γ+

(
δab sc;e + δac sb;e + ηadηbcsd;e

)
eeec

+γ+

(
2ηadsb;escsd + 2ηadsbsc;esd + 2ηadsbscsd;e

)
eeec

= γ+

(
δac sb;e + ηadηbcsd;e + 2ηadsb;escsd + 2ηadsbscsd;e

)
eeec,

and we conclude

0 = δac sb;e + ηadηbcsd;e + 2ηadsb;escsd + 2ηadsbscsd;e

−δaesb;c − ηadηbesd;c − 2ηadsb;csesd − 2ηadsbsesd;c.

Contract with sa,

0 = scsb;e + ηbcη
adsasd;e − 2sb;esc + 2sbscsaη

adsd;e

−sesb;c − ηbeηadsasd;c + 2sb;cse − 2saη
adsbsesd;c

= sesb;c − sb;esc + ηbc
1

2

(
ηadsasd

)
;e

+sbsc

(
ηadsasd

)
;e
− ηbeηadsasd;c − sbse

(
saη

adsd

)
;c

= sesb;c − sb;esc,

and then with ηaesa,

0 = ηaesasesb;c − ηaesasb;esc

= −sb;c − ηaesasb;esc.
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But sa;b − sb;a = 0, so the second term becomes

ηaesasb;esc = ηaesase;bsc

=
1

2
(ηaesase);b sc

= 0

so we have

sa;b = 0.

C.5. Components of the solder form

We are interested in the nature of the coefficients of the solder form, h αa , which turn the

coordinate basis into the orthonormal one,

ηab = h αa h
β
b kαβ

= h αa h
β
b s

2

(
δαβ −

2

s2
sαsβ

)
.

Let h̃ αa ≡
√
s2h αa to remove the conformal factor. Recalling δαβ is the Euclidean met-

ric, diag (+1,+1, . . . ,+1), we see that on orthogonal transformation will preserve δαβ, while

rotating the vector, sα. At any fixed point, s0α, let h̃ αa be the orthogonal transformation

h̃ αa = O α
a

(
s0α, x

)
that takes s0α to some fixed direction, say x = s1. In this rotated system,

sα =
(√

s2, 0, . . . , 0
)

, so

h αa h
β
b s

2

(
δαβ −

2

s2
sαsβ

)
= O α

a

(
s0α, x

)
O β
b

(
s0α, x

)(
δαβ −

2

s2
sαsβ

)
= O α

a

(
s0α, x

)
δαβO

β
b

(
s0α, x

)
− 2

s2
O α
a

(
s0α, x

)
sαO

β
b

(
s0α, x

)
sβ

= δab −
2

s2
s2δa1δb1

=



−1

1

1

1


.
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Therefore, the required transformation at every point is just

h αa =
1√
s2
O α
a (sα, x) .

The explicit form of such a rotation is written as follows. Let nα = (1, 0, . . . , 0) be the

unit vector in the chosen direction. We want to rotate in the (nα, sβ) plane. We need a unit

vector which, together with n, spans this plane. Let

m =
sα −

(
sβn

β
)
nα√

(sµ − (sβnβ)nµ) (sµ − (sβnβ)nµ)

=
sα −

(
sβn

β
)
nα√

sµsµ − (sβnβ)nµsµ − (sβnβ)nµsµ + (sβnβ) (sβnβ)

=
s−

(
sβn

β
)
n√

s2 − (sβnβ)
2
.

Now, for a general vector x, decompose so x is the sum of

xn = (x · n) n,

xm = (x ·m) m,

x⊥ = x− (x · n) n− (x ·m) m.

The new x is given by

x̃⊥ = x⊥,

x̃n = xn cos θ − xm sin θ,

x̃m = xn sin θ + xm cos θ,

where the angle of rotation is given by cos θ = (s·n)√
s2

, sin θ = +

√
1− (s·n)2

s2
.

Now expand this out to find the transformation

x̃⊥ = x− (x · n) n− (x ·m) m,
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x̃2
⊥ = x · x− (x · n)2 − (x ·m)2 ,

x̃n = (x · n) n cos θ − (x · n) m sin θ,

x̃m = (x ·m) n sin θ + (x ·m) m cos θ.

Then

x̃ = x− (x · n) n− (x ·m) m + (x · n) n cos θ

− (x · n) m sin θ + (x ·m) n sin θ + (x ·m) m cos θ

= x− n ((x · n)− (x · n) cos θ − (x ·m) sin θ)

−m ((x ·m) + (x · n) sin θ − (x ·m) cos θ) ,

x̃α =
(
δαβ − (1− cos θ)nαnβ + nαmβ sin θ −mαnβ sin θ − (1− cos θ)mαmβ

)
xβ.

Check the norm of x,

x̃ · x̃ = x · x− (x · n)2 (1− cos θ) + (x · n) (x ·m) sin θ

− (x ·m)2 (1− cos θ)− (x ·m) (x · n) sin θ

− (x · n)2 (1− cos θ) + (x · n) (x ·m) sin θ

+ ((x · n) (1− cos θ)− (x ·m) sin θ) ((x · n) (1− cos θ)− (x ·m) sin θ)

− (x ·m)2 − (x · n) (m · x) sin θ + (x ·m)2 cos θ

+ ((x ·m) (1− cos θ) + (x · n) sin θ) ((x ·m) (1− cos θ) + (x · n) sin θ)

= x · x

− (x · n)2
(

(1− cos θ) + (1− cos θ)− (1− cos θ)2 − sin2 θ
)

+ (x · n) (x ·m) (sin θ − sin θ + sin θ − sin θ − (1− cos θ) sin θ)

+ (x · n) (x ·m) ((1− cos θ) sin θ − (1− cos θ) sin θ + sin θ (1− cos θ))

− (x ·m)2
(

1− cos θ − sin2 θ + 1− cos θ − (1− cos θ)2
)

= x · x

− (x · n)2
(
2− 2 cos θ − 1 + 2 cos θ − cos2 θ − sin2 θ

)
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+ (x · n) (x ·m) (sin θ − sin θ + cos θ sin θ − sin θ + cos θ sin θ)

− (x · n) (x ·m) (sin θ − sin θ + cos θ sin θ − sin θ + cos θ sin θ)

− (x ·m)2
(
1− sin2 θ − cos θ − cos θ + 2 cos θ − cos2 θ

)
= x · x,

so

x̃ · x̃ = x · x

and the transformation is a rotation.

Therefore,

h aβ =
1√
s2
δaα
(
δαβ − (1− cos θ)nαnβ

)
+

1√
s2
δaα (nαmβ sin θ −mαnβ sin θ − (1− cos θ)mαmβ) ,

where

nα = (1, 0, . . . , 0) ,

m =
s−

(
sβn

β
)
n√

s2 − (sβnβ)
2
,

and

cos θ =
(s · n)√
s2

,

sin θ = +

√
1− (s · n)2

s2
.
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Appendix D

Christoffel symbol

We define Christoffel symbols (connections) as the symmetric part of the submanifold basis

structure equations. For the biconformal submanifolds in the Lagrangian basis they are

e µc ∂be
a
µ + σacb + δba∂cφ− Γ̃acb = 0,

f c
µ ∂

bf µ
a − γc ba − δca∂bφ+ Γ̃c ba = 0.

In the orthonormal gauge, we have

e µc ∂be
a
µ + σacb − Γ̃acb = 0,

f c
µ ∂

bf µ
a − γc ba + Γ̃c ba = 0.

This gives the following relationship between the Christoffel symbols and the submanifold torsion

and cotorsion,

Γ̃abc − Γ̃acb ≡ −T abc,

Γ̃b ca − Γ̃c ba ≡ S bc
a .

