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ABSTRACT

Conformal Gravity and Time

by

Jeffrey Shafiq Hazboun, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. James T. Wheeler
Department: Physics

Cartan geometry provides a rich formalism from which to look at various geometrically
motivated extensions to general relativity. In this manuscript, we start by motivating reasons to
extend the theory of general relativity. We then introduce the reader to our technique, called
the quotient manifold method, for extending the geometry of spacetime. We will specifically
look at the class of theories formed from the various quotients of the conformal group.

Starting with the conformal symmetries of Euclidean space, we construct a manifold where
time manifests as a part of the geometry. Though there is no matter present in the geome-
try studied here, geometric terms analogous to dark energy and dark matter appear when we
write down the Einstein tensor. Specifically, the quotient of the conformal group of Euclidean
four-space by its Weyl subgroup results in a geometry possessing many of the properties of
relativistic phase space, including both a natural symplectic form and nondegenerate Killing
metric. We show the general solution possesses orthogonal Lagrangian submanifolds, with the
induced metric and the spin connection on the submanifolds necessarily Lorentzian, despite the
Euclidean starting point. By examining the structure equations of the biconformal space in an
orthonormal frame adapted to its phase space properties, we also find two new tensor fields
exist in this geometry, not present in Riemannian geometry. The first is a combination of the
Weyl vector with the scale factor on the metric, and determines the time-like directions on the

submanifolds. The second comes from the components of the spin connection, symmetric with



iv
respect to the new metric. Though this field comes from the spin connection, it transforms ho-
mogeneously. Finally, we show in the absence of Cartan curvature or sources, the configuration
space has geometric terms equivalent to a perfect fluid and a cosmological constant.

We complete the analysis of this homogeneous space by transforming the known, general
solution of the Maurer-Cartan equations into the orthogonal, Lagrangian basis. This results
in a signature-changing metric, just as in the work of Spencer and Wheeler, however without
any conditions on the curvature of the momentum sector. The Riemannian curvatures of the
two submanifolds are directly related. We investigate the case where the curvature on the
momentum submanifold vanishes, while the curvature of the configuration submanifold gives an
effective energy-momentum tensor corresponding to a perfect fluid.

In the second part of this manuscript, we look at the most general curved biconformal
geometry dictated by the Wehner-Wheeler action. We use the assemblage of structure equations,
Bianchi identities, and field equations to show how the geometry of the manifolds self-organizes
into trivial Weyl geometries, which can then be gauged to Riemannian geometries. The Bianchi
identities reveal the strong relationships between the various curvatures, torsions, and cotorsions.
The discussion of the curved case culminates in a number of simplifying restrictions that show

general relativity as the base of the more general theory.

(179 pages)



PUBLIC ABSTRACT

Conformal Gravity and Time

Within the last year, two acclaimed physics experiments have probed further into the ex-
tremes of our physical understanding. The Large Hadron Collider, the largest experiment ever
constructed, has detected a Higgs boson, which establishes a mass scale for the fundamental
particles. The Planck mission satellite has made the most accurate measurements of the cos-
mic microwave background radiation, which is the oldest data about the early universe we are
currently able to measure directly. The mission corroborated the proportions of dark matter
and dark energy are all very close to expected values. While these experiments have helped
solidify the current working model of physics (general relativity plus the standard model of par-
ticle physics), large questions remain about the origins of the main constituents of the universe.
Galactic and cosmological scale observations indicate something is missing from the standard
model of our universe. The current ACDM model of cosmology is named after dark energy (A)
and cold dark matter, place holders in a model where we know the constituents’ phenomenology,
but not their origin. The need for an extension of current physical models is obvious.

Most research in gravity has focused on understanding the geometry of spacetime. We
demonstrate how the geometry of spacetime may emerge by starting with a space where time
does not exist. Time can emerge as part of a physical theory, instead of assuming its existence
from the beginning. Specifically, we look at the symmetry of the equations that define the
gravitational interaction and extend those existing symmetries, i.e. giving a theory with more
symmetries than standard general relativity. We investigate the consequences of making a theory
of gravity that is fully scale symmetric. When we change the units (i.e. meters, feet, pounds,
seconds) of our physical measurements locally, we expect the laws of physics to undergo no
change. Biconformal space is constructed by requiring this broader class of symmetries. Here, we
show how time comes necessarily from the construction of biconformal space. The gravitational
theory derived from this construction is more complex than general relativity; however, general

relativity arises as a special case of biconformal gravity, a feature any candidate alternative
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theory of gravity must possess. We illustrate biconformal gravity is a viable successor to general

relativity and discuss this in the context of dark matter and dark energy candidates.

Jeffrey S. Hazboun



Vil
ACKNOWLEDGMENTS

First and foremost, | would like to thank James Wheeler. His 30+ year undertaking to
unravel biconformal space has made the steps forward taken in this project possible. More
personally, | would like to thank Jim for his daily efforts to make me a better physicist, and
his willingness to treat me as an equal collaborator. Every time | mention to someone that |
met with my advisor three times a week, often totaling over 12 hours, | get shocked looks and
exclamations about how lucky my situation has been for a graduate student.

| would like to thank Shane Larson for his professional advice, his enthusiasm to have me
as a collaborator, and his unending optimism. | would also like to thank Charles Torre for the
hours of conversation about details of canonical general relativity, symplectic structures, and
Maple syntax. More importantly, | would like to thank him for being insistent on my ability to
communicate my ideas thoughtfully.

Thank you to the administrative staff of the USU Physics Department. Jan Sojka, Kar-
alee Ransom, and Sharon Pappas have worked tirelessly to find me professional opportunities,
fellowships, grants, and travel funding. Without them, my PhD would not have been so fruitful.

Finally, | would like to thank all of those friends and loved ones who have helped me through

this process.

Jeffrey S. Hazboun



viii

CONTENTS

Page

ABS TRACT . . . o e iii

PUBLIC ABSTRACT v

ACKNOWLEDGMENTSI. . . .. e vii

LIST OF TABLESI. . . .o X

LIST OF FIGURESI. . . . .o Xi
CHAPTER

1. INTRODUCTIONI 1

[1.1. Our current understanding| . . . . . . . . . ... . ... 1

[1.2. Conformal symmetry] . . . . . . . . . .. ... 8

2. BICONFORMAL SPACE!. . .. ... . e 11

2.1, Introduction|. . . . . . . . . .. 11

[2.2. Historical introduction | . . . . . . . . . .. . 13

2.3. Quotient manifold method| . . . . . . . . . ... 15

[2.4. Quotients of the conformal group | . . . . . . . ... .. ... ... ...... 22

[2.5. A brief note on gravitation| . . . . . .. ... L 32

[2.6. Summary of chapters| . . . . . . ... .. 35

3. DARK MATTER FROM EUCILIDEAN CONFORMAL SYMMETRIES | 37

37

44

50

56

59

59

|4.2. Curved biconformal space in the orthonormal canonical basis| . . . . . . .. .. 60

|4.3. Combining the field equations and structure equations| . . . . . . . . ... .. 68

4.4, Vector ansatzl . . . . . . . . . . ... 70

|4.5. Vanishing torsion solution| . . . . . . . . . . .. ... 74

4.6. Discussionl . . . . . . .. 79

b, CONCLUSION | . . .o 81

REFERENCES]. . . oo 85



APPENDICESI. . . . o 92
|Appendix A Structure equations in the orthonormal, Lagrangian basis| . . . . . . . 93
|Appendix B Gauge transformations in the orthonormal, Lagrangian basis| . . . . . 95
|Appendix C  Homogeneous biconformal solution in the orthonormal basis| . . . . . 107
|Appendix D Christoffel symbol| . . . . . . . ... oo 131
|Appendix E Extrinsic curvature of Riemannian submanifolds| . . . . . . . ... .. 132
|Appendix F  Variation of the Wehner-Wheeler action| . . . . . ... ... ... .. 137
|Appendix G Conditions on the metric from cotorsion field equations| . . . . . . . . 159

CURRICULUM VITAE|




LIST OF TABLES

Table

[L.1. Symmetry Extensions of General Relativity|




Xi
LIST OF FIGURES

Figure Page

[1.1. This diagram summarizes how a Weyl geometry can be built from the symmetries |
of light rays and freely falling particles.|. . . . . . ... ... ... .. .. ... 10

[2.1. These diagrams summarize the relationship between the two techniques to gauge |

the Poincaré group.| . . . . . . . . . . . 20
[2.2. The gerbil in the ball is free to map out the geometry of the curved surface, M, |
by rolling without slipping along its surface.| . . . . . . ... ... ... ... .. 21

[2.3. The degree of freedom represented by the gerbil ball on the left is the SO(2) |

rotation about the contact point.|. . . . . . . .. ... ... 22




CHAPTER 1
INTRODUCTION

1.1. Our current understanding

Within the last year, two acclaimed physics experiments have probed further into the ex-
tremes of our physical understanding than has been possible in the past. The Planck satellite
has made the most accurate measurements of the anisotropies in the cosmic microwave back-
ground to date obtaining the oldest data about the early universe we are currently able to
directly measure. The mission found the least exotic theories for the mechanisms of inflation,
and the proportions of dark matter and dark energy are all very close to accepted values from
other astrophysical measurements [1]. The Large Hadron Collider, the largest experiment yet
constructed by humans, has found the Higgs boson in the mass range where exotic particle
physics is unnecessary. While these experiments have helped solidify the current working model
of physics (general relativity + the standard model of particle physics), large questions remain
about the origins of the main constituents of the universe and how the dichotomous parts of
physics interact at a basal level.

Work in gravity has been an effort to understand the geometry of spacetime; however, in
this manuscript we will demonstrate how the geometry of spacetime emerges by considering the
symmetries of a Euclidean signature space. In fact, we will show the natural geometry is that of
a symplectic manifold with spacetime as one of the Lagrangian submanifolds: biconformal space
in an orthogonal, Lagrangian basis. Our current work relies heavily on differential geometry in
the Cartan formalism and is based on the pioneering work into gravitational gauge theory of
Kibble [2], Ne’eman and Regge [3,/4], lvanov and Niederle [5/6], and others. An extensive history
of the field is included in Section [2.2] of Chapter 2]

We extend the work of Wheeler, Wehner, and Spencer to combine the main results con-
cerning biconformal space, that biconformal space reproduces the physics of general relativity,
with the natural emergence of time as a special direction within the submanifolds of a phase
space. The orthonormal version of the time basis of [7] is used to investigate the Lorentzian

properties of the submanifolds, specifically the spin connection. We strengthen the result of [7]
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by showing that, starting in the Euclidean case, no assumptions need to be made about the
space to derive a Lorentzian (signature-changing) metric. We will also see the appearance of
two new tensors and a self organization of the submanifold geometry into that of a Riemannian
one from a Weyl geometry.

It is important to note that general relativity is extremely successful as a predictive theory,
describing the gravitational interaction for almost a century. The accuracy of both strong and
weak field tests of GR continues to grow [8]. The last, unseen, prediction of general relativity,
gravitational waves, will likely be directly detected by the end of the decade. Their dissipative
effects have already been seen in the Hulse-Taylor binary pulsar system in a way that agrees
with general relativity to better than a half a percent [g].

So the question stands, “Why do we need an extension to such a successful physical theory?"
The answer lies partly in the galactic and cosmological scale observations mounting up that seem
to point out something is missing from the standard model of our universe. The current ACDM
model of cosmology is named after dark energy and dark matter, place holders in a model where
we know the constituent’s phenomenology, but not their origin. If this outstanding 95% of the
universe's content is not reason enough, there is the century old quest for a theory of quantum

gravity.

1.1.1. Dark matter

The need for a large amount of unseen gravitationally interacting matter in the universe
originated in the calculations of Fritz Zwicky who first realized the Coma galaxy cluster seemed to
have a large amount of matter missing [9]. These observations gained more modern traction after
Rubin, Thonnard, and Ford [10] used the Doppler shift of edge-on galaxies to show their rotation
curves seemed to necessitate the existence of large amounts of unseen matter. The amount of
dark matter has now been corroborated by measurements of the gravitational lensing of galaxies
[11] where the mass of the intervening galaxies can be calculated from the lensing of more
distant sources. Galaxy formation simulations also corroborate the proportion of dark matter
needed first for star formation, and then the large—scale structure of galaxies [12]. Simulations

with only slight deviations from those proportions can drastically change the outcome of these
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simulations. Since the estimates of the missing matter comprises ~25% of all the energy density
in the universe, there is reason to take these observations seriously.

There have been quite a few hypotheses put forward to explain the origin of this mass.
Most current searches for dark matter center around various particles that fall into the weakly
interacting massive particle (WIMP) category. All of these particles are extensions to the cur-
rently accepted theories of physics. The axion [13||14] can either be seen as an extension of the
standard model of particle physics, or as arising generically from string theory. There are also
a number of supersymmetric particles, which have been put forward as dark matter candidates.
Searches for these particles rely on them having a small, but nonzero interaction cross section
with baryonic matter [15].

Many theories have been put forward to explain dark matter and, another possibility is the
extra gravitational degrees of freedom arising in modified theories of gravity play the role of
dark matter [15]. While in some cases the degrees of freedom can be interpreted as new matter,
there are other theories, like modified Newtonian dynamics (MOND) that try to explain the
observations, normally attributed to dark matter, as a modification of gravitational dynamics
(the potential is not Newtonian ~ T%) on the galactic size scale [16]. The phenomenological
predictions of MOND (and its relativistic relative Tensor Vector Scalar theory [17]) stem from a
change to the Newtonian gravitational potential at the galactic (and larger) scale. MOND has
seen strong opposition since observations of colliding galaxy clusters, most famously the Bullet
cluster, have allowed the mapping of dark matter within the colliding clusters. MOND and dark
matter give distinct predictions about where the gravitational lensing will be centered in the
collision of two galaxy clusters. In MOND, the lensing is expected to be centered at the center
of mass of the luminous matter (since there is no dark matter, only a different potential). If
dark matter exists, it is expected it would continue to pass through the luminous matter, which
is slowed down due to a larger cross section of interaction. The lensing would then be centered
around the dark matter that has continued to move due to inertia. The latter seems to be the
case in the Bullet cluster [18]. Nonetheless, while MOND/TVS may be invalidated, it seems

an extension to our current theories, whether in the particle physics sector or the gravitational



sector, is necessary to explain what constitutes dark matter.

1.1.2. Dark energy

The observation of the acceleration of the expansion of the universe [19,20], seen through a
small number of high redshift Type la supernovae data points, and for which the Nobel Prize was
recently awarded, is another arena of cosmology that has befuddled theorists. The acceleration
is well-modeled by resurrecting the cosmological constant, the constant term consistent with a
fully diffeomorphism-invariant theory of gravity [21], included in the Einstein field equation. The
vacuum energy of spacetime is often proposed as a source of the negative pressure needed to
create such an acceleration. However, when calculated through quantum field theoretic means
this energy density is around 100 orders of magnitude larger than the observed value [22]. The
source of dark energy is an especially interesting problem because it represents a majority of the
energy density composition of the universe. The most recent data from the Planck mission [1]
substantiated that dark energy makes up 68.3% of the critical density of the universe.

There are three commonly stated reasons the cosmological constant is not considered the
end of the story [15]. The first is the value for the cosmological constant is unexpectedly small
with regard to any physical scale (especially the predicted vacuum energy), except the current
Hubble horizon scale. Another reason is the energy density of dark energy is surprisingly close
to the current matter-energy density. This means the time at which humans are able to start
measuring the acceleration of the expansion of the universe happens to be the exact epoch
when these densities are comparable. Many physicists see this as a fine-tuning problem [15}22].
Lastly, the existence of coherent acoustical oscillations (baryon acoustic oscillations) in the
CMB have made inflation (exponential acceleration in the early universe) an integral part of the
cosmological model. Since the accelerated expansion of inflation stopped, this gives reason to
believe the current acceleration is temporary and not due to the cosmological constant [15].

A measurement solely of the expansion rate of the universe does not allow observers to
differentiate between the possible mechanisms of the acceleration. It is unknown whether the
acceleration is due to a heretofore unknown dynamical fluid or field (dark energy) or an extension

of the theory of general relativity. A number of modifications to general relativity have been
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proposed that explain the expansion without adding in a new form of matter, such as new
massive gravity [23], but often add other complications to the theory [24]. The fields necessary
for this acceleration have been phenomenologically modeled [25]; however, the source of these
fields is not yet known. How these fields will emerge from an extension of the standard model
of particle physics, or general relativity or a unified field theory such as string theory is difficult
to predict; however, it is certain such an extension is needed. That it will be centered on the

gravitational sector is certainly possible.

1.1.3. Quantum gravity

One of the last motivations we mention for extending general relativity is quantization.
Quantization of the gravitational interaction is a long—open field of current theoretical effort.
There are varied opinions as to how close we are to realizing a quantum theory of gravity,
but we are certainly lacking any experimental verifications of any quantum gravity candidate
[26,[27]. The Large Hadron Collider in CERN is projected to eventually run at 14 TeV [28],
while the Planck scale (the energy scale at which we expect to see quantum gravity effects)
is 1.22 x 106 TeV, a factor of approximately 10'5 larger. The scales at which the effects of
quantum gravity are predicted are at small enough lengths (large enough energies) that we are
far from being able to directly measure them through the normal route of particle accelerators.
There are efforts to look for quantum gravity in the signatures of astrophysical events [26], but
these are still nascent. The most straightforward route to quantization, as a quantum field theory
of the spin-two graviton with the Einstein-Hilbert action is perturbatively nonrenormalizable [29].
This can most easily be seen from the superficial degree of divergence, where the relative mass
term has a dimension of -1 in four dimensions [29].

The construction of a fully diffeomorphism invariant theory of spacetime is one of the main
contributions of relativity. Unfortunately, the most commonly used quantization schemes neces-
sitate separating the direction of time from space. The problem of time is a term used in slightly
different ways within the quantum gravity community. According to [29] the incompatibility lies
in the fact that quantum field theory treats the background as external to the physics, while

general relativity treats them as dynamical. Thiemann [30] more specifically points to the fact
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the Hamiltonian, in a diffeomorphism invariant theory, vanishes on the constraint surface. There
is, therefore, no evolution in the normal sense we think of it in a quantum system. A partial
solution to the problem of time in canonical quantum gravity is the use of dust fields to char-
acterize the passage of time [31,32]. It is an issue at the heart of the problem between gravity
and quantum theory, and it is listed as a motivation for looking at the problem of quantum
gravity [29]. In this manuscript we will show another resolution to the problem of time. In fact,
we will see time emerge as part of the symmetries of a Euclidean space.

String theory is naturally seen as a theory of quantum gravity since a closed, quantized
string has a massless spin—two mode [33], describing the graviton at the first—order interaction.
It does not suffer in the same way from the problem of time since the gravitational interaction
happens on a nondynamical 10 (11)-dimensional Minkowski background. However, string theory

struggles to make predictions on the physical scales of current astrophysical observations.

Extending general relativity

Since there are so many unanswered questions surrounding gravitational phenomena, it
seems reasonable to consider extensions to general relativity in order to gain understanding
about them. There are myriad avenues available to extend general relativity. There is a long
history [34] of extending or changing altogether the paradigms, which are the basis of general
reIativityE] Here, we will quickly summarize a number of schemes for constructing an alternative
theory of gravity. One can imagine these theories as effective theories of some larger unified field
theory, or solely as an extension of GR. Here we focus on the latter, but point out biconformal
space can also be seen as a low—energy limit of some string models. In this manuscript we
will show, while the starting point may seem like an alternative theory, we reproduce general
relativity with our approach.

The most straightforward way to alter the physics of a field theory is to change the action
principle for that theory. There are changes to the theory that can be viewed as changing
the fundamental way in which one views the world, or the characteristics of its constituents.

However, most of these can be best understood in how they affect the Lagrangian of the theory.

1One must remember that at the time, solving the questions about the advance of the perihelion of Mercury
was a triumph of modified gravity theory. Granted the modification was a complete paradigm shift.
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Perhaps the most straightforward way to change the Einstein-Hilbert action is by adding terms
not linear in the curvature. These type of theories, including Gauss-Bonnet gravity and f (R)-
theories have been extensively studied in the literature. Many of them manifest as lower energy
limits of string theory. Various other structures can be added to the action, for instance Lovelock
gravity, or tensor-vector-scalar gravity. It can even be shown one can recover much of general
relativity by dropping the Riemann curvature and instead considering torsion to be the leading
curvature to consider in teleparallel theory.

In this manuscript we are most interested in those extensions of general relativity that
change the symmetry of the action. It is out of the scope of this introduction to cover the various
alternate theories, but in Table 1.1 we list a number of extensions that change the symmetry
of the action. We also note the change in symmetry with respect to Poincaré symmetry and
references.

Table 1.1. Symmetry Extensions of General Relativity

Theory/ Model Symmetry change from Poincaré Reference
Supergravity Supersymmetric Poincaré invariance [35]
String Theory Supersymmetric and up to E (8) x E (8) [33,[36,37]

Hotava-Lifshitz Galilean Invariance [38]

MacDowell-Mansouri de Sitter or anti-de Sitter invariance [39,/40]
Weyl Gravity 4-dim Weyl invariance [41-H44]
Dynamical Cartan Various extensions broken by dynamical vector [45]

Observer Space de Sitter Symmetry [46]

Shape Dynamics 3-dim Weyl invariance [47,|48]

Einstein-Aether Vector field which can break 4-diffeos [49]

Biconformal Space n-dimensional Weyl invariance [50,/51]

Biconformal space is an extension of the symmetries of general relativity. In Chapter
we will show one can regain scale invariant general relativity from an action that has Weyl

symmetry.



1.2. Conformal symmetry

1.2.1. Extending the symmetry of general relativity

The development of the Standard Model of particle physics gives an interesting lesson about
developing working physical models. The SU (3) x SU (2) x U (1) symmetry of the Standard
Model is not a symmetry we actually see in nature (i.e. particle accelerators) today. It is a
symmetry spontaneously broken via the Higgs mechanism, which gives mass to the fields within
the theory. The full SU (3) x SU (2) x U (1) symmetry would only be seen in a high—energy
limit. However, a full understanding of how the various fermions and vector bosons of the model
interact necessitates an understanding of the underlying, broken symmetry. It is by starting with
a fully symmetric theory and then breaking that symmetry we get to the widely successful
Standard Model.

The idea of extending the symmetries of physics goes back much further than particle
physics. One can interpret Newton's law of inertia (first due to Galileo), at the time, as an ex-
tension of the symmetry principles within physics. It was one of Galileo’s most powerful insights
to see that without friction, inertia would keep objects at rest or in motion [52]. In modern
language, one would say that the equations of mechanics are invariant under Galilean transfor-
mations. Again, the common theme here is the theoretical framework possesses a symmetry,
which must be broken (in this case by friction) to find experimental resolution. While the laws
of classical physics are invariant under Galilean transformations, this is not always evident from
everyday experience. Friction allows for inertia to be worked against, allowing Newton's first
law of mechanics to be realized. In other words, Newton's insight was to see the symmetries of
the world are broken by dissipative forces, which can then be included into the theory.

Special relativity is another theory where we have been able to change the symmetries of
nature in order to broaden our physical model of the world. With hindsight, it can be shown all
one needs in order to understand special relativity is to change the symmetries of nature from
those of the Galilean group (spatial rotations, classical boosts and space + time translations)
in three-dim to those of the Poincaré group (spacetime “rotations” and translations) in four-

dim [53].
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In fact, string theory is so successful at including all physical interactions in part because
it includes huge symmetry groups. Of course, this is a double-edged sword, and the symmetry
of string theory makes it difficult to make specific predictions about the world.

As illustrated here, the technique of extending the symmetry of a physical theory is a
common method utilized by theorists to gain understanding of the world. In this manuscript, we
investigate the outcome of considering an extension of the Poincaré symmetry group of general

relativity, to that of the full conformal group.

1.2.2. Why conformal symmetry?

In this manuscript conformal symmetry will refer to the freedom to choose the units of a
physical measurement. For a particle, the position z# (t) is the dynamical variable and therefore
scales by a scale factor z# — e®z#, ¢ € R. In field theory, it is the fields, not the coor-
dinates, that transform so we have g,3 — 62¢’ga5 as the principal transformation, where g,z
is a metric on spacetime. Of course, in physics the units on either side of an equation must
match, so where there are other units besides length, those units must also change with a scale
transformation. For instance, a mass transforms as ﬁgth in geometric coordinates. There is
often confusion in the literature about various versions of conformal or scaling symmetry. If one
scales the coordinates of a theory, but not the masses, for instance, often the theory will seem
inconsistent [54]. This arises from being inconsistent with the implementation of the scaling.
In this manuscript it is acknowledged that all physical measurements are comparisons, and so
what is important in physics is ratios of unit-ful observations.