In a coordinate basis, we can solve for the connection

Γ̃σβν = Γσβν +
1

2

(
T σνβ + gγσgναT

α
γβ + gγσgβαT

α
γν

)
,

Γ̃β γσ = Γβ γσ −
1

2

(
S γβ
σ + gνσg

βαS γν
α + gνσg

γαS βν
α

)
,

where the untilded Christoffel symbols are defined normally (as in a Riemannian geometry), with

respect to the coordinate metric,

Γσβν ≡ 1

2
gγσ (∂βgνγ + ∂νgγβ − ∂γgβν) ,

Γβ γσ ≡ −1

2
gνσ

(
∂βgγν + ∂γgνβ − ∂νgβγ

)
.
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Appendix E

Extrinsic curvature of Riemannian submanifolds

E.1. Metric relation

Consider an n-dimensional Ck Riemannian manifold M with metric

ds2 = gαβdX
αdXβ.

For m < n, consider an m-dimensional Ck Riemannian manifold N with metric

dl2 = hijdx
idxj ,

which is isometrically immersed in M as a submanifold. This is defined by requiring the length

of any curve in N , evaluated using dl, should be equal to the length of the same curve evaluated

using ds of the ambient space. Thus, for any infinitesimal displacement in N , the differentials

dxi and dXα are related by

gαβdX
αdXβ = hijdx

idxj .

For points in N there are two ways to specify charts. Since N is a manifold, we may always

introduce coordinate charts, xi, in the usual way. On the other hand, since N is embedded in

M we have the restriction of the coordinates Xα to N . Concretely, if φ : U → Rn is any chart

on an open set U in M intersecting V ⊂ N , and χ : V → Rm any chart on a set V open in

N , then

φ ◦ χ−1 : Rm → Rn

is a 1 to 1 mapping from Rm into Rn via the neighborhood U∩V , i.e., a collection of real-valued

functions

Xα|N = fα
(
xi
)
,
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where i = 1, . . . ,m < n define a submanifold N ⊂M. These functions, fα, are regular and of

class Ck, and the rank of

∂fα

dxi

is equal to m. Denote this restriction of the coordinates Xα by Xα
N .

The length of any curve in N is given by the restriction of gαβ to N ; we say the metric on

N is induced by the metric of the ambient space M.

Since

dXα
N =

∂fα

∂xi
dxi,

we have

gαβ
∂fα

∂xi
∂fα

∂xm
= hij .

Since the fα are functions on M, these derivatives are covariant,

∂fα

∂xi
= Dif

α,

and we may write

gαβf
α
,if

β
,j = hij .

E.2. Curves

Now consider a curve C : R→ N in the submanifold, with coordinates xi (λ). This curve

has tangent vectors

dxi

dλ

∂

∂xi

and hence, components

ψi =
dxi

dλ
.

This is also a curve in M, with

Xα (λ) = fα
(
xi (λ)

)
,
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and its tangent vectors are tangent to N . We have

ξα =
dXα

dλ

=
∂fα

∂xi
dxi

dλ

= fα,iψ
i.

Choose m such curves, such that their tangent vectors, ψi(σ), form an orthonormal basis,

hijψ
i
(σ)ψ

j
(τ) = δστ ,

and choose adapted coordinates such that ψi(s) = δis. Then, in terms of the full manifold, the

vectors ξα(s) = fα,iψ
i
(s) = fα,s, s = 1, . . . ,m span the tangent space of the submanifold. We may

also fix an orthonormal set of vectors orthogonal to these, ζα(A), A = 1, . . . , n−m. Then

gαβζ
α
(A)ζ

β
(B) = δAB,

gαβξ
α
(s)ζ

β
(B) = 0.

E.3. Second fundamental form

Now return to the relation between the metrics,

gαβf
α
,if

β
,j = hij ,

and differentiate using the covariant derivative of the submanifold,

0 = Dkhij

= Dk

(
gαβf

α
,if

β
,j

)
= Dk

(
gαβξ

α
(i)ξ

β
(j)

)
=

(
ξµ(k)Dµ

)(
gαβξ

α
(i)ξ

β
(j)

)
= ξµ(k)gαβ

(
Dµξ

α
(i)ξ

β
(j) + ξα(i)Dµξ

β
(j)

)
.
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Taking the sum-sum-difference,

0 = ξµ(k)gαβ

(
Dµξ

α
(i)ξ

β
(j) + ξα(i)Dµξ

β
(j)

)
+ ξµ(i)gαβ

(
Dµξ

α
(j)ξ

β
(k) + ξα(j)Dµξ

β
(k)

)
−ξµ(j)gαβ

(
Dµξ

α
(k)ξ

β
(i) + ξα(k)Dµξ

β
(i)

)
= ξβ(j)ξ

µ
(k)gαβDµξ

α
(i) + ξα(i)ξ

µ
(k)gαβDµξ

β
(j) + ξµ(i)ξ

β
(k)gαβDµξ

α
(j)

+ξα(j)ξ
µ
(i)gαβDµξ

β
(k) − ξ

µ
(j)ξ

β
(i)gαβDµξ

α
(k) − ξ

α
(k)ξ

µ
(j)gαβDµξ

β
(i)

= 2ξα(i)ξ
µ
(k)gαβDµξ

β
(j).

Then

gαβξ
α
(i)

(
ξµ(k)Dµξ

β
(j)

)
= 0

shows the vector ξµ(k)Dµξ
β
(j) is orthogonal to the submanifold. Expanding in terms of the

complementary basis, this shows

ξµ(k)Dµξ
β
(j) =

n−m∑
A=1

LAkjζ
α
(A).

The tensor LAij is the second fundamental form, or extrinsic curvature, of the submanifold.

E.4. Adapted coordinates

Now introduce adapted coordinates,

Xα =
(
xi, yA

)
,

such that

ds2 = gαβdX
αdXβ

= gABdy
AdyB + hijdx

idxj .
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In these coordinates, the specification of the submanifold is simply yA = 0, and we can take the

functions fα to be

f i = xi,

fA = 0,

so

ξµ(k) = fα,k = δαk .

The second fundamental form is then

ξµ(k)Dµξ
β
(j) = Diδ

β
(j)

= ∂iδ
β
(j) + δα(j)Γ

β
αi

= Γβji

= ΓAjiζ
β
(A),

where the last step follows from the preceding proof, with ζβ(A) now any convenient basis for

the cospace. In this basis, the extrinsic curvature is simply given by certain of the connection

components, ΓAji.
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Appendix F

Variation of the Wehner-Wheeler action

F.1. Curved structure equations, action, and variation

Here, we go through the variation of the Wehner-Wheeler action in the orthogonal (but

not orthonormal) basis of [7]. Note, in this variation we have reverted to using Latin indices

to represent that basis as in [7]. The main reason being that the variation requires the use of

quite a few indices at a time; therefore, we use the Latin for ease of calculation. The final field

equations given at the end of this appendix can then be transformed to the orthonormal basis

that is used in Chapters 3 and 4. The structure equations are

dωab = ωcbω
a
c + ∆ac

db

(
fc + hcfe

f
)(

ed − hdefe
)

+ Ωa
b ,

dea = ecωac + ωea +
1

2
Dhac

(
fc + hcde

d
)

+ Ta,

dfa = ωbafb − ωfa −
1

2
Dhab

(
eb − hbcfc

)
+ Sa,

dω = eafa + Ω,

and the action is

S =

ˆ
(αΩa

b + βδabΩ + γeafb) εac...dε
be...fec . . . edfe . . . ff .

We are able to separate the Levi-Civita tensor into two pieces because we demand that ea, fb

span submanifolds.

F.2. The variation of the Weyl vector

We begin with the variation of the Weyl vector, ω,

0 = δS

= β

ˆ
d (δω) εac...dε

ae...fec . . . edfe . . . ff

= β

ˆ
εac...dε

ae...f
[
d
(
δωec . . . edfe . . . ff

)
+ δωd

(
ec . . . edfe . . . ff

)]
.
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Dropping the surface term and using the structure equations,

0 = β

ˆ
δω
[
εacd...eε

af...gd
(
eced . . . ee

)
ff . . . fg

]
+β

ˆ
δω
[
(−1)n−1 εac...dε

aef...gec . . . edd (feff . . . fg)
]

= β

ˆ
δω
[
(n− 1) εacd...eε

af...g (dec) ed . . . eeff . . . fg

]
+β

ˆ
δω
[
(−1)n−1 (n− 1) εac...dε

aef...gec . . . ed (dfe) ff . . . fg

]
= β

ˆ
δω (n− 1) εacd...eε

af...g
(
ehωch + ωec

)
ed . . . eeff . . . fg

+β

ˆ
δω (n− 1) εacd...eε

af...g

(
1

2
Dhch

(
fh + hhie

i
)

+ Tc

)
ed . . . eeff . . . fg

+β

ˆ
δω (−1)n−1 (n− 1) εac...dε

aef...gec . . . ed
(
ωhefh − ωfe

)
ff . . . fg

+β

ˆ
δω (−1)n−1 (n− 1) εac...dε

aef...gec . . . ed
(
−1

2
Dheh

(
eh − hhifi

)
+ Se

)
ff . . . fg.

Defining

T̃c = Tc +
1

2
Dhch

(
fh + hhie

i
)
,

S̃a = Sa −
1

2
Dhab

(
eb − hbcfc

)
,

and collecting like terms,

0 = (n− 1)β

ˆ
δω
(
εacd...eε

af...gehωche
d . . . eeff . . . fg

)
(n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edωhefhff . . . fg

)
+ (n− 1)β

ˆ
δω
(
εacd...eε

af...gωeced . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n εac...dε
aef...gec . . . edωfeff . . . fg

)
+ (n− 1)β

ˆ
δω
(
εacd...eε

af...gT̃ced . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edS̃eff . . . fg

)
.
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For the Weyl vector terms we have

δ1 = (n− 1)β

ˆ
δω
(
εacd...eε

af...gωeced . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n εac...dε
aef...gec . . . edωfeff . . . fg

)
= (n− 1)β

ˆ
δω
(

(−1)q (n− 1)!δf...gcd...eωeced . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n (−1)n−1ω (−1)q (n− 1)!δef...gc...d ec . . . edfeff . . . fg

)
= (n− 1)β

ˆ
δω (ω − ω) (−1)q (n− 1)!δef...gc...d ec . . . edfeff . . . fg

= 0.

Now check the spin connection terms. Expand the spin connection as ωch = ωchie
i+ωc ih fi, and

the variation as δω = Aje
j +Bjfj , so

δ2 = (n− 1)β

ˆ
δω
(
εacd...eε

af...gehωche
d . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edωhefhff . . . fg

)
= (n− 1)β

ˆ
δω
(
εacd...eε

af...gehωchie
ied . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edωheie

ifhff . . . fg

)
+ (n− 1)β

ˆ
δω
(
εacd...eε

af...gehωc ih fie
d . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edωh ie fifhff . . . fg

)
= (−1)n (n− 1)β

ˆ
Bjωhki

(
εahd...ee

keied . . . eeεaf...gfjff . . . fg

)
+ (−1)n (n− 1)β

ˆ
Bjωhki

(
εac...de

iec . . . edεakf...gfjfhff . . . fg

)
+ (n− 1)β

ˆ
Ajω

h i
k

(
εahd...eε

af...gejekfie
d . . . eeff . . . fg

)
+ (n− 1)β

ˆ
Ajω

h i
k

(
(−1)n−1 εac...dε

akf...gejec . . . edfifhff . . . fg

)
.

Define the volume forms,

ea . . . eb = εa...bΦn,
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fa . . . fb = εa...bΦn,

Φn
n = ΦnΦn.

Then

δ2 = (−1)n (n− 1)β

ˆ
Bjωhki

(
εahd...ee

keied . . . eeεaf...gfjff . . . fg

)
+ (−1)n (n− 1)β

ˆ
Bjωhki

(
εac...de

iec . . . edεakf...gfjfhff . . . fg

)
+ (−1)n (n− 1)β

ˆ
Ajω

h i
k

(
εahd...eε

af...gejeked . . . eefiff . . . fg

)
− (−1)n (n− 1)β

ˆ
Ajω

h i
k

(
εac...dε

akf...gejec . . . edfifhff . . . fg

)
= (−1)n (n− 1)β

ˆ
Bjωhki

(
εahd...eε

kid...eΦnεaf...gεjf...gΦn

)
+ (−1)n (n− 1)β

ˆ
Bjωhki

(
εac...dε

ic...dΦnεakf...gεjhf...gΦn

)
+ (−1)n (n− 1)β

ˆ
Ajω

h i
k

(
εahd...eε

af...gεjkd...eΦnεif ...gΦn

)
− (−1)n (n− 1)β

ˆ
Ajω

h i
k

(
εac...dε

akf...gεjc...dΦnεihf...gΦn

)
= (−1)n (n− 1)β

ˆ
Bjωhki

(
2 (n− 2)!δkiah (n− 1)!δaj + (n− 1)!δia2 (n− 2)!δakjh

)
Φn
n

+ (−1)n (n− 1)β

ˆ
Ajω

h i
k

(
2 (n− 2)!δjkah (n− 1)!δai − 2 (n− 2)!δakih (n− 1)!δja

)
Φn
n

= (−1)n (n− 1) (n− 1)! (n− 2)!β

ˆ
Bj
(
ωiji − ωkkj + ωkkj − ωhjh

)
Φn
n

+ (−1)n (n− 1) (n− 1)! (n− 2)!β

ˆ
Aj

(
ωk jk − ω

j k
k − ω

k j
k + ωj kk

)
Φn
n

= 0.

This leaves the field equation in terms of the torsion and cotorsion, as expected,

0 = (n− 1)β

ˆ
δω
(
εacd...eε

af...gT̃ced . . . eeff . . . fg

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aef...gec . . . edS̃eff . . . fg

)
.
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Expanding the variation gives two equations,

0 = (n− 1)βej
(
εacd...eε

af...gT̃ced . . . eeff . . . fg

)
+ (n− 1)βej

(
(−1)n−1 εac...dε

aef...gec . . . edS̃eff . . . fg

)
,

0 = (n− 1)βfj

(
εacd...eε

af...gT̃ced . . . eeff . . . fg

)
+ (n− 1)βfj

(
(−1)n−1 εac...dε

aef...gec . . . edS̃eff . . . fg

)
.

For the first,

0 = (n− 1)βej
(
εacd...eε

af...gT̃ced . . . eeff . . . fg + (−1)n−1 εac...dε
aef...gec . . . edS̃eff . . . fg

)
= (n− 1)β

(
εacd...eε

af...gT̃cejed . . . eeff . . . fg

)
+ (n− 1)β

(
(−1)n−1 εac...dε

aef...gejec . . . edS̃eff . . . fg

)
= (n− 1)β

(
εacd...eε

af...gT̃ chkfhe
kejed . . . eeff . . . fg

)
+ (n− 1)β

(
(−1)n−1 εac...dε

aef...gejec . . . ed
1

2
S̃ hk
e fhfkff . . . fg

)
= (n− 1)β

(
(−1)n εacd...eε

af...gT̃ chkε
kjd...eεhf...g

)
Φn
n

+ (n− 1)β

(
(−1)n−1

1

2
S̃ hk
e εac...dε

aef...gεjc...dεhkf...g

)
Φn
n

= 2 (n− 2)! (n− 1)! (n− 1) (−1)n β

(
δahδ

kj
ac T̃

ch
k −

1

2
S̃ hk
e δjaδ

ae
hk

)
Φn
n

= (n− 2)! (n− 1)! (n− 1) (−1)n β

(
T̃ jkk − T̃

kj
k −

1

2
S̃ je
e +

1

2
S̃ ej
e

)
Φn
n,

so

βS̃ jk
k = β

(
T̃ jkk − T̃

kj
k

)
.