Apart from the obvious observation that every physical measurement is only a comparison
of ratios, there are a number of other motivations to specifically consider conformal symmetry in
a theory of gravity. One compelling reason stems from looking at the symmetry of the combined

action of the known physical interactions.

SUniverse(Currently) = /SGravity+/SYang—Mills

Poincaré Conformal

The action of Yang-Mills theories (i.e. the Standard Model) are conformally invariant, only later
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broken by the Higgs boson. This is fair reason to hypothesize that the whole action should be
conformally invariant. In fact in [55], and earlier work cited therein this idea is taken a step
further to show the scale factor of a conformal theory can be related to the Higgs field on the
Yang-Mills sector.

In the renowned paper by Ehlers, Pirani, and Schild [56] they define axioms about the
measurement of light rays and freely falling particles to bootstrap to the geometry of spacetime.
They show by making the fully conformal geometry defined by light rays and the projective
geometry defined by measurement of freely falling particles consistent with each other, the
connection is, at best, a connection of a Weyl geometry. Figure[I.I]summarizes the methodology

of the paper.

Coordinate patches, Continuity, Differentiability)

e AN

[ Manifold

Proj_ective S_tructure Conformal Structure
Geodesics, restricted parallel Infinitesimal null cones, Orthogonality,
transport of directions Null geodesic
Compatibility

Particle lines fill light cones

i
i
i
i
i
i
\

Y

[ Weyl Structure ]

Figure 1.1. This diagram summarizes how a Weyl geometry can be built from the symmetries of
light rays and freely falling particles. In [56] Ehlers, Pirani, and Schild start by considering what
types of geometry can be defined by observations of light rays and freely falling dust. Requiring
these geometries to be compatible, they show the connection is that of a Weyl geometry.

It should be noted the paper ends imposing what they refer to as Einstein simultaneity to
restrict the Weyl geometry to a Riemannian and regain the background for general relativity.
We have excised this ad hoc assumption from the diagram, as we hope to give the reader ample

reason to take (trivial) Weyl geometry as the natural background for a gravitational theory.
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CHAPTER 2
BICONFORMAL SPACE

2.1. Introduction

Through the course of this work, we will study the consequences of choosing conformal
symmetry as the symmetry of our gravitational theory, first by considering strictly the geometry
of a homogeneous space based on conformal symmetries, then by adding a gravitational action to
that geometry. The tool we will use to understand this choice is Cartan geometry in the language
of differential forms. A review of differential formsE] is out of the scope of this manuscript, but
the classic reference is Flanders [57].

In the remainder of this introduction, we give a brief historical overview of techniques
leading up to, related to, or motivating our own, then describe the layout of our presentation.

We show, by basing a gravitational gauge theory on underlying symmetry, how the presence
of a time-like direction can emerge from an initially Euclidean geometry. In addition, we show
it is possible to produce a cosmological constant and cosmological dust as part of an initial
geometry rather than as matter sources. Both of these changes occur as a result of increased
symmetry. For the first, a new vector field, built as the difference of two gauge—dependent
quantities, necessarily gives a time-like direction. The cosmological constant and dust arise in
much the same way as the emergence of a cosmological constant in the MacDowell-Mansouri
treatment of the de Sitter group [39], with the extra symmetry adding terms to the curvature.

By gauge theory, we typically understand a theory (i.e. the specification of an action
functional), which is invariant under a local symmetry group — the gauge symmetry. Thus,
there may be many gauge theories having the same gauge group. However, gauge theories
having the same gauge group share a common structure: the underlying principal fiber bundle
in which the base manifold is spacetime or some other world manifold and the fibers are copies
of the gauge group. Such a principal fiber bundle is most simply constructed as the quotient of

a larger group by the symmetry group. Constructed in this way, we have immediate access to

YFor a more modern approach, in the form of class notes see
http://www.physics.usu.edu/Wheeler/GaugeTheory/Lectures09SpringGaugeTheory.htm .
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relevant tensor fields: any group invariant tensors, the curvatures of the bundle, and the vectors
of the group representation. Then any functional built invariantly from these tensors is a gauge
theory. For example, in Sec. below, we show how the quotient of the Poincaré group by
its Lorentz subgroup may be generalized to a principal fiber bundle with Lorentz group fibers
and a general base manifold having arbitrary Riemannian curvature. ldentifying the curvature,
solder form, Lorentz metric, and Levi-Civita tensor as tensors with respect to this local Lorentz
symmetry, it is clear any functional built invariantly from them is a gauge theory. In addition,
if we use a linear representation, SO(3,1) or SL(2,C'), of the Lorentz group, then the action
functional may include vectors or spinors from that representation and their covariant derivatives.
For these reasons, we will define a gauging to be the fiber bundle of a specific quotient, along
with the identification of its associated tensors. A gauge theory remains the specification of an
action functional invariant on this bundle.

We develop a gauging based on the conformal group of a Euclidean space, and show
its group properties necessarily lead to a symplectic manifold with Lagrangian submanifolds
of Lorentzian signature. Though we deal almost exclusively with the homogeneous quotient
space, we always have in mind the class of biconformal gauge theories presented in Sec. 2.5.2]
This theory has been studied extensively [50]. In particular, we note from the field equations
given in [50] that for specific relations of the action coefficients the homogeneous space is a
vacuum solution. We find these vacuum solutions carry both a cosmological constant and a
cosmological perfect fluid as geometric generalizations of the Einstein tensor. In curved models,
this geometric background may explain or contribute to dark matter and dark energy. To
emphasize the purely geometric character of the construction, we give a description of our
use of the quotient manifold method for building gauge theories. Our use of the conformal
group, together with our choice of local symmetry lead to several structures not present in other
related gauge theories. Specifically, we show the generic presence of a symplectic form, there
exists an induced metric from the nondegenerate Killing form, demonstrate (but do not use)
Kahler structure, and find natural orthogonal, Lagrangian submanifolds. All of these properties

arise directly from group theory.
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2.2. Historical introduction

As mathematicians began studying the various incarnations of non-Euclidean geometry,
Klein started his Erlangen Program in 1872 as a way to classify all forms of geometries that
could be constructed using quotients of groups. These homogeneous spaces allowed for straight-
forward classification of the spaces dependent on their symmetry properties. Much of the ma-
chinery necessary to understand these spaces originated with Cartan, beginning with his doctoral
dissertation [58]. The classification of these geometries according to symmetry foreshadowed
gauge theory, the major tool that would be used by theoretical physicists as the twentieth cen-
tury continued. We will go into extensive detail about how these methods are used in a modern
context in section . Most of the development, in modern language, can be found in [59)].

The use of symmetries to construct physical theories can be greatly credited to Weyl's
attempts at constructing a unified theory of gravity and electromagnetism by adding dilatational
symmetry to general relativity. These attempts failed until Weyl looked at a U(1) symmetry
of the action, thus constructing the first gauge theory of electromagnetism. These efforts were
extended to non-Abelian groups by Yang and Mills [60], including all SU(n) and described by
the Yang-Mills action. The success of these theories as quantum precursors inspired relativists
to try and construct general relativity as a gauge theory. Utiyama [61] looked at GR based
on the the Lorentz group, followed by Kibble [2] who first gauged the Poincaré group to form
general relativity.

Standard approaches to gauge theory begin with a matter action, globally invariant under
some symmetry group H. This action generally fails to be locally symmetric due to the deriva-
tives of the fields, but can be made locally invariant by introducing an H-covariant derivative.
The connection fields used for this derivative are called gauge fields. The final step is to make
the gauge fields dynamical by constructing their field strengths, which may be thought of as
curvatures of the connection, and including them in a modified action.

In the 1970s, the success of the standard model and the growth of supersymmetric gravity
theories inspired physicists to extend the symmetry used to construct a gravitational theory.

MacDowell and Mansouri [39] obtained general relativity by gauging the de Sitter or anti-de
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Sitter groups, and using a Wigner-Inonu contraction to recover Poincaré symmetry. As a pre-
cursor to supersymmetrizing Weyl gravity, two groups [62-65] looked at a gravitational theory
based on the conformal group, using the Weyl curvature-squared action. These approaches
are top down, in the sense they are often based on constructing an action with specified local
symmetry, then investigating any new structures and the new field equations. However, as this
work expanded, physicists started using the techniques of Cartan and Klein to organize and
develop the structures systematically.

In [3,4] Ne'eman and Regge develop what they refer to as the quotient manifold technique to
construct a gauge theory of gravity based on the Poincaré group. Theirs is the first construction
of a gravitational gauge theory that uses Klein (homogeneous) spaces as generalized versions
of tangent spaces, applying methods developed by Cartan [66] to characterize a more general
geometry. In their 1982 papers [5}6], lvanov and Niederle exhaustively considered quotients of
the Poincaré, de Sitter, anti-de Sitter and Lorentzian conformal groups (150 (3,1), SO (4,1),
SO (3,2), and SO (4,2) respectively) by various subgroups containing the Lorentz group.

There are a number of more recent implementations of Cartan geometry in the modern
literature. One good introduction is Wise's use of Cartan methods to look at the MacDowell-
Mansouri action [40]. The waywiser approach of visualizing these geometries is advocated
strongly, and gives a clear geometric way of undertsanding Cartan geometry. The use of Cartan
techniques in [67] to look at the Chern-Simons action in 241 dimensions provides a nice example
of the versatility of the method. This action can be viewed as having either Minkowski, de Sitter
or anti-de Sitter symmetry, and Cartan methods allow a straightforward characterization of the
theory given the various symmetries. The analysis is extended to look first at the conformal
representation of these groups on the Euclidean surfaces of the theory (two-dimensional spatial
slices). The authors then look specifically at shape dynamics, which is found equivalent to the
case when the Chern-Simons action has de Sitter symmetry. Tractor calculus is another example
using a quotient of the conformal group, in which the associated tensor bundles are based on
a linear, (n + 2)-dim representation of the group. This is a distinct gauging from the one we

study here, but one studied in [68].
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Our research focuses primarily on gaugings of the conformal group. Initially motivated
by a desire to understand the physical role of local scale invariance, the growing prospects of
twistor string formulations of gravity [69] elevate the importance of understanding its low-energy
limit, which is expected to be a conformal gauge theory of gravity. Interestingly, there are two
distinct ways to formulate gravitational theories based on the conformal group, first identified
in [5,6] and developed in [50], [51], and [68]. Both of these lead directly to scale-invariant
general relativity. This is surprising since the best known conformal gravity theory is the fourth-
order theory developed by Weyl [41,42}70-72] and Bach [43]. Wheeler recently showed when
a Palatini variation is applied to Weyl gravity, it becomes second-order, scale-invariant general
relativity.

The second gauging of the conformal group identified in these works is the biconformal
gauging. Leading to scale-invariant general relativity formulated on a 2n-dimensional symplectic
manifold, the approach took a novel twist for homogeneous spaces in [7]. There it is shown that,
because the biconformal gauging leads to a zero-signature manifold of doubled dimension, we
can start with the conformal symmetry of a non-Lorentzian space while still arriving at spacetime
gravity. We describe the resulting signature theorem in detail below, and considerably strengthen
its conclusions. In addition to necessarily developing a direction of time from a Euclidean-
signature starting point, we show these models give a group-theoretically driven candidate for

dark matter.

2.3. Quotient manifold method

We are interested in geometries — ultimately spacetime geometries — which have continuous
local symmetries. The structure of such systems is that of a principal fiber bundle with Lie group
fibers. The quotient method starts with a Lie group, G, with the desired local symmetry as a
proper Lie subgroup, H. To develop the local properties any representation will give equivalent
results, so without loss of generality we assume a linear representation, V"*2 ie. a vector
space, V"*2, on which G acts. Typically this will be either a signature (p, ¢) (pseudo-)Euclidean
space or the corresponding spinor space. This vector space is useful for describing the larger

symmetry group, but is only a starting point and will not appear in the theory.
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The quotient method, laid out below, is identical in many respects to the approaches
of [40,67]. The nice geometric interpretation of using a Klein space in place of a tangent
space to both characterize a curved manifold and take advantage of its metric structure are also
among the motivations for using the quotient method. In what follows, not all the manifolds we
look at will be interpreted as spacetime; so, we choose not to use the interpretation of a Klein
space moving around on spacetime in a larger ambient space. Rather, we directly generalize
the homogeneous space to add curvatures. The homogeneous space becomes a local model for
a more general curved space, similar to the way that R™ provides a local model for an n-dim
Riemannian manifold.

We include a concise introduction here, but the reader can find a more detailed exposition
in [59]. Our intention is to make it clear that our ultimate conclusions have rigorous roots in

group theory, rather than to present a comprehensive mathematical description.

2.3.1. Construction of a principal H-bundle B (G, w, H, M;) with connection

Consider a Lie group, G, and a nonnormal Lie subgroup, H, on which G acts effectively
and transitively on H. The quotient of these is a homogeneous manifold, My. The points of
My are the left cosets, gH = {g’ | ¢ = gh for some h € H}, so, there is a natural one to one
mapping gH <+ H. The cosets are disjoint from one another and together cover G. There is a
projection, 7 : G — My, defined by 7 (g) = gH € My. There is also a right action of G, gHG,
given, for all elements of G, by right multiplication.

Therefore, G is a principal H-bundle, B (G, 7, H, My), where the fibers are the left cosets.
This is the mathematical object required to carry a gauge theory of the symmetry group H.
Let the dimension of G be m, the dimension of H be k. Then the dimension of the quotient
manifold is n = m — k and we write Mo(n). Choosing a gauge amounts to picking a cross section
of this bundle, i.e. one point from each of these copies of H. Local symmetry amounts to
dynamical laws, which are independent of the choice of cross section.

Lie groups have a natural Cartan connection given by the one-forms, €4, dual to the group

generators, G 4. Rewriting the Lie algebra in terms of these dual forms leads immediately to the
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Maurer-Cartan structure equations,

de" = —Seheg” nEC, (21)

where c“}gc are the group structure constants, and A is the wedge product. The integrabil-
ity condition for this equation follows from the Poincaré lemma, d? = 0, and turns out to
be precisely the Jacobi identity. Therefore, the Maurer-Cartan equations together with their
integrability conditions are completely equivalent to the Lie algebra of G.

Let €% (where a = 1,...,k) be the subset of one-forms dual to the generators of the
subgroup, H. Let the remaining independent forms be labeled x®. Then the &% give a connection
on the fibers while the x® span the cotangent spaces to Mén). We denote the manifold with

connection by Mén) = (Mén),EA).

2.3.2. Cartan generalization

For a gravity theory, we require in general a curved geometry, M. To achieve this,
the general method allows us to generalize both the connection and the manifold. Since the
principal fiber bundle from the quotient is a local direct product, this is not changed if we
allow a generalization of the manifold, Mén) — M™_ We will not consider such topological
issues here. Generalizing the connection is more subtle. If we change €4 = (€% x®) to a new
connection &4 — wA €% — w® x* — w® arbitrarily, the Maurer-Cartan equation is altered
to dw? = —%c“}gch A wC + QA, where 924 is a two-form determined by the choice of
the new connection. We need restrictions on €24 so it represents curvature of the geometry,
M® = (MM wA), and not of the full bundle, B. We restrict Q% by requiring it to be
independent of lifting, i.e. horizontality of the curvature.

To define horizontality, recall the integral of the connection associated with G around a
closed curve in the bundle is given by the integral of 24 over any surface bounded by the curve.

We require this integral to be independent of lifting, i.e. horizontal. This means the two-form

bases for the curvatures 2“4 cannot include any of the one-forms, w®, that span the fiber group,



18

‘H. With the horizontality condition, the curvatures take the simpler form
4 = 1QA w! A w”
= 5% )

More general curvatures than this will destroy the homogeneity of the fibers, so we would no
longer have a principal H-bundle.

In addition to horizontality, we require integrability. Again using the Poincaré lemma,
d?w? = 0, we always find a term %c“]‘g[cc%E]wC A wP A wF which vanishes by the Jacobi
identity, CAB[CCBDE} = 0, while the remaining terms give the general form of the Bianchi identi-
ties,

do? + chwP A QC = 0.

2.3.3. Example: pseudo-Riemannian manifolds

To see how this works in a familiar example, consider the construction of the pseudo-
Riemannian spacetimes used in general relativity, for which we take the quotient of the 10-dim
Poincaré group by its six-dim Lorentz subgroup. The result is a principal Lorentz bundle over

R*. Writing the one-forms dual to the Lorentz (M¢) and translation (P,) generators as £9 and

a

w?, respectively, the 10 Maurer-Cartan equations are
d¢% = &£5NE%,
b
dw® = w’ A&
Notice the first describes a pure gauge spin connection, d§% = —/icbdAaC where A% is a local

Lorentz transformation. Therefore, there exists a local Lorentz gauge such that £€9 = 0. The
second equation then shows the existence of an exact orthonormal frame, which tells us the
space is Minkowski.

Now generalize the geometry, (M, £%) — (M*, w™), where M = R* and we denote the

new connection forms by w* = (w“b, eb). In the structure equations, this leads to the presence
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of 10 curvature two-forms,

dw? = Wy AW+ R,

de’ = e’ Aw?+ T

Since the w¢ span the Lorentz subgroup, horizontality is accomplished by restricting the curva-

tures to

1

R} = 3 Cﬁ,cdeCAed,
1

I‘ﬁ, = le‘gceb/\ec.

That is, there are no terms such as, %R“bcdewdc N e€ or % ‘g;ewbc /\wde, for example. Finally,

integrability is guaranteed by the pair of Bianchi identities,

dRab —+ Rcb A\ wac — Rac A\ wcb = 0,

dT* + T Aw% +e" ARG = 0.

By looking at the transformation of R% and T under local Lorentz transformations, we find
despite originating as components of a single Poincaré-valued curvature, they are independent
Lorentz tensors. The translations of the Poincaré symmetry were broken when we curved the
base manifold (see [2H4], but note Kibble effectively uses a 14-dimensional bundle, whereas
ours and related approaches require only 10-dim). We recognize R9 and T* as the Riemann
curvature and the torsion two-forms, respectively. Since the torsion is an independent tensor
under the fiber group, it is consistent to consider the subclass of Riemannian geometries, T* = 0.
Alternatively, vanishing torsion follows from the tetradic Palatini action, S = fRabeCedeabcd.

With vanishing torsion, the quotient method has resulted in the usual solder form, e, and

related metric-compatible spin connection, w9,

de® — e’ A w? =0,
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the expression for the Riemannian curvature in terms of these,

and the first and second Bianchi identities,

e ARY = 0,

DR} = 0.

This is a complete description of the class of Riemannian geometries.

In order to return to the usual language of general relativity we note we can endow the
manifold with an orthonormal Lorentzian inner product <ea,eb> = 1™, which gives a metric of
the form 7., = diag (—1,1,1,1). We can pass between the orthonormal frame fields and the
coordinate frame by using the coefficients of the solder form, e* = ¢jdz#. The coordinate
metric is then defined by the relationship g,, = €% nap.

This is a nice point in the discussion to point out the difference between the quotient
method of [3,/4] that we use in this manuscript, and the method originally used to gauge the
Poincaré group used by Kibble [2]. Kibble's original treatment effectively uses a 14-dimensional
bundle, see Figure 2.1 whereas ours and related approaches require only 10-dim. Kibble uses
the group manifold of the Poincaré group together with a four-dimensional manifold to describe
general relativity. He identifies the degrees of freedom of the frame fields, e® as the cotangent

space to the manifold, soldering the forms to the manifold.

. 1
Kibble ?Mab’Pa) Nle:{emann LM3y)
egge =
14-dim T/L M4
| 10-dim
M4 M4
Need to solder e*—P, No need to solder

Figure 2.1. These diagrams summarize the relationship between the two techniques to gauge
the Poincaré group. The figure on the left represents Kibble's original construction [2], where
he has soldered the degrees of freedom of the frame fields to the manifold. The figure on the
right shows the quotient of the Poincaré by the Lorentz group and gives a cleaner description.
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2.3.4. Example: SO (3) /S0 (2)

The following description of the Hopf fibration, becoming a well-regarded one in the grav-
itational Cartan geometry community, is originally due to Wise [40] and has recently been
extended in [67] and [73)].

In the Poincaré example we demonstrated how the full connection of 150 (3,1) can be
separated into an SO (3, 1) connection and a frame field. This homogeneous space is then used
to characterize a curved manifold of the same dimension. In order to understand the geometric
meaning of such a split we use a simpler example; the quotient of SO (3) /SO (2). This quotient
can be viewed as a sphere, S2. This sphere can then be used to characterize a two-manifold,
M, by rolling the sphere around on it. We can visualize the situation as a rodent ball (here a

gerbil) where the gerbil is standing over the point of contact, see Figure [2.2]

Figure 2.2. The gerbil in the ball is free to map out the geometry of the curved surface, M,
by rolling without slipping along its surface.

The information in the connection can be probed by allowing the gerbil to roll the ball over
M. The three different directions the gerbil can move the ball correspond to the three degrees
of freedom in SO (3), see Figure 2.3

One of these, H = SO (2), stabilizes the point of contact on the manifold. This rotation, by
construction, does not change the point of contact with M and represents vertical motion in the
fiber bundle. The remaining degrees of freedom correspond to the two independent directions
the gerbil can move the ball. These horizontal directions give a natural metric structure on M.

A general Cartan geometry can then be thought of as a generalized ball, My = G/H, that can



22

be rolled on an arbitrary manifold, M. The subgroup H, called the isotropy subgroup, then

stabilizes the point of contact of M on M.

Figure 2.3. The degree of freedom represented by the gerbil ball on the left is the SO(2)
rotation about the contact point. The degrees of freedom on the right are the remaining
degrees of freedom that tell how the gerbil is moving around on the curved surface.

2.4. Quotients of the conformal group

2.4.1. General properties of the conformal group

Physically, we are interested in measurements of relative magnitudes, so the relevant group
is the conformal group, C, of compactified R" together with a metric. The one-point com-
pactification at infinity allows a global definition of inversion, with translations of the point at
infinity defining the special conformal transformation. Then C has a real linear representation in
n+2 dimensions, V" *2; alternatively, we could choose the complex representation 2 o
Spin (p+1,q+1). The isotropy subgroup of V"2 is the rotations, SO (p, q), together with
dilatations. We call this subgroup the homogeneous Weyl group, W, and require our fibers to
contain it. There are then only three allowed subgroups: W itself; the inhomogeneous Weyl
group, ZW, found by appending the translations; and W together with special conformal trans-
formations, isomorphic to ZW. The quotient of the conformal group by either inhomogeneous
Weyl group, called the auxiliary gauging, leads most naturally to Weyl gravity (for a review,
see [68]). We concern ourselves with the only other meaningful conformal quotient, the bicon-

formal gauging: the principal WW-bundle formed by the quotient of the conformal group by its

Weyl subgroup. To help clarify the method and our model, it is useful to consider both these
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gaugings.

All parts of this construction work for any (p,q) with n = p + ¢q. The conformal group
is then SO (p+1,q+ 1) (or Spin(p+ 1,q+ 1) for the twistor representation). The Maurer-
Cartan structure equations are immediate. In addition to the @ generators M of SO (n)
and n translational generators P,, there are n generators of translations of a point at infinity
(special conformal transformations) K¢, and a single dilatational generator, D. Dual to these,

we have the connection forms 5%,){0‘, Tq,0, respectively. Substituting the structure constants

into the Maurer-Cartan dual form of the Lie algebra, eq.(2.1]) gives

d¢G = &unEl +2000m AX", (2.2)
dx® = X’ NEG+EAX, (2.3)
dr, = € ANmp— 38 AT, (2.4)

dd = x“Amqa, (2.5)

where A%‘ =1 (53‘55 - 5““5V5) antisymmetrizes with respect to the original (p,q) metric,
O = diag(1,...,1,—1,...,—1). These equations, which are the same regardless of the
gauging chosen, describe the Cartan connection on the conformal group manifold. Before

proceeding to the quotients, we note the conformal group has a nondegenerate Killing form,
Al

KAB =1tr (GAGB) = CC;qDCDBC =

This provides a metric on the conformal Lie algebra. As we show below, when restricted to M,
it may or may not remain nondegenerate, depending on the quotient.

Finally, we note the conformal group is invariant under inversion. Within the Lie algebra,
this manifests itself as the interchange between the translations and special conformal trans-

formations, P, < 6a5Kﬁ, along with the interchange of conformal weights, D — —D. The
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corresponding transformation of the connection forms is easily seen to leave equations ([2.2))—(12.5)

invariant. In the biconformal gauging below, we show this symmetry leads to a Kahler structure.

2.4.2. Specialized notation

Much of the notation used in this manuscript is standard for those working in Cartan
formalism. Bold-faced symbols represent one-forms. In any equation where there is more than
one differential form, it should be assumed they are multiplied with a wedge product. In other
words, e® A e’ and e%e’ are equivalent. The conformal weights of connections and various
tensors are encoded in their index position. For instance, e* — e?e% scales with a conformal
weight of +1, f, — e ?f, scales with a conformal weight of —1, while Q% — €% has a
conformal weight of zero, since the number of contravariant and covariant indices are equal.
We denote differential forms associated with, what we eventually identify as the configuration
submanifold with an (x) and those associated with the momentum submanifold with a (y),
when it is not obvious from the index position or the presence of basis forms. This predicates
our eventual choice of Darboux coordinates, = and y, for the configuration and momentum
subspaces respectively, such that e” = e dz" and f, = fd'dy,.