Similarly, for the second,

0 = (n− 1)βfj

(
εacd...eε

af...gT̃ced . . . eeff . . . fg + (−1)n−1 εac...dε
aef...gec . . . edS̃eff . . . fg

)
= (n− 1)β

(
(−1)n εacd...eε

af...gT̃ced . . . eefjff . . . fg + εac...dε
aef...gec . . . edS̃efjff . . . fg

)
= (n− 1)β

(
(−1)n

1

2
εacd...eε

af...gT̃ c hke
heked . . . eefjff . . . fg

)
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+ (n− 1)β
(
εac...dε

aef...gec . . . edS̃ h
e kfhe

kfjff . . . fg

)
= (n− 1)β

(
(−1)n

1

2
εacd...eε

af...gT̃ c hke
heked . . . eefjff . . . fg

)
− (n− 1)β

(
εac...dε

aef...gS̃ h
e ke

c . . . edekfhfjff . . . fg

)
= 2 (n− 2)! (n− 1)! (n− 1)β

(
(−1)n

1

2
εacd...eε

af...g 1

2
T̃ c hkε

hkd...eεjf...g

)
Φn
n

−2 (n− 2)! (n− 1)! (n− 1)β
(
εac...dε

aef...gS̃ h
e kε

c...dkεhjf...g

)
Φn
n

= (n− 2)! (n− 1)! (n− 1)β

(
(−1)n

(
δhaδ

k
c − δhc δka

)
δaj

1

2
T̃ c hk

)
Φn
n

− (n− 2)! (n− 1)! (n− 1)β
((
δahδ

e
j − δehδaj

)
(−1)n−1 δka S̃

h
e k

)
Φn
n

= (n− 2)! (n− 1)! (n− 1) (−1)n β
(
T̃ c jc + S̃ k

j k − S̃ h
h j

)
Φn
n,

so

βT̃ c jc = β
(
S̃ h
h j − S̃ k

j k

)
.

Check

Assume the tensorial character, so from the action

S =

ˆ
(αΩa

b + βδabΩ + γeafb) εac...dε
be...fec . . . edfe . . . ff ,

we have

0 = δS

= β

ˆ
d (δω) εac...dε

ae...fec . . . edfe . . . ff

= β

ˆ
εac...dε

ae...f
[
d
(
δωec . . . edfe . . . ff

)
+ δωd

(
ec . . . edfe . . . ff

)]
= β

ˆ
εac...dε

ae...fδωd
(
ec . . . edfe . . . ff

)
= (n− 1)β

ˆ
δω
(
εacg...dε

ae...f T̃ceg . . . edfe . . . ff

)
+ (n− 1)β

ˆ
δω
(

(−1)n−1 εac...dε
aeg...fec . . . edS̃efg . . . ff

)
.
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With δω = Ake
k +Bkfk,

0 = (n− 1)β

ˆ
δω
(
εacg...dε

ae...f T̃ceg . . . edfe . . . ff + (−1)n−1 εac...dε
aeg...fec . . . edS̃efg . . . ff

)
= (n− 1)β

ˆ
Ak

(
εacg...dε

ae...f T̃cekeg . . . edfe . . . ff

)
+ (n− 1)β

ˆ
Ak

(
(−1)n−1 εac...dε

aeg...fekec . . . edS̃efg . . . ff

)
+ (n− 1)β

ˆ
Bk
(

(−1)n εacg...dε
ae...f T̃ceg . . . edfkfe . . . ff

)
+ (n− 1)β

ˆ
Bk
(
εac...dε

aeg...fec . . . edS̃efkfg . . . ff

)
= (n− 1)β

ˆ
Ak

(
(−1)n εacg...dε

ae...f T̃ cmne
nekeg . . . edfmfe . . . ff

)
+ (n− 1)β

ˆ
Ak

(
(−1)n−1 εac...dε

aeg...fekec . . . ed
1

2
S̃ mn
e fmfnfg . . . ff

)
+ (n− 1)β

ˆ
Bk

(
(−1)n εacg...dε

ae...f 1

2
T̃ c mne

meneg . . . edfkfe . . . ff

)
+ (n− 1)β

ˆ
Bk
(

(−1)n εac...dε
aeg...fenec . . . edS̃ m

e nfmfkfg . . . ff

)
.

Therefore, the field equations are

0 = (n− 1)β
(

(−1)n εacg...dε
ae...f T̃ cmnε

nkg...dεme...f

)
+ (n− 1)β

(
(−1)n−1 εac...dε

aeg...fεkc...d
1

2
S̃ mn
e εmng...f

)
= 2 (n− 1)! (n− 1)! (−1)n β

(
δamδ

nk
ac T̃

cm
n − δkaδaemn

1

2
S̃ mn
e

)
= (n− 1)! (n− 1)! (−1)n β

(
T̃ kmm − T̃nkn − S̃ ke

e

)
,

0 = 2 (n− 1)! (n− 1)! (−1)n β

(
δakδ

mn
ac

1

2
T̃ c mn + δna δ

ae
mkS̃

m
e n

)
= (n− 1)! (n− 1)! (−1)n β

(
T̃ c kc + S̃ m

k m − S̃ m
m k

)
,

and therefore,

β
(
T̃ kmm − T̃nkn

)
= βS̃ ke

e ,

β
(
S̃ m
k m − S̃ m

m k

)
= −βT̃ c kc.
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These check.

F.3. Spin connection variation

Now vary the spin connection,

0 = δS

= α

ˆ
(δΩa

b ) εac...dε
be...fec . . . edfe . . . ff

= α

ˆ (
dδωab − δω

g
bω

a
g − ω

g
bδω

a
g

)
εac...dε

be...fec . . . edfe . . . ff

= α

ˆ
εac...dε

be...fd
(
δωabe

c . . . edfe . . . ff

)
+ α

ˆ
εac...dε

be...fδωabd
(
ec . . . edfe . . . ff

)
−α
ˆ (

δωgbω
a
g + ωgbδω

a
g

)
εac...dε

be...fec . . . edfe . . . ff

= α

ˆ
δωab

(
(n− 1) εac...dε

be...fdec . . . edfe . . . ff

)
+α

ˆ
δωab

(
(−1)n−1 (n− 1) εac...dε

be...fec . . . eddfe . . . ff

)
−α
ˆ
εac...dε

be...f
(
δωgbω

a
g + ωgbδω

a
g

)
ec . . . edfe . . . ff .

Now, substitute from the structure equations and expand the spin connection and its variation

as

ωag = ωagie
i + ωa ig fi,

δωhk = Ahkie
i +Bh i

k fi.

Then

0 = α

ˆ
δωab

(
(n− 1) εac...dε

be...fdec . . . edfe . . . ff

)
+α

ˆ
δωab

(
(−1)n−1 (n− 1) εac...dε

be...fec . . . eddfe . . . ff

)
−α
ˆ
εac...dε

be...f
(
δωgbω

a
g + ωgbδω

a
g

)
ec . . . edfe . . . ff

= α

ˆ (
Aabie

i +Ba i
b fi
) (

(n− 1) εach...dε
be...f

(
egωcg + ωec + T̃c

)
eh . . . edfe . . . ff

)
+α

ˆ (
Aabie

i +Ba i
b fi
) (

(−1)n−1 (n− 1) εac...dε
beh...fec . . . ed

(
ωgefg − ωfe + S̃e

)
fh . . . ff

)
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−α
ˆ
εac...dε

be...f
((
Agbie

i +Bg i
b fi

) (
ωagje

j + ωa jg fj
))

ec . . . edfe . . . ff

−α
ˆ
εac...dε

be...f
((
ωgbje

j + ωg jb fj

) (
Aagie

i +Ba i
g fi
))

ec . . . edfe . . . ff

= α

ˆ
(n− 1) εach...dε

be...fAabie
i
(
egωcg + ωec + T̃c

)
eh . . . edfe . . . ff

+α

ˆ
(−1)n−1 (n− 1) εac...dε

beh...fAabie
iec . . . ed

(
ωgefg − ωfe + S̃e

)
fh . . . ff

−α
ˆ
Aabi

(
εmc...dε

be...fωm j
a eifje

c . . . edfe . . . ff + εac...dε
me...fωb jmfje

iec . . . edfe . . . ff

)
+α

ˆ
(n− 1) εach...dε

be...fBa i
b fi

(
egωcg + ωec + T̃c

)
eh . . . edfe . . . ff

+α

ˆ
(−1)n−1 (n− 1) εac...dε

beh...fBa i
b fie

c . . . ed
(
ωgefg − ωfe + S̃e

)
fh . . . ff

−α
ˆ
Ba i
b

(
εmc...dε

be...f fi
(
ωmaje

j + ωm j
a fj

))
ec . . . edfe . . . ff

−α
ˆ
Ba i
b

(
εac...dε

me...f
(
ωbmje

j + ωb jmfj

)
fi

)
ec . . . edfe . . . ff .