In what follows, the terms Euclidean and Lorentzian will be used to distinguish between
the signatures of metric manifolds, while the term Riemannian will refer to a geometry with no
torsion, cotorsion (Cartan curvature of the cosolder form) or dilatational curvature, analogous
to the geometry on which general relativity is based. One of our major conclusions is, though
we start with the conformal symmetries of a Euclidean space in a fully general Cartan formalism,
we show the orthogonal, Lagrangian submanifolds have a Lorentzian metric with the structure

of a Riemannian geometry.

2.4.3. Curved generalizations

In this subsection and Section we will complete the development of the curved auxiliary
and biconformal geometries and show how one can easily construct actions with the curvatures.
In this subsection, we construct the two possible fiber bundles, C/S where YW C S. For each,
we carry out the generalization of the manifold and connection. The results in this subsection

depend only on whether the local symmetry is S = ZW or § = W. In Section [3.1] and Section
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[3.2) we will return to the uncurved case to present a number of new calculations characterizing
the homogenous space formed from the biconformal gauging.

The first subsection below describes the auxiliary gauging, given by the quotient of the
conformal group by the inhomogeneous Weyl group, ZW. Since ZW is a parabolic subgroup
of the conformal group, the resulting quotient can be considered a tractor space, for which
there are numerous results [74]. Tractor calculus is a version of the auxiliary gauging, where the
original conformal group is tensored with R(P+14t1) " This allows for a linear representation of
the conformal group with (n + 2)-dimensional tensorial (physical) entities called tractors. This
linear representation, first introduced by Dirac [75], makes a number of calculations much easier
and also allows for straightforward building of tensors of any rank. The main physical differences
stem from the use of Dirac’s action, usually encoded as the scale tractor squared in the n + 2-
dimensional linear representation, instead of the Weyl action we introduce in Section [2.5]

In subsection [2.4.3] we quotient by the homogeneous Weyl group, giving the biconformal
gauging. This is not a parabolic quotient and therefore represents a less conventional option,
which turns out to have a number of rich structures not present in the auxiliary gauging. The

biconformal gauging will occupy our attention for the bulk of our subsequent discussion.

The auxiliary gauging: S =7W

Given the quotient C/ZW, the one-forms (50‘5,7TM,5) span the ZW-fibers, with 3 span-
ning the cotangent space of the remaining n independent directions. This means /\/l(()n) has the
same dimension, n, as the original space. Generalizing the connection, we replace (5‘}3, X%, Ta, 5) —
<w°f3,e°‘,wa,w) and the Cartan equations now give the conformal curvatures in terms of the

new connection forms,

dwf = wjyAw) +2A7w, Aw” +Q%, (2.6)
de® = €& wh+wAe” + T (2.7)
dw, = wﬁa ANwg —w Awq + Sq, (2.8)

dbw = wW'Aw,+ 0. (2.9)
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Up to local gauge transformations, the curvatures depend only on the n nonvertical forms, e,

so the curvatures are similar to what we find in an n-dim Riemannian geometry. For example,

the SO (p, q) piece of the curvature takes the form Q9 = %QO‘ e A eP. The coefficients

Buv

have the same number of degrees of freedom as the Riemannian curvature of an n-dim Weyl

geometry.

Finally, each of the curvatures has a corresponding Bianchi identity, to guarantee integra-

bility of the modified structure equations,

0 = DQ%G+2A05 (AW’ —w, AQY),
0 = DT -’ A Q%+ Q1€
0 = Q%Aws—w) ASg+SsAw—wo AQ+dS,,

0 = DQ+TYAwy —w*ASq,,
where D is the Weyl covariant derivative,

_ I u
DQ% = dﬂ%+ﬂﬂchjL—Q°‘/\wﬁ,
DT® = dT*+ T’ Aw%h —wAT?,
DS, = dS,—w? AS5+S,Aw,

DQ = dQ.

(2.10)
(2.11)
(2.12)

(2.13)

Equations ([2.642.9) give the curvature two-forms in terms of the connection forms. We have,

therefore, constructed an n-dim geometry based on the conformal group with local ZW sym-

metry.

We note no additional special properties of these geometries from the group structure. In

particular, the restriction (in square brackets, ||, below) of the Killing metric, K4p, to M®)
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vanishes identically,

0] o5 < >
=10 5
6t 0 nxn

M)

so there is no induced metric on the spacetime manifold. We may add the usual metric by hand,
of course, but our goal here is to find those properties, which are intrinsic to the underlying

group structures.

The biconformal gauging

We next consider the biconformal gauging, first considered by lvanov and Niederle [6], given
by the quotient of the conformal group by its Weyl subgroup. The resulting geometry has been
shown to contain the structures of general relativity [50,51].

Given the quotient C/W, the one-forms (£%, &) span the W-fibers, with (x®, 7, spanning
the remaining 2n independent directions. This means /\/lézn) has twice the dimension of the
original space. Generalizing, we replace ( aﬁ,xo‘,ﬂ'a,d) — (wo‘ﬁ,wo‘,wa,D) and the modified
structure equations appear identical to Equations . However, the curvatures now depend
on the 2n nonvertical forms, (w®, wy), so there are far more components than for an n-dim
Riemannian geometry. For example,

1 1
Q% = 3 B! Nw” + Q% w, AW + 59%“”% A wy.

[0}

The coefficients of the pure terms, Qﬁ/w

and Q%" each have the same number of degrees
of freedom as the Riemannian curvature of an n-dim Weyl geometry, while the cross-term
coefficients Q) have more, being asymmetric on the final two indices.

For our purpose, it is important to notice the spin connection, ﬁc/“B, is antisymmetric with
respect to the original (p, q) metric, d,3, in the sense that £% = —0dg,€",. It is crucial to

note that w¢ retains this property, w% = —0™0p,w",. This expresses metric compatibility

with the SO (p, ¢)-covariant derivative, since it implies D, = dd,pg — 0,pw'a — (iww“ﬁ =0.
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Therefore, the curved generalization has a connection, which is compatible with a (p, ¢)-metric.
This relationship is general. If k.3 is any metric, its compatible spin connection will satisfy
wh = —kM kg, Since we also have local scale symmetry, the full covariant derivative we
use will also include a Weyl vector term. The Bianchi identities, written as three-form equations,
also appear the same as Equations (2.10}2.13), but expand into more components.

In the conformal group, translations and special conformal transformations are related by
inversion. Indeed, a special conformal tranformation is a translation centered at the point at
infinity instead of the origin. Because the biconformal gauging maintains the symmetry between
translations and special conformal transformations, it is useful to name the corresponding con-
nection forms and curvatures to reflect this. Therefore, the biconformal basis will be described
as the solder form and the cosolder form, and the corresponding curvatures as the torsion and
cotorsion. Thus, when we speak of torsion-free biconformal space we do not imply the cotorsion
(Cartan curvature of the cosolder form) vanishes. In phase space interpretations, the solder
form is taken to span the cotangent spaces of the spacetime manifold, while the cosolder form
is taken to span the cotangent spaces of the momentum space. The opposite convention is
equally valid.

Unlike other quotient manifolds arising in conformal gaugings, the biconformal quotient
manifold possesses natural invariant structures. The first is the restriction of the Killing metric,

which is now nondegenerate,

ac
db

0 68 0 68

2nXx2n

M@n)
and this gives an inner product for the basis,
(W W) (w* wp) 0 43

(Wa,w?) (wa,wps) - & oo | (2.14)
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This metric remains unchanged by the generalization to curved base manifolds.

The second natural invariant property is the generic presence of a symplectic form. The
original fiber bundle always has this, because the structure equation (2.5)) shows x® A 7, is
exact; hence, closed d2w = 0, while it is clear the two-form product is nondegenerate because

(x“, ) together span M(()Qn). Moreover, the symplectic form is in canonical form,

0 o
[Qap = )
(e
so x“ and m, are canonically conjugate. The symplectic form persists for the two-form, w® A

wq + €2, as long as it is nondegenerate, so curved biconformal spaces are generically symplectic.

1
Next, we consider the effect of inversion symmetry. As a tensor, the basis inter-
1
change takes the form
sov X,u (5CW71'V
I'hx"? = =
6 L OpuXx"

In order to interchange conformal weights, I% must anticommute with the conformal weight
operator, which is given by

(o' o a

O X +X

Wx” = =
—(55 ™ —Tg

This is the case: we easily check that {I, W}, = I'4WG + WAI% = 0. The commutator

gives a new object,

_goB
Jy = [LW])p=
Sap

Squaring, J’éJC = —6%, we see J% provides an almost complex structure. That the almost

complex structure is integrable follows immediately in this (global) basis by the obvious vanishing
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of the Nijenhuis tensor, N‘%C = J%@DJ% — Jg@DJ% — J‘}) (8@]% — 83J%) = 0.
Next, using the symplectic form to define the compatible metric g (u,v) = Q (u, Jv), we

0,
find in this basis g = o0 , and we check the remaining compatibility conditions of
58

the triple (g, J, ),

w(u,v) = g(Ju,v),

J(u) = (89)7" (¢ (w)),

where ¢, and ¢, are defined by

¢w(u) = w(”?')?
¢g(u) = g(u,-).

These are easily checked to be satisfied, showing /\/l(()2”) is a Kahler manifold. Notice, however,
the metric of the Kahler manifold is not the restricted Killing metric, which we use in the
following considerations.

Finally, a surprising result emerges if we require M(()Q”) to match our usual expectations for
a relativistic phase space. To make the connection to phase space clear, the precise requirements
were studied in [7], where it was shown the flat biconformal gauging of SO (p, ¢) in any dimension
n = p + ¢ will have Lagrangian submanifolds that are orthogonal with respect to the 2n-dim
biconformal (Killing) metric and have nondegenerate n-dim restrictions only if the original space
is Euclidean or signature zero (p € {0, %,n}) and then the signature of the submanifolds is
severely limited (p — p £ 1), leading in the two Euclidean cases to Lorentzian configuration
space, and hence, the origin of time. For the case of flat, eight-dim biconformal space [7] has
the following theorem:

Flat eight-dim biconformal space is a metric phase space with Lagrangian submanifolds that
are orthogonal with respect to the 2n-dim biconformal (Killing) metric and have nondegenerate

n-dim metric restrictions if and only if the initial four-dim space we gauge is Euclidean or
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signature zero. In either of these cases the resulting configuration submanifold is necessarily
Lorentzian [7].

Thus, it is possible to impose the conditions necessary to make biconformal space a metric
phase space only in a restricted subclass of cases, and the configuration space metric must be
Lorentzian. In [7], it was found that with a suitable choice of gauge, the metric may be written

in coordinates ¥, as

1
hap = ) (2ays — ¥*0ap) (2.15)

where the signature changing character of the metric is easily seen.

In [7], there is a restriction necessary to prove the signature theorem. In Section 4 of [7]
the conformal flatness of the momentum submanifold is assumed. This is then proven to result
in an expression for the metric similar to , but with a generic vector, u®. In Section 5
of [7] this generic vector is then related to the coordinates of the momentum space, y,. In
Chapter [3] we will arrive at the signature changing form of the metric without assuming the
conformal flatness of the momentum sector. In fact, we will show the momentum sector can be
consistently chosen to be fully flat.

In the metric above, , Yo = W, is the Weyl connection of the space. (This is
modified to a true vector in the new treatment.) This points to another unique characteristic
of flat biconformal space. The structures of the conformal group, treated as described above,
give rise to a natural direction of time, given by the gauge field of dilatations. The situation
is reminiscent of previous studies. In 1979, Stelle and West introduced a special vector field
to choose the local symmetry of the MacDowell-Mansouri theory. The vector breaks the de
Sitter symmetry, eliminating the need for the Wigner-Inonu contraction. Recently, Westman
and Zlosnik [45] have looked in depth at both the de Sitter and anti-de Sitter cases using a class
of actions, which extend that of Stelle and West by including derivative terms for the vector field
and, therefore, lead to dynamical symmetry breaking. In [76,[77] and Einstein-Aether theory [49)],
there is also a special vector field introduced into the action by hand that makes the Lorentzian
metric Euclidean. These approaches are distinct from that of the biconformal approach, where

the vector necessary for specifying the timelike direction occurs naturally from the underlying
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group structure. We will have more to say about this below, where we show explicitly the
Euclidean gauge theory necessarily possesses a special one-form, v = w — %nabdnbc. This
gives the time direction on a biconformal submanifold, which is necessarily Lorentzian. The full

manifold retains its original symmetry.

2.5. A brief note on gravitation

Notice our development to this point was based solely on group quotients and generalization
of the resulting principal fiber bundle. We have arrived at the form of the curvatures in terms of
the Cartan connection, and Bianchi identities required for integrability, thereby describing certain
classes of geometry. Within the biconformal quotient, the demand for orthogonal Lagrangian
submanifolds with nondegenerate n-dim restrictions of the Killing metric leads to the selection
of certain Lorentzian submanifolds. Our concern in Chapter 3 has to do with the geometric
background rather than with gravitational theories on those backgrounds. For continuity, we
briefly digress to specify the action functionals for gravity. The main results of Chapter 3 concern
only the homogeneous space, /\/l(()%). We will return to the curved case, M(Q”), in Chapter 4.

We are guided in the choice of action functionals by the example of general relativity. Given
the Riemannian geometries of Section 2.3, we may write the Einstein-Hilbert action and proceed.
More systematically, however, we may write the most general, even-parity action linear in the
curvature and torsion. This still turns out to be the tetradic Palatini action and, as noted above,
one of the classical field equations under a full variation of the connection ((5eb,6w“b), implies
vanishing torsion. The latter, more robust approach is what we follow for conformal gravity
theories.

It is generally of interest to build the simplest class of actions possible, and we use the

following criteria:

1. The pure-gravity action should be built from the available curvature tensor(s) and other

tensors which occur in the geometric construction.
2. The action should be of lowest possible order > 1 in the curvatures.

3. The action should be of even parity.
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These are of sufficient generality not to bias our choice. It may also be a reasonable assumption
to set certain tensor fields, for example, the spacetime torsion to zero. This can significantly
change the available tensors, allowing a wider range of action functionals.

Notice, if we perform an infinitesimal conformal transformation to the curvatures,
(02%,9%,Q3,9), they all mix with one another, since the conformal curvature is really a
single Lie-algebra-valued two-form. However, the generalization to a curved manifold breaks
the nonvertical symmetries, allowing these different components to become independent tensors
under the remaining Weyl group. Thus, to find the available tensors, we apply an infinitesimal
transformation of the fiber symmetry. Tensors are those objects which transform linearly and

homogeneously under these transformations.

2.5.1. The auxiliary gauging and Weyl gravity

According to our rules above, an action for the auxiliary gauging is constructible from the
available tensors, ¢, %, together with the invariant metric and Levi-Civita tensors, 74, €abed-
In 2n-dimensions, scale invariance requires n factors of the curvature, so it is the (p,q) = (4, 2)
case that is of interest here. Then the most general even parity, ZVV-invariant possibility is

uniquely determined (up to an overall multiple) to be

Iw _ A *)B
Sau:piliary - O‘/QB/\ QA

- a/(Q“b/\*ﬂba+4Tc/\*Sc—|—29/\*Q),

where Q% is the full SO (4,2) curvature two-form. This leads to a Weyl-Cartan geometry
(i.e. one having nontrivial dilatation and torsion). To achieve Weyl gravity on the ZWV bundle,
we need to break the special conformal symmetry with our choice of the action (putting aside
the question of whether this might be done dynamically). Since the curvature has already
broken the translational symmetry, we expect both nondynamical torsion and nondynamical

special conformal curvature. Dropping the center term in Sflmlimy, we have the Wh-invariant
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Weyl-Bach action [43],

auzxiliary

S _ /(anm*nbﬁ,@nwn). (2.16)

Various special cases of this action have been studied. With the absence of translations and
special conformal transformations, ©4%,T% S,, and € all become independent tensors under
the remaining YW symmetry, making the choice of « and /3 arbitrary. Bach [43] examined the
exceptional case 8 = 2«, for which the dilatation €2 is nontrivial. Assuming a suitable metric
dependence of the connection components (waﬁ,fa,w), metric variation leads to the fourth-
order Bach equation. In efforts to study superconformal gravity, two collaborations, [62-65,(78]|
set 5 = 0, and showed the action reduces to the Weyl curvature squared. Both these sets of
investigations assumed vanishing torsion. Recently (with 5 # 2«) it has been shown when the
full connection is varied independently and the torsion set to zero only in the resulting field

equations, S¥Y

auziliary 1€2ds to the locally dilatationally invariant generalization of the vacuum

Einstein equation [68].
In dimensions higher than four, our criteria lead to still higher order actions. Alternatively,
curvature-linear actions can be written in any dimension by introducing a suitable power of a

scalar field [75,79]. This latter reference [79] gives the ¢? R action often used in tractor studies.

2.5.2. Gravity in the biconformal gauging

The biconformal gauging, based on C/W, also has tensorial basis forms (w®, w,). More-
over, each of the component curvatures ( ";3, Q% Qg, Q) becomes an independent tensor under
the Weyl group.

In the biconformal case, the volume form epa”')‘aﬁ._.ywa/\wﬁ/\. CAWINAW AW AL AWy
has zero conformal weight. Since both €29 and €2 also have zero conformal weight, there exists

a curvature-linear action [50] in any dimension. The most general case is

S:/(aﬂaﬁ—l—ﬂﬂég—%ywaAwﬁ)/\eﬁp“'“a WA LAWY AW, A LA W

w..v

Notice, we now have three important properties of biconformal gravity that arise because of the
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doubled dimension: (1) the nondegenerate conformal Killing metric induces a non-degenerate
metric on the manifold, (2) the dilatational structure equation generically gives a symplectic
form, and (3) there exists a Weyl symmetric action functional linear in the curvature, valid in
any dimension.

There are a number of known results following from the linear action. In [50] torsion-
constrained solutions are found, which are consistent with scale-invariant general relativity.
Subsequent work along the same lines shows the torsion-free solutions are determined by the
spacetime solder form, and reduce to describe spaces conformal to Ricci-flat spacetimes on
the corresponding spacetime submanifoldE] A supersymmetric version is presented in [80], and
studies of Hamiltonian dynamics [81,82] and quantum dynamics [83] support the idea that the
models describe some type of relativistic phase space determined by the configuration space

solution.

2.6. Summary of chapters

The characteristics of a given Cartan geometry depend exclusively on the structure of
the chosen homogenous space. This homogeneous space can then be used to characterize the
gravitational theory. In Chapter 3] we investigate the properties of flat biconformal space (BCS),
Mo = Conformal (n) /Weyl (n). Specifically, we look at BCS in the orthonormal version of
the basis found in [7]. The orthonormal basis clarifies a number of characteristics of the space,
making it easier to see how, though based on conformal symmetry, the submanifold structure
equations organize themselves to look just like the usual Riemannian geometry of GR, with
a Lorentzian signature. Chapter [3| will investigate extensively the characteristics of the spin
connection (identified with rotations and Lorentz boosts) in this new basis. A major point is
that the spin connection, in the time basis, is not fully antisymmetric with respect to the new
metric. There is a symmetric part, which transforms like a tensor. Another tensor, built from
the Weyl connection and the metric scale factor, can also be defined. We will use the general
flat solution of BCS to show the degrees of freedom of the symmetric part of the spin connection

are all due to this last tensor.

“http://www.physics.usu.edu/Wheeler/GaugeTheory/VanishingT03May12. pdf
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In Chapter [4, we look at curved biconformal space and the gravitational theory defined
by the Wehner-Wheeler action. We lay out the theory in full generality with all curvatures,
torsion, cotorsions and dilatational curvatures present. We show some of the Bianchi identities
(integrability conditions) of the theory are more restrictive than in a Riemannian geometry. The
consequences of combining the the full-field equations together with the Bianchi identities and
structure equations is investigated. We conclude by making a number of simplifying assumptions
and recover scale invariant general relativity on the cotangent bundle of spacetime. The chosen
assumptions turn out to be overly restrictive.

In Chapter 5] we summarize the conclusions of the manuscript and discuss future directions

of research.



37

CHAPTER 3
DARK MATTER FROM EUCLIDEAN CONFORMAL SYMMETRIES

3.1. Homogeneous biconformal space in a conformally orthonormal, symplectic basis

The central goal of this chapter is to examine properties of the homogeneous manifold,
/\/l(()zn), which become evident in a conformally orthonormal basis; that is, a basis which is
orthonormal up to an overall conformal factor. Generically, the properties we discuss will be
inherited by the related gravity theories as well.

As noted above, biconformal space is immediately seen to possess several structures not
seen in other gravitational gauge theories: a nondegenerate restriction of the Killing metric,E]
a symplectic form, and Kahler structure. In addition, the signature theorem in [7] shows if
the original space has signature +n or zero, the imposition of involution conditions leads to
orthogonal Lagrangian submanifolds that have nondegenerate n-dim restrictions of the Killing
metric. Further, constraining the momentum space to be as flat as permitted requires the
restricted metrics to be Lorentzian. We strengthen these results in this Section and the next.
Concerning ourselves only with elements of the geometry of the Euclidean (s = £n) cases
(as opposed to the additional restrictions of the field equations, involution conditions, or other
constraints), we show the presence of exactly such Lorentzian signature Lagrangian submanifolds
without further assumptions.

We go on to study the transformation of the spin connection when we transform the basis
of an eight-dim biconformal space to one adapted to the Lagrangian submanifolds. We show,
in addition to the Lorentzian metric, a Lorentzian connection emerges on the configuration
and momentum spaces and there are two new tensor fields. Finally, we examine the curvature
of these Lorentzian connections and find both a cosmological constant and cosmological dust.
While it is premature to make quantitative predictions, these new geometric features provide

novel candidates for dark energy and dark matter.

!There are nondegenerate restrictions in anti-de Sitter and de Sitter gravitational gauge theories.
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3.1.1. The biconformal quotient
We start with the biconformal gauging of Section [2.4] specialized to the case of compacti-
fied, Euclidean R? in a conformally orthonormal, symplectic basis. The Maurer-Cartan structure

equations are

dw = w“ﬁ AW, + 2Affgwu Aw”, (3.1)
dw® = ° AW+ w A w, (3.2)
dwy, = Wb ANws+waAw, (3.3)

dw = w*Awq, (3.4)

where the connection one-forms represent SO (4) rotations, translations, special conformal trans-
formations and dilatations, respectively. The projection operator A;”E = % (536‘5 — 5““(575> in
equation gives that part of any (i)—tensor antisymmetric with respect to the original
Euclidean metric, d,3. As discussed in Section , this group has a nondegenerate, 15-dim
Killing metric. We stress the structure equations and Killing metric — and hence, their restrictions
to the quotient manifold — are intrinsic to the conformal symmetry.

The gauging begins with the quotient of this conformal group, SO (5,1), by its Weyl
subgroup, spanned by the connection forms, w? (here dual to SO(4) generators) and w. The
cotangent space of the quotient manifold is then spanned by the solder form, w®, and the
cosolder form, w,, and the full conformal group becomes a principal fiber bundle with local
Weyl symmetry over this eight-dim quotient manifold. The independence of w® and w, in
the biconformal gauging makes the two-form, w® A w,, nondegenerate, and equation ((3.4)
immediately shows w® A w,, is a symplectic form.

The involution evident in equation shows the solder forms, w®, span a submanifold,
and from the simultaneous vanishing of the symplectic form, this submanifold is Lagrangian.
Similarly, equation shows the wg span a Lagrangian submanifold. However, notice neither

of these submanifolds, spanned by either w® or w, alone, has an induced metric, since by
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equation ([2.14]), <wo‘,wf3> = (wq,wg) = 0. The orthonormal basis will make the Killing metric
block diagonal, guaranteeing its restriction to the configuration and momentum submanifolds
have well-defined, nondegenerate metrics.

It was shown in [7] it is consistent (for signatures £mn, 0 only) to impose involution condi-
tions and momentum flatness in this rotated basis in such a way that the new basis still gives
Lagrangian submanifolds. Moreover, the restriction of the Killing metric to these new subman-
ifolds is necessarily Lorentzian. In what follows, we do not need the assumptions of momentum
flatness or involution, and work only with intrinsic properties of M[(]Qn). This section describes
the new basis and resulting connection, while the next establishes that for initial Euclidean sig-
nature, the principal results of [7] follow necessarily. Our results show the time-like directions in

these models arise from intrinsically conformal structures. We now change to a new canonical

basis, adapted to the Lagrangian submanifolds.

3.1.2. The conformally-orthonormal Lagrangian basis

In [7] the (w®, w,) basis is rotated so the metric, hqp becomes block diagonal

0 43 = fhay] = haw 0 |

5 0 0 —he
while the symplectic form remains canonical. This makes the Lagrangian submanifolds orthog-
onal with a nondegenerate restriction to the metric. Here we use the same basis change, but
in addition define coefficients, h*, to relate the orthogonal metric to one conformally orthonor-
mal on the submanifolds, 7., = haahaghbﬂ, where 74, is conformal to diag (£1,£1,+1,+1).
From [7] we know hgy, is necessarily Lorentzian, hgyp = nay, = €2?diag (—1,1,1,1) = e2¢na0b, and
we give a more general proof below. Notice the definition of 74 includes an unknown conformal

factor. The required change of basis is then

1
e’ = hf <wo‘ + QhO‘BwB) , (3.5)

1
f, = no (2% — hagw’8> (3.6)
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with inverse basis change

Ww® = %h;‘ (ea - n“bfb) : (3.7)
wa = hS (fa n nabeb> . (3.8)

Using ([2.14)), the Killing metric is easily checked to be

(e®,e’) (e f,) h&hph @) 0
(£,€")  (fu,5) 0 ~h&h has)
e~ 20ngb 0
0 —62¢n2b

where hog = h(qp), and ho‘ﬁhg7 =05,
By transforming the dilatation equation (3.4)) to find dw = e%f,, we immediately see
these submanifolds are Lagrangian. We refer to the f, = 0 and e* = 0 submanifolds as the

configuration and momentum submanifolds, respectively.

3.1.3. Properties of the structure equations in the new basis

We now explore the properties of the biconformal system in this adapted basis. Rewriting
the remaining structure equations , , in terms of e* and f;, we show some striking
cancelations that lead to the emergence of a connection compatible with the Lorentzian metric,
and two new tensors.

We begin with the exterior derivative of equation , using structure equations (|3.2)) and
equation (3.3)), and then using the basis change equations (3.7} [3.8). Because equations (3.7
involve the sum and difference of e* and fj, separating by these new basis forms leads to
a separation of symmetries. This leads to a cumbersome expansion, which reduces considerably

and in significant ways, to

1 1
de® = e’ AOYTe, —nPef, A2Te + inbcdnab Ne‘+ §dn“b Ay + 207, A w, (3.9)
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where we define projections ©4f = % (6365 — n%mpq) and 224 = % (6355 + n“dncb) that separate
symmetries with respect to the new metric 7, rather than ,3. These give the antisymmetric
and symmetric parts, respectively, of a (})—tensor with respect to the new orthonormal metric,
Nab- Notice that these projections are independent of the conformal factor on 7.

The significance of the reduction lies in how the symmetries separate between the different
subspaces. Just as the curvatures split into three parts, equation (3.9)) and each of the remaining
structure equations splits into three parts. Expanding these independent parts separately allows
us to see the Riemannian structure of the configuration and momentum spaces. It is useful to

first define
Ty, = af+ 8%, (3.10)

where af = @ggTCd and B9 = Egglv-cd. Then, to facilitate the split into e® A el e? A fy, and

f, N f}, parts, we partition the spin connection and Weyl vector by submanifold, defining

afy = o4+ =05+, (3.11)
BY = wh+ph = e’ + 0%t (312)
w = Wye+W4,. (3.13)

We also split the exterior derivative, d = d ;) + d,), where coordinates z and y, are used
on the e* = e, “dz® and f, = f, “dy, submanifolds, respectively. Using these, we expand
each of the structure equations into three W-invariant parts. The complete set (with curvatures
included for completeness) is given in Appendix [Al

The simplifying features and notable properties include:

1. The new connection: The first thing is that all occurrences of the spin connection, waﬁ,

may be written in terms of the combination

4 = hlwbh — hSdhg, (3.14)
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which, as we show below, transforms as a Lorentz spin connection. Although the basis
change is not a gauge transformation, the change in the connection has a similar in-
homogeneous form. Because h? is a change of basis rather than local SO (n) or local
Lorentz, the inhomogeneous term has no particular symmetry property, so 79 will have

both symmetric and antisymmetric parts.

. Separation of symmetric and antisymmetric parts: Notice in equation how the anti-
symmetric part of the new connection, o, is associated with e’ while the symmetric part,
3%, pairs with f.. This surprising correspondence puts the symmetric part into the cross
terms while leaving the connection of the configuration submanifold metric compatible,

up to the conformal factor.

. Cancellation of the submanifold Weyl vector: The Weyl vector terms cancel on the con-
figuration submanifold, while the f, terms add. The expansion of the df, structure
equation shows the Weyl vector also drops out of the momentum submanifold equations.
Nonetheless, these submanifold equations are scale invariant because of the residual met-
ric derivative. Recognizing the combination of dh terms that arises as dn®, and recalling
that 7y, = 62¢772b, we have —%dn‘w??cb = 0yd¢. When the metric is rescaled, this term

changes with the same inhomogeneous term as the Weyl vector.

. Covariant derivative and a second Weyl-type connection: It is natural to define the 7°-
covariant derivative of the metric. Since n®®a? 4 n®ab, = 0, it depends only on 3% and

the Weyl vector,

D?’]ab = dT]ab + nchac+nachc o 2wnae7 (315)

= dn® 4 2y°B% — 2wn®. (3.16)

This derivative allows us to express the structure of the biconformal space in terms of the

Lorentzian properties.
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When all of the identifications and definitions are included, and carrying out similar calculations

for the remaining structure equations, the full set becomes

drt = T AT+ Afnece A el — ALy U Ay + 2050 E At (3.17)
de® = e“Na’+ %ncbdn“ Aeb + %Dn“b A, (3.18)
df, = o’ Af,+ %andnab A, — %Dnab Aeb, (3.19)
dw = e'ANf,, (3.20)

with the complete W-invariant separation in Appendix [Al

3.1.4. Gauge transformations and new tensors

The biconformal bundle now allows local Lorentz transformations and local dilatations on
M(()2”). Under local Lorentz transformations, A<, the connection 79 changes with an inhomo-
geneous term of the form f\cbdAac. Since this term lies in the Lie algebra of the Lorentz group, it
is antisymmetric with respect to 74, O (]\echde) = ]\ebdA“e and therefore, only changes the
corresponding ©¢;-antisymmetric part of the connection, with the symmetric part transforming

homogeneously:

~a a c Ad AC a
ab = AcadA — bdAC7

Bab = Aac cd]\cé'

Having no inhomogeneous term, 39 is a Lorentz tensor. In Appendix [B| we go through the
gauge transformations of all of the structure equations. This new tensor field, 3%, necessarily
includes degrees of freedom from the original connection that cannot be present in af, the
total equaling the degrees of freedom present in 79. As there is no obvious constraint on the
connection o, we expect 39 to be highly constrained. Clearly, a¢; transforms as a Lorentzian
spin connection, and the addition of the tensor, 3%, preserves this property, so 79 is a local
Lorentz connection.

Transformation of the connection under dilatations reveals another new tensor. The Weyl
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vector transforms inhomogeneously in the usual way, @ = w + df, but, as noted above, the
expression %ncbdnac also transforms, %ﬁcbdﬁac = 5gdgz~5 = 07 (d¢ —df), so the combination
v = w + d¢ is scale invariant, see Appendix [Bl Notice the presence of two distinct scalars
here. Obviously, given %n“cdncb = pd¢, we can choose a gauge function, fi = —¢, such that
%nacdncb = 0. We also have dw = 0 on the configuration submanifold, so w = d fs, for some
scalar f5, and this might be gauged to zero instead. But while one or the other of w or d¢ can
be gauged to zero, their sum is gauge invariant. As we show below, it is the resulting vector,
v, that determines the timelike directions.

Recall certain involution relationships must be satisfied to ensure spacetime and momentum

space are each submanifolds. The involution conditions in homogeneous biconformal space are

0 = piAe —vi) net, (3.21)

0 = plunfy—uy Af, (3.22)

where v = Viz) tUgy) = vee® + uf,. These were imposed as constraints in [7], but are shown

below to hold automatically in Euclidean cases.

3.2. Riemannian spacetime in Euclidean biconformal space

The principal result of [7] was to show the flat biconformal space, MéQn), arising from any
SO (p, q) symmetric biconformal gauging can be identified with a metric phase space only when
the initial n-space is of signature +n or zero. To make the identification, involution of the
Lagrangian submanifolds was imposed, and it was assumed the momentum space is conformally
flat. With these assumptions the Lagrangian configuration and momentum submanifolds of the
signature +n cases are necessarily Lorentzian.

Here we substantially strengthen this result, by considering only the Euclidean case. We
are able to show further assumptions are unnecessary. The gauging always leads to Lorentzian
configuration and momentum submanifolds, the involution conditions are automatically satisfied
by the structure equations, and both the configuration and momentum spaces are conformally

flat. We make no assumptions beyond the choice of the quotient C/WV and the structures that
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follow from these groups. Because this result shows the development of the Lorentzian metric

on the Lagrangian submanifolds, we give details of the calculation.

3.2.1. Solution of the structure equations

A complete solution of the structure equations in the original basis, equations ([3.1}{3.4)), is
given in [51] and derived in [50], with a concise derivation presented in [81]. By choosing the
gauge and coordinates (w®, sg) appropriately, where Greek indices now refer to coordinates and

will do so for the remainder of this manuscriptE] the solution may be given the form

wG = 2A705s,dw”, (3.23)
w* = dw“, (3.24)
w, = dsy, — <sa35 — ;525a5> duw?, (3.25)

w = —sqdw?, (3.26)

as is easily checked by direct substitution. Our first goal is to express this solution in the adapted
basis and find the resulting metric. See Appendix [C] for detailed calculations.

From the original form of the Killing metric, equation (2.14]), we find

(dw®, dw?) (dw*,dsg) 0 45
(dsq,dw?)  (dsq, dsg) 85 —kap

where we define kg = 325a5 — 25453. This shows dw® and ds, do not span orthogonal
subspaces. We want to find the most general set of orthogonal Lagrangian submanifolds, and
the restriction of the Killing metric to them.

Suppose we find linear combinations of the orginal basis x? A, that make the metric

block diagonal, with A, = 0 and k” = 0 giving Lagrangian submanifolds. Then any further

5The connection forms could be written with distinct indices, for example as w® = §¢dw®, but this is
unnecessarily cumbersome.
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transformation,

Y = %nﬂ,

Ao = BPxg,

leaves these submanifolds unchanged and is therefore equivalent. Now suppose one of the linear

combinations is

Ao = aAldss+ BCa,dut

= AP (adsg + BCs,dut),

where C' = A~1C and the constants are required to keep the transformation nondegenerate.
Then A, = ads, + ﬁC’aﬁde spans the same subspace. A similar argument holds for &°, so

if we can find a basis at all, there is also one of the form

Ay = adsa—l—ﬂC’agdwﬁ,

k® = pdw® + VBaﬂd%.
Now check the symplectic condition,
KN = (1BCa,) dudut + ap (55 _ V,BCWBQB) dw'dss + (uaBaﬁ) dsgdsa.

To have k®\, = dw®ds,, B*? and Cop must be symmetric and

ap—1

B=RB!
v

Cc~'=asC.

Replacing B, in the basis, we look at orthogonality of the inner product, requiring

0 = (K% Ag)

-1
= <,udw°‘ + %C’a“dsu, adsg + Bngdw”>
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1 _
= (2ap—1)05 - Ba (ap —1) C*Ek,p,

a(ap—1)
B(2apu—1)

with solution Cpg = kop. Therefore, the basis

a(ap—1) P
Ao = adsq + ————kqpdw”,
ads, + Qap—1) sdw
20— 1
kY = udwo‘—kLkaﬁdsB
a

satisfies the required properties and is equivalent to any other basis which does.

The metric restrictions to the submanifolds are now immediate from the inner products:

<K',a K,B> — 2aﬂilkaﬁ
b a2 )
2
[0
Aoy, A = ——Fkqg.
{(Aas Ag) Sap 1"

This shows the metric on the Lagrangian submanifolds is proportional to k.3, and we normalize

the proportionality to 1 by choosing u = % and 8 = ka, where k = 1. This puts the

basis in the form

k

= o5 (682 +1) dw® + 2052k dsg )
1

A = 55 ( kB2dsa + (kB — 1) k:a@dw5> .

Now that we have established the metric kop = 5% (Jus — S 5aSg), Where 845 is the
Euclidean metric and s? = 50‘53a35 > 0, and have found one basis for the submanifolds, we

may form an orthonormal basis for each, setting 1., = haahbﬁk:ag.

k

o = ghd ((1 + k%) du® + 2k52k0‘5d35) , (3.27)
1

foo= g5hd (2k/6’2dsa — (1-kp?) k;agdwﬁ) . (3.28)

We see from the form k. = 52 (6a5 — S%Sa86) that at any point s, a rotation that takes

ﬁsg to a fixed direction n will take ks to s?diag (—1,1,...,1) so the orthonormal metric
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Nab is Lorentzian. This is one of our central results. Since equations ([3.23{{3.26)) provide an
exact, general solution to the structure equations, the induced configuration and momentum
spaces of Euclidean biconformal spaces are always Lorentzian, without restrictions. We now find
the connections forms in the orthogonal basis and check the involution conditions required to

guarantee the configuration and momentum subspaces are Lagrangian submanifolds.

3.2.2. The connection in the adapted solution basis
We have defined 7 in equation (3.14)) with antisymmetric and symmetric parts a and
%, subdivided between the e® and f, subspaces, equations , . All quantities may
be written in terms of the new basis. We calculate these transformations in explicit detail in
Appendix We will make use of s, = h¥sq and 0y = haahbﬁéaﬁ. In terms of these, the
orthonormal metric is 7., = s° (5ab — s%sasb), where s2 = §%s,s, > 0. Solving for 0,5, we

find 6, = S%T}ab + S%sasb. Similar relations hold for the inverses, 7%, 6%, see Appendix . In

addition, we may invert the basis change to write the coordinate differentials,

dw® = kghp (e“ _ knabfb> ,

: a ((1 — kB%) nape” + k (1 + kB?) fa) :

dSa = ﬁh

The known solution for the spin connection and Weyl form, equations (3.23)/3.26]) immediately

become

wl = 2A%s kA (ed—kndefe), (3.29)

w = —kBs.e® + s, L, (3.30)

where we easily expand the projection AGf in terms of the new metric. Substituting this expan-

sion to find 79, results in

T = B(20%s. + 2% mpase + 207 sespSa) (k:ed _ ndgfg) — hdh2.
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The antisymmetric part is then af = @ggrcd = —@gghdo‘dhc‘j with the remaining terms cancel-
ing identically. Furthermore, as described above, hS is a purely s,-dependent rotation at each
point. Therefore, the remaining hj*dhy term will lie totally in the subspace spanned by ds,,

giving the parts of a9 as

a l_kﬁz ad a 0 a c d

o b = —T@cb <hb 83,8h0‘> hﬂncde N (331)
a k+ﬁ2 ad « 0 a c

vV = =g o (Mg hd ) hite (3.32)

Recall the value of k& or [ in these expressions is essentially a gauge choice and should be
physically irrelevant. If we choose 32 = 1, we get either 0% = 0 or v% = 0, depending on the
sign of k.

Continuing, we are particularly interested in the symmetric pieces of the connection since
they constitute a new feature of the theory. Applying the symmetric projection to 79, we
expand 3% = Z%7¢,. Using =24 (hf'dh2) = LhSh/ ko1 dE,s (see Appendix to express the

derivative term in terms of v,, we find the independent parts

/JJ%; = (*kﬁégsc + ﬁ'7+ <5§5c + 5‘6151) + nadnbcsd + 277ad5b505d)) ecj

Py = (55877“18[1 + k- (51?776de + 85n s g + sy + 277ad77665b5d56>> f.,

where v1 = % (1 j:kﬁ2). Written in this form, the tensor character of u9 and p9 is not
evident, but since we have chosen 7, orthonormal (referred to later as the orthonormal gauge),
¢ =0,and v=w+d¢ = w we have v, + uiy = —kfBs.e” + Bn™s.fy, so we may equally

well write

2

py = <5§fuc — ks <5§vc + 6%y + vy + Wn“dvbvcvd>> e’ (3.33)
2

pYy = (5§uc + kvy_ <6§uc + dpu’ + n“cnbdud + @nbduaucud>> f., (3.34)

which are manifestly tensorial.
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The involution conditions, equations ([3.21}3.22)), are easily seen to be satisfied identically by

equations , . Therefore, the f, = 0 and e® = 0 subspaces are Lagrangian submanifolds

spanned respectively by e* and f,. There exist coordinates such that these basis forms may be
written

e’ = ¢, “dat, (3.35)

f, = f, "dy,. (3.36)

To find such submanifold coordinates, the useful thing to note is d (%) = 0o, k*“dsy, so the

basis may be written as

e = b d(k;%w +55aﬁ( ‘;))—h“dx
()13 () -5) = s

with % = ky w® + 368 (i—‘g) and y, = kf8 (Z—‘Q‘) — v—0w”. This confirms the involution.

3.3. Curvature of the submanifolds

The nature of the configuration or momentum submanifold may be determined by restricting
the structure equations by f, = 0 or e* = 0, respectively. To aid in the interpretation of
the resulting submanifold structure equations, we define the curvature of the antisymmetric

connection

R} = daf—a%Aa% (3.37)
1 1
= SRjee A el + RAGf. Ned + §R%cdfc Afy. (3.38)
While all components of the overall Cartan curvature, Q4 = ( b, T Sq, Q) are zero on

/Vlézn), the curvature, R%, and in particular the curvatures % %ea€S N e and %]%‘lb‘:dfc N £y

on the submanifolds, may or may not be. Here, we examine this question using the structure

equations to find the Riemannian curvature of the connections, o} and ~j, of the Lorentzian
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submanifolds.

3.3.1. Momentum space curvature

To see the Lagrangian submanifold equations describe a Riemannian geometry, we set
e® = 0 in the structure equations, (3.17}{3.20), and choose the ¢ = 0 (orthonormal) gauge (or
see Appendix [A] equations (A.13|{A.16)), with the Cartan curvatures set to zero). Then, taking

the ©J; projection, we have

1
ozziwwmAm—%AﬁuiﬁwﬁﬁﬁA% (3.39)

0 = d(y)fb*’yab/\fa.

These are the structure equations of a Riemannian geometry with additional geometric terms,
—pcb/\pac—i—@jgn“CAglj’cfb/\fa, reflecting the difference between Riemannian curvature and Cartan

curvature. The symmetric projection is

DW p?

—kEGALNEy Ny,

dyuy = 0,

where u(y),7% and pf are given by equations (3.303.32}3.34)), respectively. Rather than com-

puting R%Cd directly from ~9, which requires a complicated expression for the local rotation,
h, we find it using the rest of equation ([3.39)).

Letting 8 = e so that
cosh’\ k=1

k+’)/7 = )
sinh?\ k= -1

the curvature is

2 d —
Lpocige, cosh® A0 (n° + 2n“Infesasc) £y Ny k=1
2 sinh? \e (ncf + QUCdnfesdse) frAf, k=-1
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Now consider the symmetric equations. Notice the Weyl vector has totally decoupled, with
its equation showing that uy) is closed, a result that also follows from its definition. For the
symmetric projection, we find Eggn“CAig’cfbfa = 0. Then, contraction of D%p¢ ¢ with nggnccu®u®,
together with d,yu s = 0 shows u® is covariantly constant, D?y)ub = 0.

If we choose k = —1 and A = 0, the Riemann curvature of the momentum space vanishes.
This is a stronger result than in [7], where only the Weyl curvature could consistently be set to
zero. In this case, the Lagrangian submanifold becomes a vector space and there is a natural
interpretation as the cotangent space of the configuration space. However, the orthonormal
metric in this case, (f;,f,) = 745, has the opposite sign from the metric of the configuration
space, <ea,eb> = —n%. This reversal of sign of the metric, together with the the units,
suggests the physical (momentum) tangent space coordinates are related to the geometrical
ones by po ~ ihys. This has been suggested previously [84] and explored in the context of
quantization [83].

Leaving 8 and k unspecified, we see that in general, momentum space has nonvanishing
Riemannian curvature of the connection «9, a situation suggested long ago for quantum gravity
[85,/86]. We consider this further in Section 7.3. Whatever the values of § and &, the momentum

space is conformally flat. We see this from the decomposition of Riemannian curvature into the

Weyl curvature, C9, and Schouten tensor, R, given by
R%Y = C% - 20%R.e’.

The Schouten tensor, R, = ﬁ (Rab — ﬁRnaO e’ is algebraically equivalent to the Ricci
tensor, Rg,. It is easy to prove that when the curvature two-form can be expressed as a
projection in the form R% = —2@§§Xeed, then X, is the Schouten tensor, and the Weyl

curvature vanishes. Vanishing Weyl curvature implies conformal flatness.

3.3.2. Spacetime curvature and geometric curvature
The curvature on the configuration space takes the same basic form. Still in the orthonor-

mal gauge, and separating the symmetric and antisymmetric parts as before, we again find a
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Riemannian geometry with additional geometric terms,

0 = RY(0)— pou’ — OF A e, (3.40)
0 = de’—eo, (3.41)
together with
0 = Dmu —EFATmegede’,

0 = d)v.

Looking first at all the ©%-antisymmetric terms and substituting in 1) for p%, we find

the Riemannian curvature is
RY = (7] — k) OF (e + 2scsc) ee”,
so the Weyl curvature vanishes and the Schouten tensor is
R, = % (’yi — k) (Nab + 28a5p) eb. (3.42)

The vanishing Weyl curvature tensor shows the spacetime is conformally flat. This result is
discussed in detail below.

The equation, d(,)v = 0 shows v is hypersurface orthogonal. Expanding the remaining
equation with d(;)v = 0, D(;)nay = 0 and D(,)e* = 0, contractions involving 74, and v,
quickly show

D@y, =0.

This, combined with D® % = 0 and u® = —kn®uv;, shows the full covariant derivative vanishes,
D,v, = 0. The scale vector is, therefore, a covariantly constant, hypersurface orthogonal, unit

timelike Killing vector of the spacetime submanifold.
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3.3.3. Curvature invariant
Substituting 5 = e* as before, the components of the momentum and configuration cur-
vatures become
cosh? A (03567 — 0761 ) (g +2sp5) k=1

ndfnegRabfg = 7 f 5
sinh? \ (©350f — 02567 ) (nge +25550) k=-1

and

) s (58] — 055 ) (g +250) k=1

%de - ¥ f
cosh? \ (6%(56 — 62‘550[) (Nge +2sfsc) k=-—1

Subtracting these,
Haeg BY? = R = e (0450 — ©%] ) (17e +25750)

so the difference of the configuration and momentum curvatures is independent of the linear
combination of basis forms used. This coupling between the momentum and configuration space
curvatures adds a sort of complementarity that goes beyond the suggestion by Born [85,80]
that momentum space might also be curved. As we continuously vary 32, the curvature moves
between momentum and configuration space but this difference remains unchanged. We may
even make one or the other Lagrangian submanifold flat.

For the Einstein tensors,

1
d
Naeta Gty = Gl = k(0= 3)nay + (n = 2) sasy)
3.3.4. Candidate dark matter
There is a surprising consequence of the tensor u9 in the Lorentz structure equation. The
structure equations for the configuration Lagrangian submanifold above describe an ordinary
curved Lorentzian spacetime with certain extra terms from the conformal geometry that exist

even in the absence of matter. We gain some insight into the nature of these additional terms
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from the metric and Einstein tensor. In coordinates, the metric takes the form

2
hozﬁ = 82 <504,3 — 828a55> y

which is straightforwardly boosted to 321725 at a point. Since the spacetime is conformally flat,
gradients of the conformal factor must be in the time direction, s,, so we may rescale the time,

dt' = v/s2dt to put the line element in the form
ds® = —dt”? + s* () (dz® + dy® + dz?) .

That is, the vacuum solution is a spatially flat FRW cosmology. Putting the results in terms of
the Einstein tensor and a coordinate basis, we expect an equation of the form éag = /iTo%att”

where the Cartan Einstein tensor is modified to
= _ 2 3 2
Gop = Gop—3(n—2)s"s453 + 3 (n—2)(n—3) s hag, (3.43)

where G 3 is the familiar Einstein tensor. The new geometric terms may be thought of as a com-
bination of a cosmological constant and a cosmological perfect fluid. With this interpretation,

we may write the new cosmological terms as
KIGE™ = (po+po) vavs + Pohas — Ahag,

where KT5°™ = 3 (n — 2) s2vav3—3 (n — 2) (n — 3) s>hap. Inn = four-dimensions, % (po + po) =
A —pg, with the equation of state and the overall scale undetermined. If we assume an equation
of state pg = wpy, this becomes

(14 3w) po = A.