So we have two equations,

0 = α (n− 1) ∆ma
bn

(
εach...dε

be...feiT̃ceh . . . edfe . . . ff

)
+α (n− 1) ∆ma

bn

(
(−1)n−1 εac...dε

beh...feiec . . . edS̃efh . . . ff

)
+α (n− 1) ∆ma

bn εach...dε
be...feiωeceh . . . edfe . . . ff

+ (−1)n α (n− 1) εac...dε
beh...feiec . . . edωfefh . . . ff

+α (n− 1) ∆ma
bn εach...dε

be...feiegωc jg fje
h . . . edfe . . . ff

+ (−1)n−1 α (n− 1) εac...dε
beh...feiec . . . edωg je fjfgfh . . . ff

−α (−1)n−1 ∆ma
bn εmc...dε

be...fωm j
a eiec . . . edfjfe . . . ff

−α (−1)n εac...dε
me...fωb jmeiec . . . edfjfe . . . ff ,

0 = α (n− 1) ∆ma
bn εach...dε

be...f fiT̃
ceh . . . edfe . . . ff

+α (−1)n−1 (n− 1) εac...dε
beh...f fie

c . . . edS̃efh . . . ff

+α (n− 1) ∆ma
bn εach...dε

be...f fiωeceh . . . edfe . . . ff

+α (−1)n (n− 1) εac...dε
beh...f fie

c . . . edωfefh . . . ff

+α (n− 1) ∆ma
bn εach...dε

be...f fie
gωcgje

jeh . . . edfe . . . ff
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+α (−1)n−1 (n− 1) εac...dε
beh...f fie

c . . . edωgeje
jfgfh . . . ff

−α∆ma
bn εmc...dε

be...f fiω
m
aje

jec . . . edfe . . . ff

−αεac...dεme...fωbmjejfiec . . . edfe . . . ff .

Look at the Weyl vector pieces,

δ1 = α (n− 1) ∆ma
bn εach...dε

be...feiωeceh . . . edfe . . . ff

+ (−1)n α (n− 1) εac...dε
beh...feiec . . . edωfefh . . . ff

= α (n− 1) ∆ma
bn εach...dε

be...feiW jfje
ceh . . . edfe . . . ff

+ (−1)n α (n− 1) εac...dε
beh...feiec . . . edW jfjfefh . . . ff

= α (n− 1) ∆ma
bn W

j
(

(−1)n−1 εach...dε
be...feieceh . . . edfjfe . . . ff

)
α (n− 1) ∆ma

bn W
j
(

(−1)n εac...de
iec . . . edεbeh...f fjfefh . . . ff

)
= (−1)n α (n− 1) ∆ma

bn W
j
(
−εach...dεbe...fεich...dεje...f + εac...dε

ic...dεbeh...fεjeh...f

)
Φn
n

= (−1)n α (n− 1) ∆ma
bn W

j
(
− (n− 1)! (n− 1)!δbjδ

i
a + (n− 1)! (n− 1)!δbjδ

i
a

)
Φn
n

= 0,

δ′1 = α (n− 1) ∆ma
bn εach...dε

be...f fiωeceh . . . edfe . . . ff

+α (−1)n (n− 1) εac...dε
beh...f fie

c . . . edωfefh . . . ff

= α (n− 1) (−1)n ∆ma
bn

(
εach...dε

be...fWje
jeceh . . . edfife . . . ff

)
−α (n− 1) (−1)n ∆ma

bn

(
εac...dε

beh...fejec . . . edWjfifefh . . . ff

)
= α (n− 1) (−1)nWj∆

ma
bn

(
εach...dε

be...fεjch...dεie...f − εac...dεbeh...fεjc...dεieh...f
)

Φn
n

= (n− 1)! (n− 1)!α (n− 1) (−1)n ∆ma
bn Wj

(
δjaδ

b
i − δjaδbi

)
Φn
n

= 0.

Here are the spin connection terms, dropping the full volume form,

σ = α (n− 1) (−1)n ∆ma
bn ω

c j
g εach...dε

be...fεigh...dεje...f

+ (−1)n−1 α (n− 1)ωg je εac...dε
beh...fεic...dεjgh...f∆ma

bn
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−∆ma
bn α (−1)n−1 ωh ja εhc...dε

be...fεic...dεje...f

−α (−1)n ωb jh εac...dε
he...fεic...dεje...f∆ma

bn

= α (n− 1) (−1)n 2 (n− 1)! (n− 2)!∆ma
bn

(
ωc jg δ

ig
acε

b
j − ωg je δbejgδia

)
−α (−1)n−1 (n− 1)! (n− 1)!∆ma

bn

(
ωm j
a δbjδ

i
m − ωb jmδmj δia

)
= α (n− 1) (n− 1)! (n− 2)!∆ma

bn

(
(−1)n

(
ωc bc δ

i
a − ωi ba − ωe be δia + ωb ee δ

i
a

))
−α (n− 1) (n− 1)! (n− 2)!∆ma

bn

(
(−1)n−1

(
ωi ba − ωb mm δia

))
= α (n− 1) (n− 1)! (n− 2)!∆ma

bn

(
(−1)n

(
ωc bc δ

i
a − ωi ba − ωe be δia + ωb ee δ

i
a

))
+α (n− 1) (n− 1)! (n− 2)!∆ma

bn

(
(−1)n

(
ωi ba − ωb mm δia

))
= α (n− 1) (n− 1)! (n− 2)! (−1)n ∆ma

bn

(
−ωi ba + ωb ee δ

i
a + ωi ba − ωb mm δia

)
= 0,

σ′ = α (n− 1) (−1)n ∆ma
bn ω

c
gjεach...dε

be...fεgjh...dεie...f

+α (n− 1) (−1)n ∆ma
bn ω

a
gjω

g
ejεac...dε

beh...fεjc...dεigh...f

− (−1)n α∆ha
bnω

h
ajεmc...dε

be...fεjc...dεie...f

−α (−1)n−1 ∆ma
bn ω

b
hjεac...dε

he...fεjc...dεie...f

= α2 (n− 1)! (n− 1)! (−1)n ∆ma
bn ω

c
gjδ

b
i δ
gj
ac + α2 (n− 1)! (n− 1)! (−1)n ∆ma

bn ω
g
ejδ

j
aδ
be
ig

− (−1)n (n− 1)! (n− 1)!α∆ma
bn ω

m
ajδ

b
i δ
j
m − α (n− 1)! (n− 1)! (−1)n−1 ∆ma

bn ω
b
mjδ

m
i δ

j
a

= α (n− 1)! (n− 1)! (−1)n ∆ma
bn

(
ωcacδ

b
i − ωggaδbi + ωeeaδ

b
i − ωbia − ωmamδbi + ωbia

)
= 0.

Therefore, we correctly find two relationships among the curvatures,

0 = α∆ma
bn

(
εach...dε

be...feiT̃ceh . . . edfe . . . ff + (−1)n−1 εac...dε
beh...feiec . . . edS̃efh . . . ff

)
,

0 = α∆ma
bn

(
εach...dε

be...f fiT̃
ceh . . . edfe . . . ff + α (−1)n−1 εac...dε

beh...f fie
c . . . edS̃efh . . . ff

)
.

Expanding the torsion and cotorsion and simplifying the first,

0 = α∆ma
bn

(
εach...dε

be...f ˜T ckmfke
meieh . . . edfe . . . ff

)
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+α∆ma
bn

(
1

2
(−1)n−1 εac...dε

beh...feiec . . . edS̃ mk
e fmfkfh . . . ff

)
= α∆ma

bn

(
(−1)n T̃ ckmεach...dε

be...fεmih...dεke...f

)
Φn
n

+α∆ma
bn

(
1

2
(−1)n−1 S̃ mk

e εac...dε
beh...fεic...dεmkh...f

)
Φn
n

= α (n− 1)!2 (n− 2)!∆ma
bn

(
(−1)n T̃ ckmδ

b
kδ
mi
ac +

1

2
(−1)n−1 S̃ mk

e δiaδ
be
mk

)
Φn
n

= α (n− 1)! (n− 2)! (−1)n ∆ma
bn

(
T̃ ib a − T̃ cb cδia − δiaS̃ be

e

)
Φn
n,

and therefore,

α∆ma
bn

(
T̃ ib a − T̃ cb cδia

)
= α∆mi

bn S̃
be

e

T̃ imn − δmaδbnT̃ ib a − δinT̃ cmc + δmiδbnT̃
cb
c = δinS̃

me
e − δmiδbnS̃ be

e .

There is only one independent trace. Taking the trace over ni gives

α∆ma
bn

(
T̃nba − T̃ cb cδna

)
= α∆mn

bn S̃
be

e

α

2
T̃ ama −

α

2
δmaδbcT̃

bc
a −

α

2
(n− 1) T̃ cmc =

α

2
(n− 1) S̃ ma

a

δbcT̃
bc
a = − (n− 1) δabS̃

bc
c − (n− 2) δabT̃

cb
c.

So we have two results,

2∆an
mbT̃

cm
n = δcnS̃

me
e − δmcδbnS̃ be

e + δcnT̃
cm
c − δmcδbnT̃ cb c,

S̃ be
e = − 1

n
(n− 1) T̃ aba.

Now, looking at the second,

0 = α

(
1

2
(−1)n εach...dε

be...f T̃ c kmekemeh . . . edfife . . . ff

)
+α

(
εac...dε

beh...fec . . . edS̃ k
e mfke

mfifh . . . ff

)
= α

(
1

2
(−1)n εach...dε

be...f T̃ c kmε
kmh...dεie...f

)
Φn
n
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+α
(

(−1)n S̃ k
e mεac...dε

beh...fεmc...dεkih...f

)
Φn
n

= (−1)n 2 (n− 1)! (n− 2)!α

(
1

2
T̃ c kmδ

km
ac δ

b
i + S̃ k

e mδ
m
a δ

be
ki

)
Φn
n

= (−1)n (n− 1)! (n− 2)!α

(
1

2
T̃ c km

(
δkaδ

m
c − δkc δma

)
δbi + S̃ k

e a

(
δbkδ

e
i − δbi δek

))
Φn
n

= (−1)n (n− 1)! (n− 2)!α
(
δbi T̃

c
ac + S̃ b

i a − S̃ e
e aδ

b
i

)
Φn
n.

Therefore,

α
(
δbi T̃

c
ac + S̃ b

i a − S̃ e
e aδ

b
i

)
= 0.

Taking the trace over bi,

nT̃ c ac = (n− 1) S̃ b
b a

T̃ c ac =
1

n
(n− 1) S̃ b

b a.

We also have

α

(
− 1

n
S̃ c
c aδ

b
i + S̃ b

i a

)
= 0

S̃ b
c a =

1

n
δbcS̃

e
e a.

So we get two relations,

S̃ b
i a =

1

n
δbi S̃

c
c a,

T̃ c ac =
1

n
(n− 1) S̃ b

b a.

Check

Varying the action we have,

0 = δS

= α

ˆ
(δΩa

b ) εac...dε
be...fec . . . edfe . . . ff
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= α

ˆ (
dδωab − δω

g
bω

a
g − ω

g
bδω

a
g

)
εac...dε

be...fec . . . edfe . . . ff

= α

ˆ
εac...dε

be...fδωabD
(
ec . . . edfe . . . ff

)
= (n− 1)α

ˆ
δωab

(
εagc...dε

be...f T̃gec . . . edfe . . . ff

)
+ (n− 1)α

ˆ
δωab

(
(−1)n−1 εac...dε

bge...fec . . . edS̃gfe . . . ff

)
= (n− 1)α

ˆ (
Aabke

k +Bak
b fk

)(
εagc...dε

be...f T̃gec . . . edfe . . . ff

)
+ (n− 1)α

ˆ (
Aabke

k +Bak
b fk

)(
(−1)n−1 εac...dε

bge...fec . . . edS̃gfe . . . ff

)
.

Then

0 = (n− 1)α

ˆ
Aabk

(
εagc...dε

be...f T̃gekec . . . edfe . . . ff

)
+ (n− 1)α

ˆ
Aabk

(
(−1)n−1 εac...dε

bge...fekec . . . edS̃gfe . . . ff

)
+ (n− 1)α

ˆ
Bak
b

(
(−1)n εagc...dε

be...f T̃gec . . . edfkfe . . . ff

)
+ (n− 1)α

ˆ
Bak
b

(
εac...dε

bge...fec . . . edS̃gfkfe . . . ff

)
= (n− 1)α

ˆ
Aabk

(
(−1)n εagc...dε

be...f T̃ gmne
nekec . . . edfmfe . . . ff

)
+ (n− 1)α

ˆ
Aabk

(
(−1)n−1 εac...dε

bge...fekec . . . ed
1

2
S̃ mn
g fmfnfe . . . ff

)
+ (n− 1)α

ˆ
Bak
b

(
(−1)n εagc...dε

be...f 1

2
T̃ g mne

menec . . . edfkfe . . . ff

)
+ (n− 1)α

ˆ
Bak
b

(
(−1)n εac...dε

bge...fenec . . . edS̃ m
g nfmfkfe . . . ff

)
,

so the field equations are

0 = (n− 1)α∆pa
bq

(
εagc...dε

be...f T̃ gmnε
nkc...dεme...f

)
− (n− 1)α∆pa

bq

(
εac...dε

bge...fεkc...d
1

2
S̃ mn
g εmne...f

)
= (n− 1)! (n− 1)!α∆pa

bq

(
T̃ kba − δka T̃nbn − δka S̃ bg

g

)
0 = 2 (n− 1)! (n− 1)!α∆pa

bq

(
δbk

1

2
T̃ c ac + δna δ

bg
mkS̃

m
g n

)
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= (n− 1)! (n− 1)!α∆pa
bq

(
δbkT̃

c
ac + S̃ b

k a − δbkS̃ m
m a

)
,

and therefore,

α∆pa
bq

(
δbkT̃

c
ac + S̃ b

k a − δbkS̃ m
m a

)
= 0,

α∆pa
bq

(
T̃ kba − δka T̃nbn − δka S̃ bg

g

)
= 0.

These agree with the previous results.

F.4. Solder form variation

Now, vary with respect to the solder form,

0 = δS

=

ˆ
(αδΩa

b + βδab δΩ + γδeafb) εac...dε
be...fec . . . edfe . . . ff

+

ˆ
(n− 1) (αΩa

b + βδabΩ + γeafb) εacd...eε
bf...gδeced . . . eeff . . . fg

=

ˆ (
α
(
−∆ac

db

(
δhcfe

f + hckδe
k
)(

ed − hdefe
)))

εac...dε
be...fec . . . edfe . . . ff

+

ˆ (
−∆ac

kb

(
fc + hcfe

f
)(

δek − δhkefe
))

εac...dε
be...fec . . . edfe . . . ff

+

ˆ (
−βδab δekfk + γδekδakfb

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(n− 1) (αΩa

b + βδabΩ + γeafb) εakd...eε
bf...gδeked . . . eeff . . . fg.