N

This relation alone does not account for the values suggested by the current Planck data: about
0.68 for the cosmological constant, 0.268 for the density of dark matter, and vanishing pressure,

w = 0. However, these values are based on standard cosmology, while we have not yet included
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matter terms in equation . Moreover, the proportions of the three geometric terms in
equation may change when curvature is included. Such a change is suggested by the
form of known solutions in the original basis, where h,g is augmented by a Schouten term. If
this modification also occurs in the adapted basis, the ratios above will be modified. We are

currently examining such solutions.

3.4. Discussion

Using the quotient method of gauging, we constructed the class of biconformal geometries.
The construction starts with the conformal group of an SO (p, q)-symmetric pseudo-metric
space. The quotient by W (p,q) = SO (p,q) x dilatations gives the homogeneous manifold,
M3". We show this manifold is metric and symplectic (as well as Kahler with a different
metric). Generalizing the manifold and connection while maintaining the local W invariance,
we display the resulting biconformal spaces, M?" [5,6,[51].

This class of locally symmetric manifolds becomes a model for gravity when we recall the
most general curvature-linear action [50].

It is shown in [7] that M((]Qn) (p,q) in any dimension n = p + ¢ will have Lagrangian
submanifolds that are orthogonal with respect to the 2n-dim biconformal (Killing) metric and
have nondegenerate n-dim metric restrictions on those submanifolds only if the original space
is Euclidean or signature zero (p € {0, %,n}) and then the signature of the submanifolds is
severely limited (p — p £ 1). This leads in the two Euclidean cases to Lorentzian configuration
space, and hence the origin of time [7]. For the case of flat, eight-dim biconformal space, the
Lagrangian submanifolds are necessarily Lorentzian.

Our investigation explores properties of the homogeneous manifold, MZ2" (n,0). Starting
with Euclidean symmetry, SO (n), we clarify the emergence of Lorentzian signature Lagrangian
submanifolds. We extend the results of [7], eliminating all but the group-theoretic assump-
tions. By writing the structure equations in an adapted basis, we reveal new features of these

geometries. We summarize our new findings below.

A new connection

There is a natural SO (n) Cartan connection on M3". Rewriting the biconformal structure
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equations in an orthogonal, canonically conjugate, conformally orthonormal basis automati-
cally introduces a Lorentzian connection and decouples the Weyl vector from the submanifolds.
The submanifold equations remain scale invariant because of the residual metric derivative,
%dnacncb = 0pd¢. When the metric is rescaled, this term changes with the negative of the
inhomogeneous term acquired by the Weyl vector. This structure emerges directly from the
transformation of the structure equations, as detailed in points 1 through 4 in Section [3.1.3
Specifically, we showed all occurrences of the SO (4) spin connection W may be written
o

in terms of the new connection, 79 = ho’}wo‘ﬁhbﬁ — hydhy

le'Rl

which has both symmetric and

antisymmetric parts. These symmetric and antisymmetric parts separate automatically in the

d

structure equations, with only the Lorentz part of the connection, a9 = ©%7¢,

describing the
evolution of the configuration submanifold solder form. The spacetime and momentum space

connections are metric compatible, up to a conformal factor.

Two new tensors

It is especially striking how the Weyl vector and the symmetric piece of the connection
are pushed from the basis submanifolds into the mixed basis equations. These extra degrees of
freedom are embodied in two new Lorentz tensors.

The factor 47 d¢, which replaces the Weyl vector in the submanifold basis equations, allows
us to form a scale-invariant one-form, v = w+d¢, in the mixed basis equations. It is ultimately
this vector that determines the time direction.

We showed the symmetric part of the spin connection, 3%, despite being a piece of the
connection, transforms as a tensor. The solution of the structure equations shows the two
tensors, v and (39 are related, with 3% constructed cubically, purely from v and the metric.
Although the presence of 39 changes the form of the momentum space curvature, we find the
same signature changing metric as found in [7]. Rather than imposing vanishing momentum
space curvature as in [7], we make use of a complete solution of the Maurer-Cartan equations to
derive the metric. The integrability of the Lagrangian submanifolds, the Lorentzian metric and
connection, and the possibility of a flat momentum space are all now seen as direct consequences

of the structure equations, without assumptions.
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Riemannian spacetime and momentum space

The configuration and momentum submanifolds have vanishing dilatational curvature, mak-
ing them gauge equivalent to Riemannian geometries. Together with the signature change from
the original Euclidean space to these Lorentzian manifolds, we arrive at a suitable arena for
general relativity in which time is constructed covariantly from a scale-invariant Killing field.

This field is provided automatically from the group structure.

Effective cosmological fluid and cosmological constant

Though we work in the homogeneous space, M2", so that there are no Cartan curvatures,
there is a net Riemannian curvature remaining on the spacetime submanifold. We show this
to describe a conformally flat spacetime with the deviation from flatness provided by additional

geometric terms of the form

Gap = Gag — povavg + Ahog = 0; (3.44)

that is, a background dust and a cosmological constant. The values py = 3 (n — 2) s? and
A =3 (n—2)(n—3)s® give, in the absence of physical sources, the relation (2 + 3w) py = A
for an equation of state pg = wpg. An examination of more realistic cosmological models

involving matter fields and curved biconformal spaces, M?2", is underway.
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CHAPTER 4
BICONFORMAL GRAVITY WITH EMERGENT LORENTZIAN STRUCTURE

4.1. Introduction

In the previous chapters, we have shown flat biconformal space, the homogeneous space
formed from the quotient of the conformal group by the rotation group cross dilatations,
SO (5,1) /SO (4) x RT, possesses two new tensors and a natural Lorentz spin connection.
The thrust of the current chapter is to show how these natural structures meld with a gravi-
tational action principle in this geometry. General relativity on curved biconformal space has
been shown to arise from the Wehner—Wheeler action [50]. This action is conformally invari-
ant, despite linearity in the curvatures. More recently, it has been shown the torsion—free case
generically gives rise to general relativity. This work was done in a context where the Lorentzian
signature of the submanifolds was imposed by starting with a Lorentzian signature before gaug-
ing. Here we examine solutions to biconformal gravity in the basis where the Lorentzian structure
emerges directly from the gauge theoretic construction when we start from Euclidean space. We
show that with a simple ansatz, we again regain general relativity, but on both submanifolds.
This is due to a complete symmetry between the two Lagrangian submanifolds, interpreted as
configuration and momentum space. We can break that symmetry to show biconformal grav-
ity reproduces, in a special case, general relativity. The solution will be kept as general as
possible through the early development of this manuscript. Not until Sections and
will we make some simplifying assumptions. For a comprehensive review of the construction of
homogeneous biconformal space see Chapter 3.

There exists a torsion-free solution to biconformal space [50] that reproduces all of general
relativity; however, the current work focuses on showing general relativity emerge in the time
basis of [7]. Unfortunately, when the basis is rotated, the torsion and cotorsions mix nontrivially,
so we are unable to use the existing solution in the same way we used the existing solution of
the homogeneous space in Chapter 3 to find the symmetric parts of the spin connection. Instead
we use an ansatz, inspired by the homogeneous solution, that simplifies the system of equations

extensively.
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4.1.1. Notation

We follow the same notational conventions as in the previous chapters of this manuscript.
Of particular importance in this chapter will be the positions of the last two indices on curvatures.
The last two indices will always appear in their original positions; all metrics will be explicit.
This then means R9_;, R%S, and R%Cd are distinct tensors, referring to the configuration,

mixed-basis and momentum curvatures, respectively.

4.1.2. Organization of chapter

The organization of the chapter is as follows. In Section we first review the structure
equations of curved biconformal space in the orthonormal, Lagrangian basis. Then we survey the
integrability conditions of these equations, which will turn out to strongly couple the curvatures.
The last part of Section looks at the curvature-linear action of [50] and the field equations
therefrom. In Section [4.3] we show how the combination of the field equations and structure
equations dictate submanifold structures very similar to two Riemannian geometries, but which,
in general, have a number of new structures. Through this section, we still consider the fully
general biconformal space. In Section [4.4] we investigate the consequences of choosing a simple
linear ansatz for one of these new structures, the tensorial, symmetric part of the spin connection.
In Section [4.5] we will show general relativity on a cotangent bundle is a special case of curved
biconformal space, by choosing a number of the torsion and cotorsion tensors to vanish. In the

last section we make some concluding remarks.

4.2. Curved biconformal space in the orthonormal canonical basis

In Chapter 3, we laid out the construction of biconformal space in the Lagrangian, orthonor-
mal frame. The quotient manifold method gives us a manifold described by the Maurer-Cartan
structure equations of the conformal group and possessing local Weyl symmetry (SO(n) and
scale). Those structure equations, now expanded in terms of the basis forms, can be generalized

to include curvatures for each of the connection types. These break out into four types.

1. The curvature of the spin connection, which is referred to as the SO(4) curvature.
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2. The curvature of only the antisymmetric part of the spin connection, referred to as the

Riemannian curvature.

3. The curvature of the Weyl connection, referred to here as the dilatational curvature.

4. The curvature of the e® basis forms is referred to as the torsion.

5. The curvature of the £, basis forms is referred to as the cotorsion.

Since the scale vector is tensorial, it is useful to substitute out the Weyl vector wherever possible.

Therefore, we will work with the following version of the dilatational structure equation.

dw = d(w@) +wy)
= d(v+d(x)¢+u+d(y)q§)

dv+du = e, +Q, (4.1)

where ¢ is the scale factor on the metric, as in Section [3.1.4] This will prove especially useful

in the calculations of the Bianchi identities we undertake in Section [4.2.1] Following the same

conventions and notation of Chapter 3, the structure equations written out in the orthonormal

basis, with the scale vector and symmetric spin connection written out explicitly are

a
dTb

de?

df,

dv + du

TGT + Ag{fnhjejeg — Aggngifhfi + QAZZE%fiej + Q4.
ebod + d(,)pe” + %T‘gcebeC

et + dyype” + Db £y — Ve 4 T fef

g £ — nicuf, + %TabCfbe’

7 £y — d,ofa + %s;mfbfc

—i—abafb —d ) Pf + naepebeb — napue’ + Sab fre’

—ve® + p%e’ + %nabsbcdeceda

ef, + %Qabeaeb +Q4fe’ + %Q“bfafb.
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Here, we have only expanded the Cartan curvaturesE] explictly. To see the equations expanded
fully into the configuration (e®e”), momentum (f,f;), and mixed (f,e’) bases, see Appendix .
Since there is no index on the scale vector one-form the covariant derivative is equivalent to the
exterior derivative. The relationship between the two is highlighted by equation 4.1} Notice the
combinations d§v — % and dgu — p% appear throughout the basis structure equations. These
terms are equivalent to the full Weyl-covariant derivative of a conformally orthonormal metric

(with both the symmetric and antisymmetric parts of the spin connection).

D’I]ab = d?’]ab + ncb,rac + nachC _ anae _ d?]ab + 2ncbﬂac _ anab

= 2 <nd’ﬁ‘2 - vn“b) : (4.2)

Note, the covariant derivative that we will use in the remainder of this manuscript, appearing

with an (x) or (y), is the scale covariant derivative defined by the basis (de® and df,) equations

1
D@er = d@et — ebO"}7 —d(,) e’ = §T‘gcebec,

DWt, = dWf, -~ 8 +d,of, = %Sabcfbfc.

4.2.1. Bianchi identities

The integrability conditions on the structure equations with curvature, referred to here
as the Bianchi identities, will prove useful in the following calculations. These conditions are
generated by enforcing the integrability of the structure equations using the Poincaré lemma,
d? = 0. In the generic Cartan formalism, these integrability conditions relate the Cartan
curvatures and their covariant derivatives. In Section [4.5], we set a number of conditions on the

Bianchi identities, while the field equations will give us other relations.

Submanifold basis Bianchi identities
In Chapter 3, the Bianchi identities on the submanifolds have been calculated in the case of

no torsion (the flat case). Here they would simply generalize to include the submanifold torsion

!By Cartan curvature we mean all four types of curvature, Q%, T¢, S,, and Q.
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and cotorsion

1 1
iR%}cdebeced = D(m) <2 %cebec>7

1 1
§Rba0dfbfcfd = _D(y) <2Sabcfbfc> .

Without the submanifold torsion and cotorsion they lead to the familiar first Bianchi identity of
Riemannian geometry that tells us the triply antisymmetrized Riemann tensor is zero, and the
Ricci tensor is symmetric. Note, the curvature appearing in these equations is not the Cartan
curvature of the spin connection, €29, appearing in the spin connection structure equation. It
turns out to be the case in all the Bianchi identities, except the integrability condition of the

spin connection, not included here, that R appears naturally.

Involution Bianchi identities
The involution condition sets the momentum part of the exterior derivative of the solder

form and configuration part of the exterior derivative of the cosolder form to zero, de|g = 0

and df,lee = 0, see equations (A.7) and (A.15) in Appendix [Al These equations relate the

scale vector to the symmetric part of the spin connection. When we look at the integrability

conditions

1 1
0 = D(a:) (/’l’%) - 5gV) eb + (53V - /“l’ae) 5 icebec + D(:c) <277absbcdeced> 5

1 1
0 = D(y) (pba - 6211) fy + (5511 - pda> isdbcfbfc + D(y) <2nadebcfbfc) )
we see they involve the covariant derivative of the symmetric spin connection and the submani-

fold dilatational curvature, D(,)v = ;). These will later be combined with the field equations

to show the symmetric spin connection sources the dilatational curvature.

Mixed basis Bianchi identities

The full expressions are

Gofe’e = 0Dy, (Hbd - 53V) fy
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(05 — %) (0% — ou) € + (O — ) 018" fye’

+D () <T“b fre© ) ( %€ bec) ,

~R°offel = neDy, (p% — dfu)e’
+ (pda - 53“) (5cblv - ll'bd) fb + (naeu - nafpfe) Teb cfbec
1 be b c
D (5968 ) + Dy (8" fe?)
A ad b sb ad b b
iRc fif.ec = g D(y) (u d— 6dv> f,+n D(U) (pd — 5du> £
— (0¢u— p%) (Gu — p%) €
1
- (n“ev — n“dued) 5 S fife + (n“eu -~ n“dped) S." fe
1 abc ab c
—i—D(z) §T fbfc + D(y) (T cfbe ) ,
Rbacdfbece = naCD(y) (ch - 6I§V) + naeD(ac) ( 5b )
— 05y — ) (obv — )
e 1 f b_c c eb c
+ (nafu — NaeP f) §Tbce e | + (NaeV — Nack,) T Spe

1
+D(x) (Sab cfbec> + D(y) < abSbcdec d) .

2"

In our example solutions to follow, the last two identities will prove very useful for simplification
of the geometry.

The integrability conditions of the mixed basis structure equations lead to relationships
between the mixed torsion and the momentum Riemannian curvature and the mixed cotorsion
and the configuration Riemannian curvature. Since these appear as either e%e’f. or e?f,f, we
are able to strip off the basis forms without having to triply antisymmetrize the curvature. This
gives stronger relationships between the curvatures than a “normal” Bianchi identity would. For

example,
1

b _ b
—§Racd—77aeD(y>( Klae) — 5[d“])



65

Dilatation Bianchi identities

On the submanifolds the Bianchi identities for the dilatational curvature

1
0 = d(x) <29abeaeb>,

1 ab
0 = d <QQ fafb> ,
show the submanifold dilatational curvatures are closed. In the mixed basis the Bianchi identities

1
ab _c a b ab
T € fafb = d(y) (Q bfae ) + d(w) <2Q fafb> y

a c a 1 a
-8, fe%e’ = d, (Q bfaeb> +dy, <2Qabe eb> :

show the x and y derivatives of the dilatational curvatures are related to the anti-symmetric

part of the mixed cotorsion and mixed torsion.

Closure of dilatational curvature and symplectic form

Since the dilatational curvature is closed on the submanifolds the full dilatational structure
equation generically defines a symplectic form over the full biconformal space. Since d?v = 0,
the RHS of the Weyl connection structure equation is closed, while e*f, spans the cotangent
space of biconformal space. We can interpret the RHS of dv = e%f, + £ = x as a symplectic
form except for the special case when the mixed dilatational curvature is such that x is de-
generate. When the dilatational curvature is closed, d§2 = 0, over the whole manifold, we are
free to interpret the two-form e®f, as the symplectic form. We will use the appearance of this

condition later to find Darboux coordinates for the manifold.

4.2.2. Field equations
Until this point, we have been exploring only the geometry of curved biconformal space.
The gravitational theory we consider in this chapter is based on the Wehner—Wheeler action

in [50]. There, it was shown one can write an action that is linear in the curvatures in biconformal
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space. The action, in terms of curvature two-forms, is
S = / (a2 + B + vefy) cae.ac’ e . . e, .. £}, (4.3)

where €9 is the curvature associated with SO(n) transformations and €2 is the dilatational
curvature. The torsion, T, and cotorsion, S, cannot appear in a linear, conformally invariant
action, but do appear in the field equations. The classical extrema of the action are then found
by doing a Palatini (first order) variation of all the connection forms. Here we survey the various
field equations we obtain from the Palatini variation. See Appendix [F] for explicit details of the

variation of the Wehner-Wheeler action.

Dilatation and SO(4) curvature field equations
There are four field equations relating traces of the Cartan curvature of the spin connection,

Q, the dilatational curvature, €2, and the metric. These come from varying the basis forms e®

and f,.

0 = aff+ B — 04% <(n — 2) e + Obe (5ad77da)> : (4.4)

1
0 = a0yl - sl + 0% - 40l 402 (agn - 54

+0%5ad77dc <5bh77hb> — an™ . <5d9779d> , (4.5)

1
0 = aQ% — g5 + A — BES, + (%n B+ 7”2>

1
+04§77ad5db (099mge) — d™ng <5chﬁhc) , (4.6)

0 = ai® 430 — ot (n -2 + 6 (500n)) . (4.7)

2

There are four because fe® ~ A“beb + Bf, and 6f, ~ Ceb + Dabfb. There is one each for
the submanifolds and two for the mixed basis. It has been shown these field equations, in the
original basis, lead to general relativity on the cotangent bundle of spacetime [50]. In that case,
combining these submanifold field equations with the basis equation integrability conditions

leads to the vanishing of the dilatational curvature generically and the Einstein field equation
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on the submanifolds. We will show the same result through a different route, using a simple

linear ansatz for the symmetric spin connection.

Torsion/ cotorsion field equations
There are two sets of field equations that relate the torsion, cotorsion, symmetric spin

connection and the scale vector. One set comes from the variation of the Weyl connection

0 = (Tbab . Tabb + Sbab) 7

B
0 = B(TZN‘SQZ] b= Sy a>7

and the other set comes from the variation of the spin connection,

0 = A% (cha—agTebe—agsje)

1 1
+AZII)) <_2 ancb + §5gafnbf _ ﬁCdeda + 5277bd:ufdf + WaUCb _ 5gnbfo>

1 1
+Ag (—QHCdc?bnad + 5 060" 0 Nea + 0 — 52/)”5) :
0 = AP (S8 = 0vSS, + T,
- qb ca c~ea ct ae
1 1
+AZ£ <_28b77ac + 5258677611 + necpeab - 5£’77dapcff - nach + 5277@aW€>

1 1
+A <2ncd8anbd — 50020 + nean™ i’ - 52nadndeufef> :

Note, the torsion and cotorsion from the involution conditions, 7%¢ and Sape, do not appear
in the field equations and are therefore, in general, undetermined by them. The symmetric
part of the spin connection and the scale vector can, and do, appear in the field equations
precisely because they transform tensorially. We immediately combine the trace equations with

the trivalent equations to give the following set of field equations.

0 = A (T, =0, ) + 5 (05 — 3k =, + Sy )
+ A% (nva = S o) (4.8)

0 = AZII)) (Scba - 555(166) + AZIZ; (:ubca - 5(l,zlu’{1f + TIecPeab - 5277dapdee)
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—i—Agbp <5gneaue — nacub) ) (4.9)

We have also replaced the partial derivatives of the metric and the Weyl vector with the scale
vector as defined above and in Chapter 3. We preemptively write the equations with three
terms.

These field equations will be shown to restrict the form of the metric in the example
solutions worked out in this chapter. In that example, the curvature/dilatational curvature
field equations (4.4]-[4.7)) give us the vanishing of the dilatational curvature generically and the
vacuum Einstein field equations, which are exactly the results we would hope for. The balance
between the conditions set by these torsion field equations with the ansatz for the form of the

symmetric spin connection gives us the remaining restrictions on the solution.

4.3. Combining the field equations and structure equations
Once we define the curvature of the anti-symmetric part of the spin connection, R%, as in

equation ([3.37)), we can write the SO(n) structure equation in three parts

1 1
B Geace? = §Rabcdeced + Doy py — pSp’ — Affmneee?,
aceod acead L a D(m) a e a _ e a_2Aah:\gif'j
pale€ = Lty glce” +D,)py + Py = HpPe— PpHe gb=;pti€’,
1 1
S efa = SRYEefa+ D)o — popt + Al s,

where the covariant derivatives can be written equivalently as Lorentz covariant or Weyl covariant
derivatives, since the conformal weight of u9 and p9% are zero. When written in this form, it is
easy to see there is a relationship between the natural, overall curvature of biconformal space,

% and the naturally defined Riemannian curvature on the submanifolds, R,

4.3.1. Configuration submanifold
When we combine the submanifold field equations — with the spin connection

structure equation, a number of simplifications occur. First, it replaces the trace of the SO(n)
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curvature of the conformal group,

1 1
Qg = R+ Dl = Dl = gl + ianly + 5 (0 = 2) ma + 0w (ne 70 ) :

with the Ricci curvature defined from the antisymmetric spin connection.
s
0 = R];fd + ade + D;x),u,];d - D,(ix)M];f - ,U«ebflu«fed + Nebdﬂfef-

Notice the metric terms also cancel. We are left with a relationship between the Ricci curvature,
the dilatational curvature and the symmetric spin connection. Since the Ricci curvature is sym-
metric by the Bianchi identity and the dilatational curvature is antisymmetric by definition the
equation separates into two independent parts, which relate these curvatures to the symmetric
spin connection

R];)fd = D ?MJ;) ;=D (I)'uf(bd) + “fe(d“eb)f - “’e(bd)“’fef ’

!
s (@) f Foe e f
ade = Dy wyy = Dy Wog + Heatn)p = Hpa s

As usual, the parentheses and square brackets on the indices mean the parts symmetric and anti-

symmetric, respectively, on those indices, A, = % (Agp + Apg) and Ay = %(Aab — Apa)-

4.3.2. Momentum submanifold
In the momentum sector we get an analogous expression by combining the field equations
and the structure equations. Again it relates the curvature of the anti-symmetric spin connection,

the dilatational curvature and the symmetric spin connection.

0 = iy’
(0%

' 0ab + D{y)pafd _ D?y)paff _ pEffpaed + pefdpaef.

This also decomposes into a symmetric and antisymmetric part.

a) f

R/ )7,

s _ D(d a)f_Df (ad)+p8f (ad) (

e
WP f WP f fPe  —Py
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Baab _  pld alf foladl | ef [ad]
ST = Doyt Doy it —p

ef[dpae} f.
4.3.3. Mixed-basis equations

The mixed-basis field equations can similarly be used to substitute out the Riemannian
curvature in the mixed basis spin connection structure equations. We refrain from including
them here until we set some simplifying conditions.

Note the combination of the field equations and structure equations has completely de-
coupled Q9 from the Riemannian curvature naturally defined on the submanifolds. This will

prove important both from a physical standpoint and because this decoupling allows for the

time metric to be derived from the form of Q9% even when R‘Ide =0.

4.4. \Vector ansatz

Here we examine a solution of biconformal gravity with the aim of recovering general
relativity. We motivate the use of a vector ansatz for the symmetric spin connection by looking
at the involution conditions in the homogeneous space.

It can be shown a spin connection of the form

ph = Adjve’+ (A-1) (531;;, + nbcnadvd) e + Bn®ugupuce’, (4.10)

ph = Coput.+(C—-1) <n“cnbdud + 5gu“> f. + Dunpqutu‘t. (4.11)

has the same symmetries as 39, and satisfies the involution conditions of homogeneous bicon-
formal space. The form of u9 and p9 in Chapter 3 are special cases of this general vector form
where A = —1, B=—4, C =0, and D = —2. By satisfying the involution conditions in the
homogeneous case, an ansatz of this form sets the torsion and cotorsion that appear in the invo-
lution conditions of the curved case identically to zero. Here the form of the Bianchi identities
illustrates the relationship between 39 and v can be used to greatly simplify the geometry. In

this chapter, motivated by the Bianchi identities and the goal of regaining general relativity, we
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will look in detail at the consequences of choosing the simplest linear vector ansatz,

WY = o, (4.12)

P = Ofuct, (4.13)

which amounts to setting A = B =1 and C = D = 0. From the point of view of finding a
solution, this is a straightforward choice given the cascade of simplifications it gives in the Bianchi
identities, structure equations and field equations. Another reason, even more geometrically
motivated, is that equations (4.12H4.13)) are equivalent to setting the 7-covariant derivative of
the orthonormal metric to zero. Choosing the above ansatz is equivalent to ensuring the entire
connection, 79, is metric compatible. This greatly simplifies the mixed torsion and cotorsion
field equations, , canceling the symmetric spin connection terms with the scale vector

termsE] and leaving

a cb crmbe
0 = Aqg(T 0T )

c~ae

0 = A% (scba _gbse ) .

4.4.1. Spin connection structure equations
Possibly the most important effect of this ansatz is to greatly simplify the spin connection
structure equation. This ansatz cancels the 393 terms. We can also rewrite the derivative

term as the dilatational curvature so the three parts of the Lorentz structure equation now look

like
1 a cd 1 a c.d 1 a cd ah c.d
Sbae’e” = SRgee” + S0y hae’e” — Agympce’e’,
acfel = Ricfed 1 g0 ( ¢ fel - 6§fced> — 20U fied,
1 1 1
5fz%fdfcfd = 5R%fdfcfd + 55;;lefcfd + A%l £y,

“Note, if the original Euclidean metric was the effective metric of this space, then these equations would
look very similar to the field equation one gets from Einstein-Cartan theory.
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When the field equations are folded in with the traces of these equations, we are left with

the following four relationships on the submanifolds.

f —
Riyrg = 0,
Raffd _ 0’

<1+B>de = 0,

o

<1+B>Qab = 0.
(0%

These relationships elucidate two very important results. First, the field equations are now
the vacuum Einstein field equations on the submanifolds. The second important result is the
dilatational curvature vanishes generically on the submanifoldsE]

The mixed-basis terms of the field equations are now

0 — Raffd _ edae + 26(1@7766 (5fh77hf) _ 277ae5ec (5fgngf) ’ (4.14)
B
0 = Raffd edae + 2 <1 + o Qad

_ ‘IL 1 Qfé b2 a; ge fh
dq =1 <2n o + e + g 1) (0gen?©) (6 77fh> , (4.15)

where we have written the equations as the symmetrized and antisymmetrized pieces of the

mixed curvature.

4.4.2. Bianchi identities
The Bianchi identities are substantially simplified by the simple vector ansatz. They now
only relate the various Cartan curvatures and their covariant derivatives. The dilatational Bianchi

identities now have the following form,

T, = dgy) (fee’), (4.16)

—S,b fee = d, (Q“bfaeb). (4.17)

3We choose to work in the generic case and save the = = —1 case for later work.
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The configuration Bianchi identities have the following form,

1 a C 1 a C
§R bcdebe el = D, (2 bcebe > , (4.18)
1
“ofele” = D, (Tabcfbec) + Dy <2 zcebeC), (4.19)
1 a ae C a (&
SR Efe” = Dy (T b fe ) . (4.20)

And, the momentum Bianchi identities have the following form,

1 1
§Rbacdfbfcfd = -D, (2Sabcfbfc>, (4.21)
R felf, — —D, . (L15%6t ) — D (Sb £ ) 422
ity = (2) { 5% fofe w) (Sa” fre’), (4.22)
1
QRbaCdfbeced = —D(x) (Sab Cfbec> . (4.23)

Note, this ansatz sets the involution torsion (7%*¢) and cotorsion (Su.) to zero, automatically
satisfying the involution conditions. The Bianchi identities now reveal the Riemannian curvatures
are related to the covariant derivative of the four remaining torsions and cotorsions. Since e®

and f,, are distinguishable, we may strip the odd form off of the nonstandard submanifold Bianchi

identities (4.20)) and (4.23)). This shows the curvatures are highly restricted by the choices of

torsion and cotorsion, since we are dealing with the full curvatures. The anti-symmetric part

of the mixed torsion and cotorsion are in turn related to the covariant derivative of the mixed

dilatational curvature, (4.16]) and (4.17]).

4.4.3. Mixed basis structure equations
This ansatz also simplifies the mixed basis equations greatly. When we make the substitu-

tion we are left with

Tabcfbec = d(y)e“ + (’y“c b4 5?8%) frec,

St et = difa+ (abac+5gac¢) fyec.
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We can relate these to the submanifold equations by using the definitions of the Christoffel

symbols (which can be found in Appendix D).

el'Ove, + 0% + 500 —T%, = 0,

LEOOFS = = 0500 + T = 0.

These show the mixed torsion/cotorsion are, in fact, the submanifold Christoffel symbols written

in the orthonormal basis

Tabc = f‘acb + (65“‘3178; - fc#abfua) )
S e = Dot (eloeel — f1ocf1) (4.24)

where the terms in parenthesis encode information about the symplectic structure of the space

and vanish when the coordinates are Darboux.

4.5. Vanishing torsion solution

The ansatz we have chosen above gives us a much simpler set of equations to work with,
while at the same time elucidating the relationship between the torsions/cotorsions and the
Riemannian curvatures. Here, we will take advantage of these relationships by looking at the
solution when the most physically relevant torsion/cotorsions vanish. The submanifold torsion,
T%.. is the one that appears in Einstein-Cartan theory and has yet to be measured. We will
immediately set it and the analogous cotorsion on the momentum submanifold, S, to zero.

The mixed torsion and cotorsion are the only remaining components. Again, motivated
by finding general relativity within biconformal gravity, we set the mixed torsion to zero. We
immediately see ((4.20)) sets the momentum Riemannian curvature to zero. Having a momentum
sector with no curvature allows us to regard it as a vector space. We can then interpret it as
the cotangent bundle to spacetime. The only nonvanishing tensor from the basis structure
equations is the mixed cotorsion, S,° .. It is easy to see why we choose not to set the mixed

basis cotorsion to zero by looking at (4.23). If S, , = 0, then there would be no configuration
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Riemannian curvature. We investigate this below.

4.5.1. Time metric

In [7] and in Chapter 3, it was shown the homogeneous biconformal space the Killing metric
on the configuration space is Lorentzian, despite the Euclidean starting place. Here the vanishing
torsion, through the Bianchi identities, sets the Riemannian part of the curvature to zero on the

momentum submanifold.
1 acd ac,.ed
5(2 y ety = AgnfLy.

This allows us to use the result of [7] to show the presence of the time metric. There the
Weyl curvature of R‘%Cd was set to zero to make the momentum sector as flat as possible.
Here R“de = 0 by the Bianchi identity and the vanishing torsion condition. Instead we set the
traceless part of Q“de to zero, i.e. its Weyl curvature. From here the calculation is analogous

to the one in [7] and leads to the same time form of the metric

2
TNlab = X <5ab - ZQZaZb) . (4'25)

Since we are in an orthonormal basis and the vector is normalized explicitly, the conformal factor
must be unity in the orthonormal gauge. The field equation Q%% = 3 [(n — 2) % + §% (84.n?)]
keeps us from setting the trace to zero, since this would make the new metric proportional to the
old metric, breaking involution. Unlike in Chapter 3, the vector in the metric is not necessarily
the scale vector, W, — 0,¢.

Notice here the restriction of the momentum submanifold curvature Rade = (0 is not as
problematic as it is in the case of the homogeneous space. Here the Riemannian curvature is
zero on the momentum sector because we have set the torsion on the mixed sector to zero
and they are related through a Bianchi identity, (4.20]). In the homogeneous space the solution
gives a more complicated form of the symmetric part of the spin connection. This leads to a
form for the momentum curvature that is only zero in a special case, see Section This

leads to an interesting tension between the solution found in this chapter, using the simplest
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ansatz possible, and the solution found using an already known solution to biconformal space.
This tension points in the direction of further work using a more complicated form of the the

symmetric spin connection to find other gravitational solutions.

4.5.2. Mixed basis curvatures

We also see the mixed Riemannian curvature antisymmetrized on its lower indices is zero

R%¢ — R%5 = 0, again from the Bianchi identities (4.19)). Note this makes one of the traces

vanishﬂ RS = 0. In turn this simplifies (]4.14[) and (]4.15[) to give

0 — Raffd + 25aenec <5fh77hf) _ 277(16566 <5fg77gf> ,

0 = R“ffd+2<1+§>9“d
. 2 15 B 75, 1 e\ ((sfh
(G ()~ e G (870m) )

We can actually show the entire mixed Riemannian curvature vanishes in two different ways.
Taking the antisymmetric and symmetric projections of the equations above would reveal that
Raffd = 0. Alternatively, equation (4.20]) shows us the Riemannian curvature of the momentum
submanifold, R% %, is zero if there is no mixed torsion. This leads to a cascade of simplifications.
First, since R%.% = 0, we are free to gauge the momentum spin connection away, 7% =0. The

momentum submanifold basis is then exact, with respect to y-derivatives, d(, f, = 0. The

)

mixed Riemannian curvature is greatly simplified by gauging away 9,
Rif.e? = dWod +d@~% — 694 — 440t = dWa?,

Looking at the mixed basis equation, we see d(y)e“ = 0, which means the tetrad coefficients,

e’ = e%(x), are only functions of the configuration coordinates. Since the configuration

u u
submanifold is a Riemannian geometry, we can solve for the spin connection, o, in terms of
the tetrad and its de'rivatives, o (e, Oe). Therefore, the spin connection on the configuration

side is only a function of the z-coordinates as well. This makes the last remaining term in the

4R%4% =0 from the antisymmetry of %
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definition of the mixed Riemannian curvature vanish and we have R9$ = 0. We then have

0 = "Nec <5fh77hf>—77ae5ec (5f9779f)7

a o 1 12_@ l 2 _1 1 e fh a
Pa = a+ﬁ<(n—1) <2n a+an> 2(71—1)(6967]9)((s nfh)>5d

= KoY.

We choose to work in the orthonormal gauge where the scale factor on the metric is one. This
gives us a form of the metric where the trace is constant. Therefore, all the terms on the
RHS of the above equation are constant, dx = 0. Since the mixed dilatational curvature is
constant, we then see the Bianchi identity concerning its x-derivative puts a condition
on the anti-symmetric part of the mixed cotorsion, S[ab q= 0. The only piece left of any of
b
a

the torsions or cotorsions is now the symmetric part of the mixed cotorsion, S( 0"

4.5.3. Symplectic structure

We are now in a much simpler geometry where most of the torsions and cotorsions are
zero, T%, = T4, = T = St = S, = 0, two of the dilatational curvatures are zero,
Qu = Q% = 0, and two of the curvatures are zero, RC;)“I = R9% = 0. The only curvatures
that remain are S(f o) 0%, and R, ;. Since the mixed dilatational curvature is constant it
is closed and we are able to interpret e%f, as a symplectic form. The Darboux theorem then
allows us to choose a set of coordinates such that dw = dz“dy,. This implies e = f,*. In
this basis the already simplified mixed basis equations show the mixed cotorsion is equal
to the configuration Christoffel symbol, I'}.

The Bianchi identity relating the configuration curvature to the mixed cotorsion (4.23) is

then identically satisfied.

%Rbacdfbeced = —Dy (Sab cfbec) =D <Fbacfbec>

= DI fre + I D, fre’
- D Fb f c Fe S b f; c..d
- ()1 qclo® + 1 a0 dve'e

= DI, fre + %07, free’.
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This works because the covariant derivative of the cotetrad is again the mixed cotorsion. This

cancels the extra I'-squared pieces from the covariant derivative.

4.5.4. Mixed cotorsion field equation

Finally, we look at the consequences of the remaining field equations. The field equation
for the mixed torsion is identically satisfied; however, the field equation for the only remaining
cotorsion gives conditions on the configuration Christoffel symbol, and hence, the metric. The
mixed cotorsion field equation puts a condition on the derivatives of the metric since the mixed
cotorsion is equal to the Christoffel symbol (written in the orthonormal frame). We therefore

have the following condition
b b
0 = AY (r - 5creae) .

See Appendix [E| for a detailed discussion of the role of the Christoffel symbol in the extrinsic
curvature on submanifolds. If we look at the time metric of the form 7, = x (5ab — Z%zazb),
where z, defines the time coordinate via zo‘% = %, then we can write the condition in the

following form,

1 1
0 = 5 (anﬁTr - aﬁguﬂ') -3 (gwﬁsl/ - guﬂsﬁ)

2 2
1 1
— 72 <Z2(53529009a0 - 5539006% o 251(/79&052) (0x9ao + Oagor — Osgar)

+Z2 (222635252)9&0 — 52526% — 52’91/71'9&0) Sas

where I, = 290590 = OgIn\/|g] = 93s = s3, Z* = 2,20 and 0 index designates the

time direction. Looking at the various components of this, we get the following conditions

0 = 0igro — Okgio — GokSi + Giosk,

0 = 0i9jk — OkGij — 9jkSi + GijSk-

The first condition is the one necessary to write the metric as block diagonal diag (goo, 9ij)-

The second condition shows the metric times a conformal factor, e™*g;;, comes from a potential.
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When the metric is written as block diagonal, then 0 = s,. We then have

0 = 0igjk — Okgij = 9ij = 0iXy,

where x; is some vector potential. See Appendix @ for a detailed list of the conditions from

this field equation on the coordinate metric.

4.6. Discussion

In this chapter, we have looked at curved biconformal space and the gravitational theory
defined by the curvature-linear action, [4.3] Biconformal gravity has been laid out in full generality
with all possible Cartan curvatures present. In 2n-dimensional biconformal space, the Bianchi
identities turn out to be very restrictive of the n-dimensional curvatures. The consequences of
combining the full field equations together with the Bianchi identities and structure equations is
investigated. Section shows the general approach to investigating this class of geometries.
This section allows a straightforward starting point from which to work toward any solution to
biconformal gravity.

The simple linear ansatz, p9 = djv.e® and p9 = dpu‘f., shows how we can recover a
subset of scale invariant general relativity on the cotangent bundle of spacetime. We then look

specifically at torsion-free solutions. We are then left with a geometry where

0 = TvabC _ T(ll)c _ Tabc _ Sabc _ Sab07
0 = R“ cd _ pac __ pe
- [ bd — bed>

0 = Qg =0%.

Note, the configuration subspace is Ricci flat, but the whole Riemann tensor is not zero. The
chosen assumptions turn out to be overly restrictive and give us general relativity restricted to
those solutions where the coordinate metric can be written in the form diag (goo, gij) and where
gij = 0;x;j. Since we know the torsion-free solution should give us all of general relativity [50],

we assume the simple linear ansatz must be loosened in order to incorporate more generality.
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Unlike in general relativity (where there is only 7'%,.), we are unable to set all the torsions
and cotorsions to zero and still have a gravitational theory with any curvature. This means
the torsions and cotorsions play a slightly different role in biconformal space. By looking at a
more general theory, where we do not restrict them so stringently, we should be able to better
understand the role they play.

Note, the case where S,® . = 0 results in a flat (in the Riemannian sense) configuration
space, R, = 0, but not in a homogeneous space. The mixed dilatational curvature, Q% = kd9,
and the Cartan curvature associated with the SO(n) rotations are nonzero.

This work has shown the time result of Chapter [3]is fully compatible with scale invariant
general relativity. We hope the interesting results of that chapter, that the Einstein tensor con-
tains purely geometrical source terms, can be reproduced within the framework of a gravitational

theory we have established here.
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CHAPTER 5
CONCLUSION

In this dissertation, we have laid out the current status of biconformal geometry, based
on the Cartan geometry of the homogeneous manifold Mgy = Conformal (p,q) /Weyl (p,q)
looking specifically at the interesting Euclidean case, p = n,q = 0. Though biconformal spaces
are endowed with more symmetries (and hence more connections) than a Riemannian space,
we see Riemannian geometry as the effective geometry on the Lagrangian submanifolds of any
given biconformal space. This is in one of the major advancements in the work presented here.
By casting the original basis in a conformally-orthonormal Lagrangian, one can easily prove the
connection on the submanifolds is that of a Riemannian geometry. It can be written as the
spin connection plus a trivial scale factor term, that is not the Weyl connection. Once these
Riemannian structures are recognized, the next step is to look at how the whole of biconformal
geometry relates to these Riemannian geometries. The astonishing result is instead of the
biconformal submanifolds looking like Minkowski space, as expected, the resulting Ricci tensor
has an effective stress energy term corresponding to that of a perfect fluid.

In Chapter [2 we have shown how biconformal space is constructed as a special case of
Cartan geometry. There it was shown how biconformal space fits in to the spectrum of a number
of other active lines of research. The biconformal quotient is unique in giving a homogeneous
space endowed naturally with both a Killing metric and a symplectic form. These stem directly
from the properties of the conformal group and the chosen quotient.

In Chapter [3] we investigated the properties of the homogeneous space referred to as
flat biconformal space. We have outlined the methods of [7] to show these spaces have a
characteristic heretofore unknown in other geometries, a geometric mechanism whereby the
spacetime signature on the n-dimensional submanifolds is different from those of the original
space considered.

Specifically, we looked at biconformal space in the orthonormal version of the basis found
in [7]. The orthonormal basis clarifies a number of characteristics of the space, making it

easier to see how, though based on conformal symmetry, the submanifold structure equations
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organize themselves to look just like the usual Riemannian geometry of general relativity, with
a Lorentzian signature. We have shown the spin connection in this new basis, though not fully
antisymmetric with respect to the new metric, naturally separates in the structure equations.
The antisymmetric part appears naturally in the submanifold basis equations where it helps
define a trivial Weyl geometry, which we are free to gauge to a run-of-the-mill Riemannian
geometry. The symmetric part of the spin connection, which transforms like a tensor, can be
cast in terms of another tensor, the scale vector, that defines the direction of time in the solution.
This vector appears as part of an effective source to the Einstein field equation. The form is
characteristic of a perfect fluid. These results are intriguing, but need to be cast as part of a
full gravitational theory in order to be correctly interpreted.

The existence of these Riemannian submanifolds leads the way for the latter research in this
dissertation. The basis we use in Chapter [3|is used in Chapter [4] to outline an efficient way to
approach investigations of a gravitational theory with biconformal geometry as the background.

We looked at curved biconformal space and the gravitational theory defined by the Wehner—Wheeler
action. We laid out the theory in full generality with all curvatures, torsion, cotorsions and dilata-
tional curvatures present. We showed some of the Bianchi identities (integrability conditions)
of the theory are more restrictive of the Riemannian curvatures on the submanifolds than in a
Riemannian geometry, determining them in terms of other fields. The consequences of combin-
ing the field equations with the Bianchi identities and structure equations is investigated. We
concluded by making a number of simplifying assumptions and recovering scale invariant general
relativity on the cotangent bundle of spacetime. The assumptions chosen turn out to be overly
restrictive and give us general relativity restricted to metrics of the form g,, = (900, gij)-

Unlike in general relativity (where there is only T'¢ ), we are unable to set all the torsions and
cotorsions to zero and still have a gravitational theory with curvature. This means the torsions
and cotorsions play a slightly different role in biconformal space. By looking at a more general
theory, where we do not restrict them so stringently, we should be able to better understand the
role that they play.

In Chapter [4] we demonstrated general relativity can emerge as a subsector of biconformal
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gravity. We know from the work of Wehner and Wheeler [50] that torsion-free biconformal
gravity generically leads to all of general relativity. Their result was not derived in the time
basis, but was done without restricting the form of the symmetric spin connection. The next
obvious calculation is to use the symmetric spin connection calculated in Chapter[3|as the ansatz
in the curved space. Presumably this will again lead to an effective energy-momentum tensor
for a perfect fluid. In the curved case, we will then be able to interpret this as a source to the
Einstein field equation.

The quantization of the gravitational interaction to produce a predictive theory is still an
active area of research within the theoretical physics community. Weyl gravity has a storied
history as a direction to help with the quantization of gravity. The theory has been shown
to be more well-behaved, from a quantization perspective, than the Einstein-Hilbert action
in that it is renormalizable [87] and its Poisson algebra closes [88]. Others have worked out
the one-loop corrections to the theory [89]. However, the physicality of the theory has been
questioned for a long time, mostly due to the fact the Bach equation is a fourth-order equation
whose correlation functions, upon quantization, lead to ghosts (negative norm states) [90-92].
Recently the work of Wheeler [68] has shown, when the Weyl action is looked at as being fully
conformally symmetric with all of the connections of the conformal group varied independently,
using a Palatini variation, the theory is equivalent to general relativity.

This result opens the door to the question, of how we reconcile the following facts:

1. Weyl gravity is perturbatively renormalizable, but has problems owing to its the fourth-

order field equations, i.e. probably has ghost fields.

2. General relativity is not perturbatively renormalizable, but is a well-behaved theory with

second-order field equations, i.e. no ghosts.

Quantum mechanics seems to follow as a natural consequence of the characteristics of bicon-
formal space [83,84]. It has many structures that make it amenable to quantization. The
canonical-orthonormal basis, by construction, has a natural phase space structure. There is also
a Kahler structure to the manifold, which might allow for straightforward geometric quantiza-

tion of the manifold. The natural notion of a time direction defined by the scale vector would
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allow an ADM-type decomposition of the action in order to look at canonical quantization.
Lastly, since time emerges as a part of the theory, it might be possible to try and quantize the
theory before gauging, without time, and then see what this quantized theory looks like, thereby

skirting the problem of time altogether.
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Appendix A

Structure equations in the orthonormal, Lagrangian basis
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Here, we write the structure equations, including Cartan curvature. We expand the con-

figuration, mixed and momentum terms separately. Note, the f,f;, part of the de® equation

and the e®%e’ part of the df, equation are set to zero. These are the involution conditions,

which guarantee the configuration and momentum subspaces are integrable submanifolds by the

Frobenius theorem.

In the conformal-orthonormal basis, we have g**dgy. = e~ 2*n%d (e2*n.) = 262d¢. The

structure equations in the conformal-orthonormal basis are

drf = T57%+ A%necete? — AUULy + 2A%E et + QY
1 1
de* = e‘a’ + §ncbdnaceb + §Dn“bfb + T,
1 1
df, = obf,+ in“dnabfc ~ 5Dnabeb + Sa,

dw = e, +Q.

We then define

D@ps = dWps - pset — oGus,
D@, = d¥p — phot — a5pt,
DWpG = dWuf — ui' — voms,
DWph = dWp% — piy’ — 150%,

allowing the separation of the structure equations into independent parts.

A.1. Configuration space:

1
gThe’e” = dge’ —e'o+ on*dae’,

Geae’e! = Ao — o0t + DI G — pGut — kALY ae’e”,

(A5)

(A.6)



—Sapeele’ =
2 abc

§Qabe“eb =

A.2. Cross-term:

Q% Sf.e?

Tacb fbeC

b
Sa Cfbec

af,e’

A.3. Momentum space:

1

3% cdf f,
1
5Sabcfbfc
1
iTabcfbfc

1
—QUesf,
2

1
knabec <Hbc _ 52Wded + 2nced(1’)nbe> ’

d(m) (Wae“) .

dWo', + Ay} — 7500 — o4
+DWpf + DY, — poul, — i,
—20G = e,
d@&ge%%+%fﬁ@mwb

—kn* <Hbcfb + Wytee! — ;nbdd(x)ncdfb> 7
d®f, — ot £, — %and(I)nacfb

g <ecpbc WO 4 ;nbcd(y)ncded> ’

d(y) (Wae“) + d(z) (Wafa) — ef,.

AW — 5%+ Dpfy — pp + kAL Ly,
1
d(y) fo — ’Ybafb - §n6bd(y)nacfba
1
—kn* (Pbcfb — WPyt — 277bdd(y)77cdfb> )

dW (wef,) .

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)

(A.16)



95

Appendix B

Gauge transformations in the orthonormal, Lagrangian basis

B.1. Definitions
In the conformally orthonormal frame our structure equations are given by equations ((A.1))

through 1) where the e¢ components of D1* become

Dn® = dyn® +nPal +%al, — 2Ween®
= d ab ch ( __a a ac b b\ V.6 ab
= dn™ +0” (6% + u%) + 1 (o + 1, .en
= d(x)nab + (ncbo.ac + 77aco.bc> + anll’ac + nac“bc o 2chcnab

— d(a:)nab + 277ac“bc _ 2chcnab'

We assume the involution equations are already satisfied. Similarly, for the third equation, we

need only the f, components,

Digy = diylab — 163 — NacB% + 2WEn™
= diylab — b (Vs + P%) = Nae (V% + P%) + 2W L™
= dy)ab — 1Y% — NacYs — NebP’s — NacPy + 2WEn™
= dy)lab — 2acPG + 2W Eeiap

= Dy lab — 20acp + 2W Ena.

B.2. Lorentz transformations

The basis equations
We compute the gauge transformation properties of the different pieces of the connection.