Expand the variations as

δek = Ak mem +Bkmfm,

δhke =
〈
δek, ee

〉
+
〈
ek, δee

〉
= hmeAk m + hkmAe m,

hckδh
ke = hckh

meAk m + hckh
kmAe m,

−δhckhkehef = hckh
mehefA

k
m + hckh

kmhefA
e
m,

δhcf = −hckAk f − hfkAk c.
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This becomes

0 =

ˆ
αAk m

(
−∆ac

dbhcke
mhdefe −∆am

db hfke
fhdefe

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
αAk m

(
∆ac
dbhckh

deemfe −∆ac
kbfce

m
)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
αAk m

(
∆ac
kbh

mehcfe
f fe + ∆ac

ebh
emhcfe

f fk

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
Ak m

(
−βδab δik + γδakδ

i
b

)
εac...dε

be...femfie
c . . . edfe . . . ff

+

ˆ
(n− 1)Ak m

(
αΩai

b j + βδabΩi
j − γδaj δib

)
εakd...eε

bf...gfie
jemed . . . eeff . . . fg

+

ˆ
αBkm

(
−∆ac

dbhckfmed −∆ac
kbhcfe

f fm

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(n− 1)Bkm

(
α

1

2
Ωa
bij + βδab

1

2
Ωij

)
(−1)n εakd...eε

bf...geiejed . . . eefmff . . . fg,

resulting in two field equations,

0 = (−1)n−1 α
(
−∆ac

dbhckh
djδmi −∆am

db hikh
dj + ∆ac

dbhckh
djδmi

)
δiaδ

b
j

+ (−1)n−1 α
(

∆aj
kbδ

m
i + ∆ac

kbh
mjhci + ∆ac

ebh
emhciδ

j
k

)
δiaδ

b
j

+ (−1)n−1
(
−βδab δik + γδakδ

i
b

)
δbi δ

m
a − 2

(
αΩai

b j + βδabΩi
j − γδaj δib

)
δjmak δ

b
i ,

0 = α
(
∆an
ib hnkδ

j
m −∆an

kb hniδ
j
m

)
δbjδ

i
a − 2

(
α

1

2
Ωa
bij + βδab

1

2
Ωij

)
δijakδ

b
m.

Expand the first,

0 = −1

2
αδmk +

1

2
αδmchck

(
δdbh

db
)
− 1

2
αδmk

+
1

2
αδamhak

(
δdbh

db
)

+
1

2
αδmk −

1

2
αδmchck

(
δdbh

db
)

+
1

2
αnδmk −

1

2
αδmk +

1

2
αδmk −

1

2
αδkbh

mb (δachca) +
1

2
αδmk −

1

2
αδekh

em (δachca)

−βδmk + nγδmk − αΩab
b aδ

m
k + αΩmb

b k − βΩa
aδ
m
k + βΩm

k + γ
(
n2 − n

)
δmk

= αΩmb
b k − αΩab

b aδ
m
k + βΩm

k − βΩa
aδ
m
k

+
1

2

(
αn− 2β + 2n2γ

)
δmk +

1

2
αδmchck

(
δdbh

db
)
− αδkbhmb (δachca) .
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The field equation is, therefore,

0 = αΩmb
b k − αΩab

b aδ
m
k + βΩm

k − βΩa
aδ
m
k

+
1

2

(
αn− 2β + 2n2γ

)
δmk +

1

2
αδmchck

(
δdbh

db
)
− αδkbhmb (δachca) .

Check the trace,

0 = − (n− 1)
(
αΩab

b a + βΩa
a

)
+

1

2
n
(
αn− 2β + 2n2γ

)
− 1

2
α
(
δmbh

mb
)

(δachca) .

Therefore, we may write

0 = αΩmb
b k + βΩm

k −
(
αΩab

b a + βΩa
a

)
δmk

+
1

2

(
αn− 2β + 2n2γ

)
δmk +

1

2
αδmchck

(
δdbh

db
)
− αδkbhmb (δachca)

= αΩmb
b k + βΩm

k −
1

n− 1

(
1

2
n
(
αn− 2β + 2n2γ

)
− 1

2
α
(
δmbh

mb
)

(δachca)

)
δmk

+
1

2

(
αn− 2β + 2n2γ

)
δmk +

1

2
αδmchck

(
δdbh

db
)
− αδkbhmb (δachca)

= αΩmb
b k + βΩm

k

+
1

n− 1

(
β − n2γ +

1

2
α
((
δmbh

mb
)

(δachca)− n
))

δmk

+
1

2
αδmchck

(
δdbh

db
)
− αδkbhmb (δachca) .

The second equation is

0 =
1

2
α ((n− 2)hmk + δkm (δanhna))− αΩa

mak − βΩmk.

F.5. Variation of the cosolder form

Finally, we vary with respect to fa,

0 = δS
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=

ˆ
(αδΩa

b + βδab δΩ + γeaδfb) εac...dε
be...fec . . . edfe . . . ff

+

ˆ
(αΩa

b + βδabΩ + γeafb) (n− 1) εac...dε
bge...fec . . . edδfgfe . . . ff

=

ˆ (
α
(
−∆ag

jb

(
δfg + δhgie

i
) (

ej − hjkfk
)))

εac...dε
be...fec . . . edfe . . . ff

+

ˆ (
α
(
−∆ag

jb

(
fg + hgie

i
) (
−δhjkfk − hjkδfk

)))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(−βδab egδfg + γeaδfb) εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(αΩa

b + βδabΩ + γeafb) (n− 1) εac...dε
bge...fec . . . edδfgfe . . . ff .

To find how hab varies we have

〈δfa, fb〉+ 〈fa, δfb〉 = −δhab,

so with δfa = Cabe
b +D b

a fb,

D c
a hcb +D c

b hac = δhab;

and therefore,

hnaD c
a hcb +D c

b hnahac = hnaδhab

hnaD c
a hcb +D n

b = −δhnahab

−hnaD m
a − hmbD n

b = δhnm.

Now substitute for the variations and collect terms.

0 =

ˆ
Cgr

(
α∆ag

jbh
js − αhjg∆as

jb

)
(−1)n−1 εac...dε

be...ferec . . . edfsfe . . . ff

+

ˆ
Cgm

(
1

2
αΩars

b +
1

2
βδabΩrs

)
(−1)n−1 (n− 1) εac...dε

bge...femec . . . edfrfsfe . . . ff

+

ˆ (
α∆ag

rbD
s

g + α∆ag
jbD

m
g hmrh

js
)

(−1)n−1 εac...dε
be...ferec . . . edfsfe . . . ff

+

ˆ (
α∆ag

jbD
m

r hgmh
js
)

(−1)n−1 εac...dε
be...ferec . . . edfsfe . . . ff
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−
ˆ (

α∆ag
jbhgrh

smD j
m

)
(−1)n−1 εac...dε

be...ferec . . . edfsfe . . . ff

+

ˆ (
−α∆ag

jbhgrh
jmD s

m

)
(−1)n−1 εac...dε

be...ferec . . . edfsfe . . . ff

+

ˆ (
α∆ag

jbhgrh
jkD s

k

)
(−1)n−1 εac...dε

be...ferec . . . edfsfe . . . ff

+

ˆ
(−βδabD s

r + γD s
b δar ) (−1)n−1 εac...dε

be...ferec . . . edfsfe . . . ff

+

ˆ
D m
g (αΩas

b r + βδabΩs
r) (n− 1) (−1)n εac...dε

bge...ferec . . . edfsfmfe . . . ff

−
ˆ
D m
g (γδar δ

s
b) (n− 1) (−1)n εac...dε

bge...ferec . . . edfsfmfe . . . ff

The two field equations are

0 = αΩkbi
b + βΩki − 1

2
(n− 2)αhki − 1

2
αδki

(
δjbh

jb
)
,

0 = αΩar
s a − αΩnm

m nδ
r
s + βΩr

s − βΩa
aδ
r
s

+
1

2

(
nα− 2β + 2n2γ

)
δrs − αδrchsc

(
δabh

ab
)

+
1

2
αδsch

rc
(
δabhab

)
.

Check

From the action,

0 = δS

= δ

ˆ
(αΩa

b + βδabΩ + γeafb) εac...dε
be...fec . . . edfe . . . ff

=

ˆ
(αδΩa

b + βδab δΩ + γeaδfb) εac...dε
be...fec . . . edfe . . . ff

+

ˆ
(n− 1) (αΩa

b + βδabΩ + γeafb) εac...dε
bef...gec . . . edδfeff . . . fg

=

ˆ (
−α∆ai

jb

(
δfi + δhike

k
) (

ej − hjmfm
))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−α∆ai

jb

(
fi + hike

k
) (
−δhjmfm − hjmδfm

))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(−βδab egδfg + γeaδfb) εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(n− 1) (αΩa

b + βδabΩ + γeafb) εac...dε
bef...gec . . . edδfeff . . . fg,
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where

dωab = ωcbω
a
c + ∆ac

db

(
fc + hcfe

f
)(

ed − hdefe
)

+ Ωa
b ,

dω = eafa + Ω.