Notice first we have the antisymmetry of the inhomogeneous part of the transformation,

Nab = nefAeaA};

5 = nnepASAY,
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AL = nmerASALAY
Acd ncandeAea
deAc A€
Nac™ d a
ndeAcd nched‘

Therefore,

AbgeAe Ab o (ne L g Agf)
— n@f ch/_\be o Agf
= neangAfea d]ng
o C—— RS, aNS

0N 0N, + e A% 0N, =0

= (I\gfadAfe) = 0.

Now consider the basis equations (dropping the involution terms),

de?

d(yye” +dg)e”

df,

dyfa + dyfa

05T + %ncbdnaceb + %Dn“fe + T

e (0% +73) + g1 (o™ + diyn™) €
+% (d(x)nab + 2n%pub, — 2chcnab> f,
+T% fief + %Tabcebec,

Ok e + %chdnabfc - %Dnacec + S,
(Uba + ’Yba) £, + éﬁbe (d(z)ab + d()ab) fe
f% (d ()b — 27 o+ 2chcnab> &
+80 fret + %Sabcfbfc,
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so we have two pieces from each equation

1
dpe’ = elof+ o 1leb (deyn™) e + Tbce e
de’ = ey +n*pl s, — Ween™f, + T fye°
1 1
+§ncbd(y)naceb + §d(z)77abfb
_ (_ﬁy(z b 77adubdC + chab + Tabc) fbec

1 1
+-nepd (e’ + §d(a:)77abfba

2
1 1
dyfe = 7oufo+ 50" (dgmm) fo + 5 S Bk,
1 C 1 C (&
diyf, = obf,+ §le (d(z)na) £e — 3 (d(y)ab — 20acp% + 2W Eenap) €
+Sab Cfbec.

Transforming the configuration basis equation
If we choose a different orthonormal basis, €% = A“be Tab = Nap, and f, = A¢ pfc, the first

piece becomes

di (Aje’) = (ALe?) &%,Jr;nd, (dayn™) <Abded) @ AL AGe

e’ = et (6% + AGdAY)

1 1 -
+ =Nt (d(x)nac) Ab ed + 7Ta AbdAceedee

2
1
Alefot = —§Aabndc (d(x)nb )e — fA L0 jece?
‘l‘Abcec (~ -I-A d( )Aa)
1
+§770b (d(x)nac) Ab ed + T Ab Ae

So combining like terms,

0 = A%eNjALof — Alet (&% + AldimA%)
+% (A%cd (d(xmbc> — 1A, (d(x)nac)) e’ + % ( 4T — ThA" AC) e’

= Ne? (ALAG0 — M)Ay - 6%



1 1 -
+§ (A%)ncd (d(z)nbc) - nchbd (d(x)nac)> ed + 5 ( abTIZle - %cAbdAce) edee’

we may identify

6% = ALAGe — AfdmAYy,
5, = AvRdos,Al - Riifosas,
M. = AGThAGAS,

BNed (d(ac)nbc> — A’ (dyn™) = A%e*Noca (—26_2“"(1(95)907786)

—62@170617Abd (—26_2<pd(m) 907786)
— —QA%T]SCT]OCdd(w)QO + 27]807700[,Abdd($)§0
= —2A%dgye + 2A%d )¢

= 0.

These are the expected transformation properties.

Transforming the momentum basis equation

Now we repeat the calculation for the momentum submanifold. Starting with,
b 1 be
d(y)fa =8+ (d(y)tp) f, + 55(1 fi £,
we gauge to

- ~ . 1oy _
dy) (M%) = 7% “fa (R5E) + 5nbre ™ (diyniue™) (M%)
1 c (A Ae
550 (M) (ML)
0 = 7% RGE — (dg)A%) £+ dye (ML)
1 crAd re AcC
+§Sab AGASE4f. — NS d ) fe
= :Yba d[\cbfdfc — d(y)]\cafc + d(y)(p (]\dafd>
1
2

+=5. AL AC £,8,



99

_ 1~
—AS, <‘chfb + (dgye) £ + 2Scbdfbfd> -
Comparing like terms

0 = 3% dRGEf — d)ASf. — A% af,
Ad AC
+dye (Ahfa) = A% (dge) .

1 - 1
+§SabCAdbAecfdfe - Acaiscbdfbfd,
so the metric terms cancel. We then have

;jlba = Abcj_xda’ycd - ,./_Xcad(y) Abc
P = ALAGRLyG T - AGAGTA,

S be  _ A];SfdeAbdAce.

This leaves the two cross-terms, where we have now determined the transformations of o and
Y%

Transforming the first cross-term equation

The first cross-term,

dge” = (—7‘2 b nadﬂbdc + W + Tabc) f,e°
1 1
+§77cbd(y)77aceb t3 (d(x)ﬁab) fy
— (_,yac b T/adubdc + chab + Tabc) fbec

— (dgy)p) € — 1dy)pf,

becomes

dgy) (A%eb> = (—VZ P i + Wen™ + T“bc) (A%E) (Acfef)

- (d(y)‘P) A% b diye (Uabf_\cbfc>
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0 — (_;yac b pedb, 4 T +Tabc) (AS£) ( cfef)
- (d(y)‘/)) A%eb —dg)p (Uabj\cbfc)
—d)A%e’ — Afd,e”
_ (_ 50 bRe A — b RS A% + Wt Re, A% + T K¢, Acf) fef
—dyAe’ + (MGl A — AW — AGTY ) et

— (dgy)p) Aje” —dyp (Uab/_\cbfc) + A% (dgy)p) € + A% d ) ..
Checking the metric terms,

— (dyp) A€’ + A% (dp) e” = 0

—d )¢ (U“bl_\cbfc> + AP ef. = AG (ch - Ude/_\bd/_\ce) d(,pfe

Then, there remains

0 = (7,3/0é b/_\eb cf 7nadﬂdeAebAcf+chabAeb cf+TabCAebACf> feef
_d(y)Aabeb + ( alfybf e +A%nbd/~‘6df . A%anbe . AabTbef> feef
_ [ _
0 = — (AYARALYY " ALAR AT ) RGNS — 9% + AGYy ¢
_ad~b A& A€ A bd, e — AW be W ab]\eAc
N ge Ny Ny N1 gy bV + Wen WAy Ay
_|_Tabcj\ebAc _ ai)Tbef
— 7Azzg,ygf e+8e afﬁaeAaijAab,ybf e
. ad ~b /_\eAc — A bd e Al WAC - W be
N g NNy b1 Hogp | + Ay | WeATy rn

+ (Tabc[_\ebAcf . abTbe f)
and we, therefore, have

i%. = ut and]\eb]\fc’



W, = AW,

Tab — Tcd AaA Ae

Transforming the momentum cross-term equation
Finally, we look at the cross-term from the momentum basis,
b L g
d(a:)fa = O afb + 577 (d(x)nab) f.
1 c c b b c
_5 (d(y)nab - 277acp b +2W fcnab) e’ + Sa cfbe .

Changing the basis, this turns into

do) (ASf) = &%y (Adee€> (A5E.) + anAd €“OTlab <Af ff)
1 (1) (1) s (1) (1)
W (AL ) ma (A%e?) + 5 o (M4ty) ()
0 = (ALY — AddiA) AL — (dmAlty) — KSdinf

1 _
Leatean (3l1) -

+8) (A ff) (AC d)

1 _ _
0 = ianAdeAfcadnabeeff + §AfCAbeac77abeeff
- dAfdAbeeeff + WC/_\];nabAbeeeff
- - 1- 1-
—Sab CAfbA/X"’eeeff — iAcanbf (Oener) €“Ff — iACa(‘)fnceeeff

+Ameapt ety — A W ety + A9 ety

Substituting the known transformations and collecting terms
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—AAC <§ab e —AGS/! hAbgAhc> ;

we have the transformations

lacb d = Acgpgh kAdk:‘/_X}zv
Py _ f
we = ch ,

St . = ALS7 ,A° AL

Summary of Lorentz transformations

Summarizing, we have the connection transformations

&% = ANy — Ajd Ay,

ﬁ’ba AbcAda7Cd - ‘/_\c&d(y)AbC’

and tensors,

[, = AYTUAGLS, (B.1)
ihe = plpAYAGAL, (B.2)
We = AW, (B.3)
T, = T A%AAC, (B.4)
5 4 = Acgpgh kAdk[‘\h7 (B.5)
we = AGW/, (B.6)
Spe = ALSfN A, (B.7)

S . = ALS7 AN (B.8)
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B.3. Dilatations

Conformal change of basis

Now consider a dilatation. Once again, start with the basis equations

1 1
de® = ePo%rd + §ncbdnaceb + §D77“ef6 + T
1
dwe’ +de” = e (0% +7%) + 5 (dwn™ + dn™) e’
1
+5 (A + 2 u, — 2Weetn™ )
1
+7% fre + iTabCebec,
1 1
df, = @Zzch;fb + §nbcd17abfc — §D77aceC + S,
b b L pe
dpfe +dyfa = @a+70&+§n(¢wm+d@m0&
1

_5 (d(y)nab - 277acpcb + 2W6fcnab) e’

1
+%’£&+5ﬁmm

and let the new basis forms be

and therefore,
ﬁab _ <éa éb>

_ 62¢ ab’

= 672¢77ab7

W, + 0,9,

=3y
I

= &, "(Wy+0u0)

e_‘%a (W, + 0u9)



= 6_¢ (Wa + 8a¢) ,
Wk = WH4 04,
We = ¢, *(WF+ ')

= (W9 +0%).

Dilatation of the solder form structure equation

The transformed configuration equation becomes

d(y) (ed’e“) +dy) <e¢e“> = (e¢eb> (@ +9%)

—i—%ncbe*% (d(m) (ewn“c) +dy) (62¢n“0)) e?eb

1 b
+5d@) (62¢n“b) e %f, + e il e 78,
_ . 1.
—W,e3%en®e =, + TP fie® + §T‘g062¢ebec
0 = 6% +e%e’44

1
+nepe?d () pn e’ + incbed)d(x)naceb

a 1 ac
+6¢(5b d(y)¢eb + incbed)d(y)n eb

1 5
+efn?d ;) of, + §€¢d(x)77abfb +ePn it g,
— (W, + 8.¢) e®n®efy + TP fie°

1.
+§T‘g662¢ebeC

—€¢d(x) gf)e“ - €¢d(y) gf)e“

b__a b.a
—e?e’od — ePel~Y

1 1
—§€¢ncbd(z)naceb - §6¢77cbd(y)77aceb

1
—§e¢d(x)77abfb — e¢17acubcfb + e® W et

1
—e?T fie° — e¢§ ¢ ebe,

SO
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1 -
+ (T“b 9T ) fre® + ie% (T‘})C - e_¢T‘gc> ebe’;

and therefore,

&CZ = O b

i, = u,

ﬂ?ab = 7 b’

Tabc — €¢Tabc,

[h. = e T

Dilatations of the cosolder structure equation
The cosolder equation,
1
d(x)fa + d(y)fa = (O'ba + ")’ba> f, + iﬁbc (d(m)nab + d(y)nab) f.

1
—3 (dy)ab — 20acp + 2W Eeney) €

1
+80r fet + 5sa’wfbfc,

transforms into

diy (798) +dg) (¢7f) = (&% +3%) e ™hy
-I—%e%nbc (dey (7 mar) ) ek,
+%(32¢an (de) (enw) ) 1
o () 2

672(1)%:) Z)cb) e’e’

1

~3 <2e¢ (W€ 4+ 0%) e ?f. (e*%nab ) e?el
_ 1 -

+S50 et + §e_z¢5abcfbfc

0 = 6% %f +7%e °f — e Od,of,
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+%e_¢77bcd(:c)nabfc — e %d ) ¢f,
+%e_¢nbcd(y)77abfc + e %d ) 0f,
—e %d(pfa + e d(y)of. — e Pd(fa
+e*¢nabd(y)¢eb — %e*¢d(y)nabeb
+e nacphe’

— Wt — e nyd°otee’

- 1 -
+Sr fet + 5e—2¢sal’Cf,,fc,
SO

0 = &% % — e P8 +3%e Ot — e AN g,
+€_¢77acﬁcbeb - e_(bnacpcbeb

~ 1 ~ 1
+S0 fe€—e P8 e+ 5e—2<¢>sa’)0fbfc— 5e—<f’sab0fbf;;

and therefore,

&ba = Ubaa
¥ =
PY = P
g(lb C = €_¢Sab c)
Sabc = ed’SabC.

We conclude the only nontensors are o, and 4%, under Lorentz transformations, and W,

and W*? under dilatations.
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Appendix C

Homogeneous biconformal solution in the orthonormal basis

C.1. Making the known solution block diagonal

Orthogonal Lagrangian basis

We have the known solution

w§ = QAZ‘gs#de,
w® = dw“,
1
we = ds,+ 3 (6a/352 - sa55) duw”

1
:d%+ﬁwmﬁ

w = —35dw5.

Suppose we find linear combinations of these x”, A, that make the metric block diagonal, with

Ao = 0 and kP = 0 giving Lagrangian submanifolds. Then any further transformation,

= %’{,5,

Pl
Q
I

B s,

leaves these submanifolds unchanged and is therefore equivalent. Now suppose one of the linear

combinations is

P!
Q
I

aAB dsg + Béaudw“
= AP adss + 5A%C’5#dw“

= A" (adsg+ BCgduwt),
where the constants are required to keep the transformation nondegenerate. Then

Ao = adsy + fChaduw’
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spans the same subspace. A similar argument holds for %7, so if we can find a basis at all, there

is also one of the form

Ao = adsa—l—ﬁC’agdwﬁ,

kK = pdw® + uBo‘BdSﬂ.
Now check the symplectic condition,

K% = (pdu® +vB™dsg ) (adse + BC,ydu)

= apdwds, + pBCy, dw*dw! + I/OzBaBd$5dSa + VﬁC’auB“’BdSBdw“.
To have kA, = dw®ds,, B and Cop must be symmetric and

apl —vBB'C

I
—

1 _
B=RB' = aﬁ:ﬁ Ccl'=apBC.

We then have

Ao = adsa—l—BCaBdwﬁ,

—1_
kY = pdw® + an C’aﬁd55.
Now look at the inner products. We know
(dw®, dw?) (dw*,dsp) B 0 43
(dsq,dw?)  (dsq, dsg) 85 —kap

SO

0 = (K% Ag)

1.
= <deo‘ + %C’stm adsg + BCBl,dw”>
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ap—1

= (pdw®, adsg) + < Co‘“dsﬂ,ad85>

1.
+ <O‘“ 5 Ca“dsu,ﬁcﬁydw”>
1 - _
= padg — Ea (ap—1)C*Ekyg + (ap — 1) C*Cpgy,
1 _
= (2ap—1)05 - Ba (ap—1)C*Ek,p

1 _
an—1)05 = galap— 10
_ a(ap—1)
O = Foap—1)""
C«x,@ _ B (2CW — 1) kozﬁ
a(ap—1) '

Therefore, if the required basis exists, then there is an equivalent one of the form

—1
Ay = ads, + Mlﬁaﬂdwﬁ,
(20— 1)
20 — 1
kK = pdw® + ST By

The metric
The metric on the submanifolds, in the given coordinates, now follows from the remaining

inner products,

2 — 1 2 — 1
<m"‘,nﬁ> = <deo‘ + 2 k*tds,,, pdw’ + a'ukzﬂ”ds,,>
o' «

2 — 1 2ap — 1
- <dea, op kﬁ”dsy> + <O‘“kaﬂdsu, pdw? >
[0

(%

2a — 1 2apu — 1
+ <auko‘“ds#, aﬂkﬁudsy>
«

(07

2
_ 2M2au—1ka5_kw <2au—1) e
[0 [0

. 2ap— lko‘ﬁ

o? ’
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and

1 1
Arg) = (adsy + 2D G adsy + LT D)
g (20 —1) " T ap-1)""
-1
= (adsq,adsg) + <adsa, CZQ(c()iLibl))kﬁyde>
a(ap—1)
P g dwt, ad
+<(2Oéu—1) e 85>
2 -1 2 —1
B, (Ow_ ) . (au_ )kaﬁ
(20— 1) (20— 1)
2
S
2000 — 1

This shows the metric on the Lagrangian submanifolds is proportional to k.3, and we normalize

with
2001 — 1
O = k=41
o

200 —1 = ok
1+ ka?
po= g

«

Therefore, we have a block diagonalization of the form

(6% k (0% (0%
k= = (a2 + k) du + 207 dsg )
1
Ao = 5o (20%dsa + (= k) kapdu?)
Let a = kS5,
« k « «
K= o ((k,82 +1) dw® + 2k3% 5dsﬁ) ,
1
A = 55 (266%dsa + (k5% 1) kapdw?) .

Now that we have established the metric

2
kap = 52 (5a5 — (9280[55) ,
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where §,4 is the Euclidean metric and s? = 5aﬁsa55 > 0, and have found one basis for the
submanifolds, we may form the orthonormal basis for each. Since the metrics are inverse, the

coefficient matrices will be inverse as well,

et = ?h a ((1 + kB%) du® + 2kﬁ2k°‘5d35> ,
L,
foo= 50 <2k52dsa— (1— kB?) ka[gdw6>.

This is a one-parameter class of allowed bases, and determining the orthonormal metric,

Ny = hlh ks

2
= haahbﬁsz <5a6 — ‘928(185) y

which is clearly Lorentzian.

It is convenient to define

Sap = hlh6us

Sa = hg'sa.

We check the inner product of the orthonormal basis. The symplectic form is

e'f, = Qth ((1 + kB%) dw®™ + ZkBQkO‘BdsB) 1{), b (2kp*dsp — (1 — kB?) kg, duwt)
= 7 ((1 + kB2) 2k B2 dwds, + 2kB% (1 — kB?) dwﬁdsﬁ)
2 2
- ’ZgQ (1+kB%+ 1 —kB%) dwdsq,
= dw%dsg,
and the inner products are
<ea, eb> - ?ho‘jhﬁb (<(1 + k%) du, 2kﬁ2k5”dsy> n <2k62k°‘“dsu, (1 + kB?) dwﬁ>)



<ea, fb> =

<fa7 fb> =

as expected.
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:mhghﬁb (<2k52ka“d3m 2k62kﬁ”dsu>)

4;2h5hﬁb (2kﬁ2 (1+ kB2) kP + (1 + kB?) 2652k — 21@5%0#@,,21@,821&?”)

_|_

4;2h§hé’ (2682 (1 + kB%) + 2kB2 (1 + kpB%) — 4B*) kP
4;2ho‘jh[§’ (2k5° + 2kB°) k7
khhyk*?
k’l’]ab,
k

4—62h5hbﬁ (2k8% (1 + kB?) 65 — 4565 — 2kB% (1 — kB?) 63)
1

3 (14 kB* — 2kB% — 1+ kp?) 6

0,

1 o v
7 h’ <2kﬁ2dsa — (1 = kp?) kapdw®, 2kB%dss — (1 — kB2) kg, dw >

k 2
24/352 hoh) (=2kB% — (1= kB2) — (1 — kB?)) kag
2k 3>
432
—kh S kg

h‘aahbﬁ (_2) kaﬁ

_knaba

Inverting for the coordinate differentials

We solve for the coordinate differentials in terms of e?, f;,. Compute the linear combination

k a o o
55l ((1+k52) dw® + 2kB%k 5d35>

+n“b;8hba <2k52dsa — (1-kp?) ka[gdwﬂ>

;ﬁ (b4 B2) hgt = A (1 = kB%) " hihas ) du?

+hS (W + kAk;aﬁ) ds,

ea + Anabfb —



so with A = —k,

e — kn™f, =
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((k+ B2 g+ & (1= kB2) hin™h i has ) du?

L (k+ 5%+ &k — %) hgduw”

To solve for ds,,, we use this in f,,

£, =

kBhSds, =

ds, =

Then, we have

dw®

ds,

1
250 (2k:ﬁ2dsa — (1-kp?) k:agdwﬁ)

215}1&& (2k,6’2d8a —(1-kB?) kagkﬁhbﬁ (eb — knbcfc>>

kBh&ds, — (1 — kB2 % <k77abeb _ fa>

f, + % (1 — kB2 knape” — % (1-kB%) 1,

% (1+kB%) £, + % (1 — kpB?) knape®
k a 1 a
55 (LT KB hifut 55 (1= k5%) hinase.

— kBhO <ea _ kn“”fb) ,

1
251 (k (14 RB2) £+ (1= kB2) mase”)

Finally, we check that these are independent. If they were not, linear dependence implies

the existence of k such that

k

1

b ( (1+k8%) he'fa + 55 (1 = k5%) ho?nabeb> = KkpBh, (e“ - kn“bfb)

26

26

28
1

k) (1 k) = wkB ("~ k't

28
(k82 0™ + (1 - kB%) € = 2kkp? (e — k't )
k+ 6% b 2RkB? b be
| —gpe ete = 1— kB2 (e — ki fc)
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k+ 32 2k 3 ab 2k 32 b
(1—k52+(1—kﬁ2>“’“)" f“+<1_<1—k62>“>e =0

Linear dependence requires both coefficients to vanish,

1 kp?
" 2%p2
1+ kB2
K: == _77
2k 32

which is impossible. The orthonormal basis is therefore linearly independent, as required.

C.2. The spin connection

The entire spin connection is defined as
% = hlw%h — hodh,

with antisymmetric and symmetric parts a% = ©%r¢, and 39 = E%7¢,. Each of these, as

well as the Weyl vector, further subdivides between the e€® and f, subspaces,

afy = o9 +7% =0%e +73°L,
BYy = nh+ph = nhee + 4%,

w = W,e*+ We,.

All quantities may be written in terms of the new basis. We will make use of s, = h s, and

Oap = haahbﬁéag. In terms of these, we easily find

2
Tlab = 32 <5ab - SQSaSb> ;

1 2

nab = = <5ab _ 2(5ac(5bd868d> ,
S S
1

dab = ? (nab + 2SaSb) ’

2
6ab _ S2nab + ?5a06bd865d
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_ 82 (nab + 277acsc77ad3d) )

The basis change from the known solution to a solution in terms of an orthonormal basis on

Lagrangian submanifolds is

wﬁzkmﬂ&ww@,
1

dsa = 5gha ((1—k52) nave” + k (1 + k5°) fa)’

where the solution for the spin connection and Weyl form is

wh = 2A%‘sudw”,

w = —s,dw®™.
These immediately become

Wl = 2A%%m3@d—kwﬁg,

w = —fs.ke® +n®Bs, 5,

and we easily expand the projection A% in terms of the new metric. Substituting to find 79

results in

T4 = 2A%s k3 (ed - kndefe) — h&dhg
::wypw%mpﬁﬁ@%wM%)—wmw
— <6§5§ — 52 (77‘“ + 2nafsfncgsg> (312 (Mba + 2sbsd)>> sk <ed — kndefe>
—hSdhS
= (2@35 — 20 sp54 — 20 5 4198 b — 477af5fncgsgsbsd> sckf (ed - k:ndefe>
—hdha

= g (2@3530 + 277“f8f77bd + 277acsbscsd) ke — hy*dhg
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—pB <2 Sse + 20 mpgsp + 277a03b303d> nt,,
so
T = [(20%5c + 20" Mhase + 20" sespSa) (ked — ndgfg> — hydhg.

Antisymmetric projection

The antisymmetric part is then

@de

Q
-8
Il

= 0% (B(20 5 + 20 Nanse + 21sesq5,) (ke™ — n"f,) — hi'dhf)
= 8 ( OL S + (5‘35? - n“dnbc) 1T Se + (5553 - n“dnbc) nceseSdsn) (ke™)
-8 (292’?% + (5535? - n“dnbc) 1T Se + (6355 - n“dnbc> ncesestn) (n"9%y)
—0%hrdhs
= B (52% — 0" N Sm A NN Se — O sy + N SeSpSn — nadnbcncesesdsn) (ke")
-3 (5381» — 0" N S+ MonN*“Se — Op sy + 1 SeSpSn — n“dnbcn“sesdsn> (n"9f,)
-7 hdadh ¢

= —Oihidhg,

with the remaining terms cancelling identically. Furthermore, since h is a purely s,-dependent

rotation at each point, the remaining h*dh; term will be of the form

hydhS = (h;‘(jhﬁ) dss
55

— (hd 0 hc)lﬁh ((1—k62)nabe + (k+ 6°) £ )

giving the parts of a as

0
ol = — o (hbaasﬂh(;) hsneae?, (C.1)
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k_'_ﬁz ad « 0 a c
25O (1 a—sﬁha hiE.. (C.2)

Notice we may make one or the other of these, but not both, equal to zero by choosing 5% = 1

and either sign for k.

Symmetric projection

Continuing, we are particularly interested in the symmetric pieces of the connection since

they constitute a new feature of the theory. Applying the symmetric projection to 79, we expand

_ d
BY = EHTY

= Eg{f (2057 Sm + 20 Nanse + 20°°Scsqsn) (ke —n"9fy) — Hadh dhg

= 5 ((52161(;1 + nadnbc> ncendnse + <535i;1 + nadnbc> ncesesdsn) (ken - nngfg)

Hadhdadh c

= B (n“enbnse + 0p sy + N SeSpSn + nadnbcncesesdsn> (ke™ —n"9f,) — "adh dh;

= BM*Masc + 035y + 20" spScSq) <ked — ndefe) — Hadh dhrg.