Now substitute in the variations,

δfa = Cabe
b +D b

a fb,

δhab =
〈
fa, Cbde

d +D d
b fd

〉
+ 〈Cacec +D c

a fc, fb〉

= D c
b hac +D c

a hcb,

δhde = −haeD d
a − hadD e

a ,

to get

0 =

ˆ (
−α∆ai

jb

(
Cike

k +D k
i fk

) (
ej − hjmfm

))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−α∆ai

jb

(
D m
k hmie

k +D m
i hmke

k
) (

ej − hjmfm
))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−α∆ai

jb

(
fi + hike

k
) (
hnjD m

n fm + hnmD j
n fm

))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−α∆ai

jb

(
fi + hike

k
)(
−hjmCmkek − hjmD k

m fk

))
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−βδab egCgkek − βδab egD k

g fk

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
γeaCbke

k + γeaD k
b fk

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ
(n− 1) (αΩa

b + βδabΩ + γeafb) εac...dε
bef...gec . . . ed

(
Ceke

k +D k
e fk

)
ff . . . fg.

Then

0 =

ˆ (
α∆ai

jbCikh
jmekfm + α∆ai

jbD
k

i ejfk

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
α∆ai

jbD
m

k hmih
jnekfn + α∆ai

jbD
m

i hmkh
jnekfn

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−α∆ai

jbh
njD m

n hike
kfm − α∆ai

jbh
nmD j

n hike
kfm

)
εac...dε

be...fec . . . edfe . . . ff
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+

ˆ (
−α∆ai

jbh
jmCmke

kfi + α∆ai
jbh

jmD k
m hine

nfk

)
εac...dε

be...fec . . . edfe . . . ff

+

ˆ (
−βδabD k

g + γD k
b δag

)
εac...dε

be...fegfke
c . . . edfe . . . ff

+

ˆ
Cek (n− 1)

(
1

2
αΩamn

b +
1

2
βδabΩmn

)
(−1)n−1 εac...dε

bef...gekec . . . edfmfnff . . . fg

+

ˆ
D k
e (n− 1) (αΩa

b + βδabΩ + γeafb) εac...dε
bef...gec . . . edfkff . . . fg

so

0 =

ˆ (
α∆ai

jbCikh
jn + α∆ai

kbD
n

i

)
(−1)n−1 εac...dε

be...fekec . . . edfnfe . . . ff

+

ˆ (
α∆ai

jbD
m

k hmih
jn
)

(−1)n−1 εac...dε
be...fekec . . . edfnfe . . . ff

+

ˆ (
α∆ai

jbD
m

i hmkh
jn
)

(−1)n−1 εac...dε
be...fekec . . . edfnfe . . . ff

+

ˆ (
−α∆ai

jbh
njD m

n hik
)

(−1)n−1 εac...dε
be...fekec . . . edfmfe . . . ff

+

ˆ (
−α∆ai

jbh
nmD j

n hik
)

(−1)n−1 εac...dε
be...fekec . . . edfmfe . . . ff

+

ˆ (
−α∆am

jb h
jiCik + α∆ai

jbh
jnD m

n hik
)

(−1)n−1 εac...dε
be...fekec . . . edfmfe . . . ff

+

ˆ (
−βδabD k

g + γD k
b δag

)
(−1)n−1 εac...dε

be...fegec . . . edfkfe . . . ff

+

ˆ
Cek (n− 1)

(
1

2
αΩamn

b +
1

2
βδabΩmn

)
(−1)n−1 εac...dε

bef...gekec . . . edfmfnff . . . fg

+

ˆ
D k
e (n− 1) (−αΩam

b n) (−1)n−1 εac...dε
bef...genec . . . edfmfkff . . . fg

+

ˆ
D k
e (n− 1) (−βδabΩm

n + γδanδ
m
b ) (−1)n−1 εac...dε

bef...genec . . . edfmfkff . . . fg.

Next,

0 = α∆ai
jbh

jnδbnδ
k
a − α∆am

jb h
jiδbmδ

k
a + 2

(
1

2
αΩamn

b +
1

2
βδabΩmn

)
δkaδ

bi
mn,

0 =
(
α∆ar

kbδ
n
s + α∆ai

jbδ
r
kδ
m
s hmih

jn + α∆ar
jbhskh

jn
)
δbnδ

k
a

+
(
−α∆ai

jbh
rjδms hik − α∆ai

sbh
rmhik + α∆ai

jbδ
m
s h

jrhik
)
δbmδ

k
a

+
(
−βδab δrg + γδrbδ

a
g

)
δbsδ

g
a

+2 (−αΩam
b n − βδabΩm

n + γδanδ
m
b ) δbrmsδ

n
a ,
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so

0 = αΩkbi
b + βΩki − 1

2
(n− 2)αhki − 1

2
αδki

(
δjbh

jb
)
,

0 = αΩar
s a − αΩnm

m nδ
r
s + βΩr

s − βΩa
aδ
r
s

+
1

2

(
nα− 2β + 2n2γ

)
δrs

−αδrchsc
(
δabh

ab
)

+
1

2
αδsch

rc
(
δabhab

)
.

F.6. Summary of field equations

Collecting the field equations we have:

βS̃ jk
k = β

(
T̃ jkk − T̃

kj
k

)
,

βT̃ c jc = β
(
S̃ h
h j − S̃ k

j k

)
,

0 = α∆pa
bq

(
δbkT̃

c
ac + S̃ b

k a − δbkS̃ m
m a

)
,

0 = α∆pa
bq

(
T̃ kba − δka T̃nbn − δka S̃ bg

g

)
,

0 = αΩmb
b k − αΩab

b aδ
m
k + βΩm

k − βΩa
aδ
m
k

+
1

2

(
αn− 2β + 2n2γ

)
δmk − αδkbhmb (δachca) +

1

2
αδmchck

(
δdbh

db
)
,

0 = αΩa
mak + βΩmk −

1

2
α ((n− 2)hmk + δkm (δanhna)) ,

0 = αΩmbk
b + βΩmk − 1

2
α
(

(n− 2)hmk + δmk
(
δabh

ab
))

,

0 = αΩag
m a − αΩab

b aδ
g
m + βΩg

m − βΩa
aδ
g
m

+
1

2

(
nα− 2β + 2n2γ

)
δgm − αδaghma

(
δjbh

jb
)

+
1

2
αδmbh

bg
(
δakhka

)
.
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Appendix G

Conditions on the metric from cotorsion field equations

In Chapter 4, we investigated a simplified version of general, curved biconformal geometry.

Specifically, we chose the simplest possible ansatz for the form of the symmetric spin connection

and set all torsions to zero. We are left with a number of field equations involving the Cartan

curvatures of the Weyl and SO(4) connections and one field equation involving the cotorsions.

This last field equation sets a number of conditions on the form of the metric.

The mixed cotorsion field equation gives the following conditions on the metric derivatives.

1. Letting νπβ = ijk,

0 = ∂igjk − ∂kgij − gjksi + gijsk.

2. Letting νπβ = i0k1,

0 = ∂igk0 − ∂kgi0 − g0ksi + gi0sk.

3. Letting νπβ = ij0 ,

0 =
1

2
gijs0 − gijs0

0 = s0.

4. Letting νπβ = 0jk,

0 =
1

2
gjks0

s0 = 0.

1This is the condition such that we can choose coordinates where gi0 = 0, which we do from 2. onward.
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5. Letting νπβ = 00k,

0 =
1

2
g00sk − g00sk

sk = 0.

6. Letting νπβ = i00,

0 = −1

2
g00si

si = 0.

7. Letting νπβ = 0j0,

0 =
1

2
(∂0g0j − ∂0g0j)−

1

2
(gj0s0 − g0js0)

0 = 0.

8. Let νπβ = 000

0 = ∂0g00 −
1

2
∂0g00 −

1

2
∂0g00

0 = 0.
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