We need to express the symmetric part, Egglhdadh ¢, in terms of the metric. First we can show

ko dk,

kord (h;;h;nab)

h &R e (dh;hg’nab + h;dh/gnab)

hEhy hin  mapdh? + hy*dhj

hEh g (hidh®) + hih§ (h “dh )
h&hEn s (b dh,2) + b h§o208 (hf'dh,2)
heh? (7]Cd77ab + 5;}55) (hf'dhf)

2hhgE5 (hy'dh ) .
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Therefore,
r-*ad htd _ 1 ayp B apq
( h ) = §hahb k kug
1
= §h£hbﬁkzo‘“d (5205 — 25,55)
1 a ,31 o 2 ao A vp
= §hahb 2 U — ?5 5001 sy | (20,30"Pspds, — 2ds,sg — 2s,dsg)
_ ayp B 1 Som 2 §ao (SM/\ 5. 28vP 5V YA
= hahb? -2 S50M sy (u,g Sp— 0,88 — 53“)d31,
ap B 1 asvp 2 oo vp av
= hgh 2 555 5p — ?5 0"Ps,585, —0""sg | ds,

1
+h5hbﬁ— < 5“"5”)‘303,\85 —050%s,, + 25” A > ds,

— RIR S (539s, = 6 4 B58s,) s,

_ 7( a(scd — %y + 056“sy) heds,

- 1512 (05 — 65y + 055°sa) (1 = k8%) mege! + k (14 k6?) £.)
11

= 5y (5352 (nCd + anesendf3f> Sd) ((1 — kB?) chef)

1 - kﬁQ ncfe )

(1-% ncfe)

- 21ﬁ % (32 (e 2 sg) )
(5 (1m0 + 205 ¥sy ) sa)
15 (5 (ncd + 255 ¥ s f) d) (1+k32) £,)
212 (2 (07 + 20 sen® s ) 1) (+k (14 k52 )
5 (5 (n°0 + 20 sen™ sy ) sa) (k (14 k62 )
= ( 58n“dsy + 050 sy + nsy + 2n“fncesbsesf> (1 - kB?) nepel

< e sq + 65n™sq +n"spy + 277af77663b363f> k(1+kB%) £,
Substituting this back into the symmetric part of the spin connection we get

B% = B npasc + 6Gsp + 2n*°spsesa) (k:ed - nd6f6> — H“dh dhg

= kB (n™“npasc + 63sp + 2n*°SpseSa) e?



1
+ ((51‘}770de + 5§n“dsd + 1% sy + 277“6776dsbsdse> 35 (1 — k;BQ) ncfef
—B (*“Mpasc + 0555 + 20 syscsq) 1°Fe

k
+ <5§n0dsd + 5§n“dsd +n%sp + 2n“e770dsbsdse> % (1 + k‘B2) f,

1
— (—kﬁél‘}sc + % (1+kB%) <6§sc + 0% + n%%npesq + Znadsbscsd)> e

k
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+ (B5z‘fnc‘l8d o (1= kB) (0™ sa + o5n"sa + 0" sy + 217“d77“8b8dse>> fe.

2p

Now define the coefficients,

1
yizﬁ(lik62),

SO

Bab = (_kﬂégsc + v+ (51?5(: + 53317 + nadnbcsd + 2nad5b505d)> e’

ad, ce

+ (551?776de + kv (55770de + 85m s g + sy + 20" SbSdSe)) f..

The independent parts are

s = (—k‘ﬁégsc + v+ ((5;)180 + 0gsp + nadnbcsd + 2nadsbscsd)> e,

ad, c

Py = (552770de + k- <51§L776d3d + 65054 + 1™ sy + 20y esb5d56>) f..

C.3. Involution conditions

Finally, check the involution conditions,

0 = piel — V()€

0 = pbafb - u(y)fa.
For the first,

0 = u%eb—v(m)e“

= <—k,85§sc + v+ (5?30 +0%sp + N npesq + 2n“dsbscsd>> e‘e’ + Bsyke’e®
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= —kﬁégsceceb + Bspkebe?
= —kfBs.ee® + kBsye’e”

= ()7

while for the second,

0 = (Béifnc‘is(z + by (55770de + 85m™ s + 1y, + 277ad77665b5d36)) fofa — 0" Bsafcty
= /Bnacsafcfb - nacﬂsafcfb
= 0.

The involution conditions are identically satisfied for all values of 8 and both signs.
C.4. Riemannian curvature of the Lagrangian submanifolds

Momentum submanifold

On the e* = 0 Lagrangian submanifold, the ©4 projection gives

1
0 = SRYEE - pipt + FOFALY I,

0 = dybh -7,

while the symmetric projection is

DWpf = —kEFALnILL,,
dyyuy = 0,
where we now have
Py = (ﬁfsz??fdsd + k- (5577“!80[ + 85n s g + sy + 277adncesb5d5e)) f.,

uy = n"PBsafe,
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a k+52 ad o a a c
Ty = 25 ecb h’b 8Sﬁha hﬂ c:

Rather than computing R%Cd directly from ~9, which requires the rather complicated local basis

change h¢, we find it using the RHS of the equation,

SR = gt — ROEAL I,
= (ﬁ&inf Ysa+ k- (&fnf Usq + 0fn“sa + 0 s, + 2! 3b3d36>>
X (55?779h8h + k- (53779h5h + 690"y + n9s. + 277ah77k9505h3k>> £ty
(0305 — n"na) 1 (3281 B8,

1 1
1 (8405 — n*nap) N s> (Udf + 277dh5h77fk5k> 2 (e + 25cse) £rfy,

where, again

2
Tlab = 32 <5ab - 823a56> )

1 2
,rlab — ? <5ab . SQé‘acé‘dech) ,
1
6ab = ? (nab + 25(1517) 5
2
5ab _ S2T]ab + ?6a06bd868d

_ 82 (nab + 277acsc77ad3d) )
Then

1
ER“defcfd = kBvy_ (nacsc <5gnfdsd + 6,{ngdsd> + (n“gnfdsd + nafngdsd) 5b) fif,

442 (—5,{77“9 — 5gn9dn“hsdsh) fif,
+v2 (n“f nspse — 0" spse + 0"’ d3d3b> frfy
—i—%k (n“fég’ — 095 + 0 80 s, — negégnacscse) fif,
+%k (negn“f spse — 0! n"’gswe> frf,
= 0%+ (ncf + 27)Cd776fsdse> fif,
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+O% (nf ¢ 4 opcdpef sdse) /£,

1 4 .
= 500 (k+12) 07 Esf,,

where the constant is

1
k++y2 = k+@(1—2kﬂ2+54)

This may vanish if we have k = —1 and 52 = 1. Let 8 =€ so

1 k 1
k—l—’}/% = 1524'54'@
e + 2k 4+ e 2
4

B e + ke A 2
N 2

cosh?\ k=1

sinh?\ k= -1

Curvature of the configuration submanifold

For the configuration space

a — T a c a
R = d )a'b—abac

= D@ s+ pGps + kALYnee’,
with antisymmetric and symmetric parts,

RY = pSps +kO%AYn: e

0 = _D(x) k —|—k‘._§ Aecnfge e’



123
where

po = (—kﬁ&l‘fsc + v+ (5?50 + 0gsp + nadnbcsd + 2nadsbscsd>) e,

For the antisymmetric part,

popl = (—kﬁégsc + v+ (555(; + 6%sp + n°Mpesa + 2n6dsbscsd>)
X (—kﬁégsg + 7+ ((5‘;39 + 0 se + N Negsy + 2n“fsesgsf)> e‘e’
= B20s.5.e°€”
—kBvyy (5gscsg + 6y Sesp + n“fnbgschv + 277afscsb595f> e‘e?
—kBys (5;}3930 + 08 sg8p + nadnbcsgsd + 2n“dsgsbscsd) e‘e?
—l—’yi <5§8c + 0%sp, + 0°Upesa + 2n6dsbscsd>
X (6339 + 0gse + N Negs s + 2n“fsesgsf) e‘e’
= —kBy+ ((55«% +6254) sp + 1% (g Se + Mpesy) Sd) e‘e’
+7; <5Zsc8b + 0 mpgsesy + 0" pesasy — 52%) e‘e’
—i—’yi (n“fnbcsgsf — 2n“fnbcsgsf - 252‘51,30) e‘ed
= 73 (=0me — 03spse — n*“Npesase) e“e’
= o (3 05— ) e+ 5 635 — ) 25 ) !

= _’7-21— b (Mee + 25¢5¢) eced’

and

1
KOG AL ge%e” = Zk (6% — 1"“1va) (5555 - 5ec5df> nyge’e’
1
= _ik (8358 — n%1pq) ((5;177@ + 633656 + Udhnceshsg) e9e®
1 1
= —k <2 (5;5,‘,3 — T]acnbg) Nee + 3 (5;55 — nacnbg) 2.Sesc> e’e

= —kOI (Nce + 25¢5¢) edee,
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We have

so with 8 = e,

Rai) = lj’cbﬂac + k‘@g Aecnfgeg
= (k - ’Y—2i-) gz (7766 + 25036) eced

= (vi —k) 520% 5, .ele’.

1
T+ = 26(1+k52)
T-k)s® = 4;2(1+2k62+64—462k)52
1
= @(1—2k52+54)82
(V2 —k) = o2\ 2k;+e2*)

cosh’\ k= —

1
4
{ sinh? \ =1

Combining the two curvatures, we have

a de
Rb

Ndf Neg R% de

—

Vi — k) s°0%; Secele’

’Yi - k) O50ce — Ogpded)

(
(

)
J,-l\')

o1 1
k) < db? (Uce + 28c8e) - (611(73872 (ncd + 2303d)>
-2|— - k) <@3gég - 62555) (ncf + 23051‘),
(k- 2) (607 - o)
(

N =N RN = N =N =

B+92) (0% namness® (1% + 2™ 5™ s, ) )

124



125

- (k: +~Z ) (@ggindfnegﬁ (1766 + 2n0hshneksk)>

11
2

= ( Y2) (8% (Neg + 28¢5g) — ©% (ef + 25¢57))
(

napneg B0 12) (O] — O3} ) Ores +25esy).

Therefore,
1
Manes Ry = Ry = 5k (050 — 0656]) (nes +2551)

so the difference of the configuration and momentum curvatures is independent of the linear
combination of basis forms used.

For the Einstein tensors,

1
inabk

= k() + (1~ 2) s

1 1
777abR(x) = §k (n - 2) (nab + Sasb) -

1
NacbaREY — ~napRy) — Ry + 5

2

Symmetric curvature equation and constancy of the scale vector

The symmetric field equation is
0 = D + ALy peet.
Computing the second term,

k=G Adfnfgeg = kEg Adfnfgeg

= B 0905 ema) (5251 — 5Y5.) mggetes

= Zégdg (526{; -8 ( 4 4 277dgs nfhsh) : (Nee +28680)> nggele’
k dsf daf dg.  fh 1 g€
177 “Nbd ((5 W (77 + 2n“sgn sh> (Mee + 28680)> nrqge’e

e

(=285 (8%sk + 6se) — 20 se (kS + Mhesk)) €¥e
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Therefore, with d®)v = 0 and D®)y,;, = 0,

0 = D@

a

1)

= DO [(=kBogse +vs (8fse + sy + 1" mesa + 20" sp5050) ) ]

= —kpBoyscce‘€e”

+v+ <5gsc;e + 5ng;e + nadnbcsd;e> e‘e’

+v4 (Zn“dsb;escsd + 2n“dsbsc;esd + 277adsbscsd;e> ee’

= 1 (538b;e + 0" peSase + 20 spescsa + 277ad3b303d;e) e‘e’,

and we conclude

0

Contract with s,

and then with s,

d d d
6gsb;e + 77a NbcSd;e + 277(1 ShieScSd + 277(1 SbScSd;e

d d d
_53817;0 - 77(1 NveSd;c — 277(1 Sbh;cSeSd — 277a SbSeSd;c-

ad ad
SeSbie + Mbe SaSdie — 23b;650 + 255847 Sd;e
. . ad 2 —9 ad
SeSb;c Nve™) SaSd;c + Sh;cSe Sall SbSeSd;c
1 ad
SeSbie — ShieSc T anQ 1 SaSd
e

d d d
+SpSc (na Sasd) - nbena SaSd;c — SbSe (5a77a Sd)

e i€

SeSbh;c — ShieScs

ae ae
0 =1 SaSeSb,e — 11 SaSbeSc

_ ae
= —Sbc — 1 SaSheSc-
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But s4;5 — sp: = 0, so the second term becomes

ae _ ,ae
N SaSheSc = 1 SaSe;bpSc

1

— 5 (naeSaSe);b Se

=0

so we have

Sa:b = 0.

)

C.5. Components of the solder form
We are interested in the nature of the coefficients of the solder form, h %, which turn the

a !

coordinate basis into the orthonormal one,

Ny = hlh kg

2
= haahbﬁs2 <5a5 - (923a35> .

Let b = Vs2h to remove the conformal factor. Recalling dap is the Euclidean met-
ric, diag (+1,+1,...,+1), we see that on orthogonal transformation will preserve d,5, while

rotating the vector, s,. At any fixed point, sg, let ilaa be the orthogonal transformation

he =02 (5%, z)that takes s to some fixed direction, say z = s1. In this rotated system,

Sq = <¢37,0,...,0), o)

hac“hbﬁs2 <6a5 - ;sa55> = O (Sg,x) Obﬁ (sg,x) (5a5 - ;5a55>

= 08 (s2,2) 60507 (L,2) — 202

2% (sg,x) saObB (sg,x) 53

2
= Ogp — ?82&115&;1
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Therefore, the required transformation at every point is just

1
haa = \/?Oaa (Sa,l‘) .
The explicit form of such a rotation is written as follows. Let n, = (1,0,...,0) be the

unit vector in the chosen direction. We want to rotate in the (nq,sg) plane. We need a unit

vector which, together with n, spans this plane. Let

Sa — (55n5) N
V(s = (san?) ) (st — (sgn?) i)
Sa — (SBH’B) N
Vsust — (sgnf) nyst — (sgn) nt's,, + (sgn) (sgn”)
s— (ssn°)n

B \/ 82— (55n5)2.

Now, for a general vector x, decompose so x is the sum of

m =

X, = (x-n)n,
X, = (x-m)m,
x; = x—(x-n)n—(x-m)m.
The new x is given by
)NCL = X,
X, = Xpcosf —x,,sinf,
X;m = Xpsinf 4 X, cosf,

2
where the angle of rotation is given by cosf = (\S/'S%), sinf = +4/1 — (S's’;) )

Now expand this out to find the transformation
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X2 = x-x—(x-n)Z—(x-m)2,
X, = (x-n)ncosf — (x-n)msinb,
Xm = (x-m)nsinf+ (x-m)mecos6.
Then
X = x—(x'n)n— (x-m)m+ (x-n)ncosé
—(x-n)msinf + (x - m)nsinf + (x - m) mcos 6
= x—n((x-n)—(x-n)cosf — (x-m)sinb)
—m((x-m)+ (x-n)sinf — (x-m)cosf),
7 = (5;‘ — (1 = cosf) n®ng + n*mgsind — m*ngsind — (1 — cosf) m*mg) z”.

Check the norm of x,

x-x—(x-n)*(1—cosf) + (x-n) (x-m)sinf

M
1
I

—(x-m)?*(1 —cosf) — (x-m) (x-n)sinf

—(x-n)*(1 —cosf) + (x-n) (x-m)sinf

+((x-n) (1 - cos) — (x-m)sinf) ((x-n) (1 — cosh) — (x - m)sin)
—(x-m)®> — (x-n) (m-x)sind + (x - m)*cosd

+((x-m) (1 —cosf)+ (x-n)sinf) ((x-m) (1 —cosd) + (x - n)sinh)

—(x-n)? ((1 —cosB) + (1 — cosf) — (1 — cosf)* — sin® 9)
+(x-n)(x-m)(sinf —sinf + sinf — sinf — (1 — cos ) sin 9)
+(x-n)(x-m)((1—cosf)sinf — (1 — cosf)sinf + sinf (1 — cosh))

— (x-m)? <1 —cosf —sin?0 +1 — cos b — (1—0030)2)

— (x-n)? (2—2cosf — 1+2cos€—00829—sin29)
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+(x-n)(x-m)(sinf — sinf + cos @ sin @ — sin  + cos fsin h)
—(x-n)(x-m) (sinf — sinh + cos @ sin — sin @ + cos fsin b))
— (x-m)? (1 —sin20—6039—0089—1—20050—60820)

= X-X,

SO

and the transformation is a rotation.

Therefore,
1
hg = ﬁég (65 — (1 —cos @) nng)
+\/13>253 (n®*mgsind —m%ngsiné — (1 — cos§) m“mg) ,
where

ne = (1,0,...,0),

_ B
m — S (Sﬁn )n ,
52—(5571/3)2
and
(s-n)
cosf = ,
Vs?
2
sinf = + 1—<S ;1)
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Appendix D
Christoffel symbol
We define Christoffel symbols (connections) as the symmetric part of the submanifold basis

structure equations. For the biconformal submanifolds in the Lagrangian basis they are

elope, + o + 500.0 —T%, = 0,

LSS = = 0500 + T = 0.

In the orthonormal gauge, we have

a a na
€Cuabeu + Ocp — L p = 0,

f,fabfa“ _,Ycab_i_f\cab — 0.

This gives the following relationship between the Christoffel symbols and the submanifold torsion

and cotorsion,

ra ra — a
bc_rcb = T4 be

b c rceb be
re-r¢ = 8,°.
In a coordinate basis, we can solve for the connection

(T95+ 9 90aTSs + 977 98aT%,) »

<SO"76 + guagﬁasavy + gyggwasaﬁu> >

o= T+

R ORI

Fﬁov — Fﬁav _

where the untilded Christoffel symbols are defined normally (as in a Riemannian geometry), with

respect to the coordinate metric,

lo}

Bv

1 (o2
597 (98Gvy + Ovgyp — O9p0)
1

ey = — 5 9ve (aﬂgw + 78 — 3vgﬁv> .
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Appendix E

Extrinsic curvature of Riemannian submanifolds

E.1. Metric relation

Consider an n-dimensional C* Riemannian manifold M with metric
ds® = gapdX*dXP.
For m < n, consider an m-dimensional C* Riemannian manifold A/ with metric
dI* = hy;dx'da?,

which is isometrically immersed in M as a submanifold. This is defined by requiring the length
of any curve in NV, evaluated using dl, should be equal to the length of the same curve evaluated
using ds of the ambient space. Thus, for any infinitesimal displacement in N\, the differentials
dx' and dX are related by

GapdX*dXP = hyjda'dal.

For points in V' there are two ways to specify charts. Since A is a manifold, we may always
introduce coordinate charts, z*, in the usual way. On the other hand, since N is embedded in
M we have the restriction of the coordinates X* to A/. Concretely, if ¢ : U — R" is any chart
on an open set U in M intersecting V C A, and x : V — R™ any chart on a set V open in
N, then

pox ':R™ = R"

is a 1to 1 mapping from R™ into R" via the neighborhood UNV, i.e., a collection of real-valued

functions

Xa‘/\/ _ fa (xz) ’
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where i = 1,...,m < n define a submanifold N' C M. These functions, f¢, are regular and of
class C*, and the rank of

of*

dz?

is equal to m. Denote this restriction of the coordinates X by X
The length of any curve in AV is given by the restriction of g,3 to A/; we say the metric on

N is induced by the metric of the ambient space M.

Since
dXg = ?; —da’,
we have
g of* 0f« b
B9zt oxm Ea

Since the f® are functions on M, these derivatives are covariant,

- = D’L aa
oxt /

and we may write

gaﬁf?%fi’ = hyj.

E.2. Curves
Now consider a curve C' : R — N in the submanifold, with coordinates z* (\). This curve

has tangent vectors
dz’ 0
d\ Ozt

and hence, components
dz’
ax’

Y=

This is also a curve in M, with

XE) = £ (2" (V)
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and its tangent vectors are tangent to /. We have

dxe
d\
Of* dat
ozt d\
= fo.

& =

Choose m such curves, such that their tangent vectors, UJEU), form an orthonormal basis,
hijtio)¥ir) = dor:

and choose adapted coordinates such that w%s) = L. Then, in terms of the full manifold, the

vectors 5&) = f?‘ﬂ/}és) = f% s =1,...,m span the tangent space of the submanifold. We may
also fix an orthonormal set of vectors orthogonal to these, C(O‘A), A=1,...,n—m. Then
a B -5
9apC(a)S(p) = 4B,
B _
9op8(S(m) = O

E.3. Second fundamental form

Now return to the relation between the metrics,
gaﬁf?%f{jj = hij,
and differentiate using the covariant derivative of the submanifold,

0 = thij
= Dy (g0sf%1%)
= D (956050,
= (fé‘mDu) (gaﬁf&f@))
= &{as (Duffbﬁé) t g(CE)Dﬂg(ﬁj» '
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Taking the sum-sum-difference,

0 = G (P - 55+ s (2l 2
—&(;y90a8 ( 1 (k) f +¢ k)DNE(z )
= ¢ ])f(k 9as DGy + €6 Sl gaﬁDuf g T8 Z)f(k 9apDu&(;)
+€05) €05 9as Dk () = E0 ey Ias DGy — €yl a8 Duly

= 25(15 gaﬁDu‘f(j

Then
ey i 8\ _
9o (i) (5(k)Du5<j>) =0

shows the vector 5&;)Du§(ﬁj) is orthogonal to the submanifold. Expanding in terms of the

complementary basis, this shows

“51) ZL a

The tensor L“i‘j is the second fundamental form, or extrinsic curvature, of the submanifold.

E.4. Adapted coordinates

Now introduce adapted coordinates,
X — (xiij) ’
such that

ds® = gangadX’B

= gAdeAdyB + hijdq:id:cj.
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In these coordinates, the specification of the submanifold is simply ¥ = 0, and we can take the

functions < to be

fo=

=0,

SO

géik) :f?[k :61?'

The second fundamental form is then
B _ B
§wDuty = Didlj)
_ a.5B a 1B
= 90 T s
_ 8
= 1’
_ A B
=T le(A)?
where the last step follows from the preceding proof, with C&BA) now any convenient basis for

the cospace. In this basis, the extrinsic curvature is simply given by certain of the connection

A
components, I'7;.
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Appendix F

Variation of the Wehner-Wheeler action

F.1. Curved structure equations, action, and variation

Here, we go through the variation of the Wehner-Wheeler action in the orthogonal (but
not orthonormal) basis of [7]. Note, in this variation we have reverted to using Latin indices
to represent that basis as in [7]. The main reason being that the variation requires the use of
quite a few indices at a time; therefore, we use the Latin for ease of calculation. The final field
equations given at the end of this appendix can then be transformed to the orthonormal basis

that is used in Chapters [3[and [4f The structure equations are
dw? = wow? + A% (fc + hcfef) (ed - hdefe) + 0
1
de” = e} +we" + DA™ (fc n hcded> + T,
1
df, = whf—wf, — 5Dl (eb - thfc) +S,,

dw = e“f, +Q,
and the action is
S = / (a2 + Boy Q2 + vefy) Eac. act el e, ... fr.

We are able to separate the Levi-Civita tensor into two pieces because we demand that e, fj,

span submanifolds.

F.2. The variation of the Weyl vector

We begin with the variation of the Weyl vector, w,

0 = 68
= 5/d(6w) Eacmdeae'“fec...edfe...ff

- g/gacmdg“@---f | (dwer ... e, £y ) +owd (e ... £ )] .
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Dropping the surface term and using the structure equations,

0 = ﬁ/éw 5acd_._esaf'“9d (eced...ee) ff...fg}
+ﬁ/5w )" ege..ac® 9eC . edd (feff...fg)}
- ﬂ/éw n—1)Eqcd.. e (de) eeff...fg]
+ﬁ/5w (4)”* (n — 1) £ge. qc 9e° ... e (dfe)ff...fg}
= ﬁ/éw (n—1)eqed.. e 9<e w9, +we )ed...eeff...fg
+6 / dw (n — 1) ged. £ 9 <2DhCh (£, + hnie') + TC> el...ef;.. .1,
+5/5w (=) Y (n—1) eqe.qc® 96 .. &2 (whefh — wfe> fr.. .o,

1 .
—i—ﬂ/éw (_1)n 1 (n o 1) ..dEaEf...gec B .ed <_2Dheh (eh _ hhlfl.) + Se) ff - fg-
Defining

1 .
T¢ — TC+§DhCh (£, + hnie') ,

S, = S,— %Dhab (eb - thfC) :

and collecting like terms,

0 = (n—l)ﬁ/&w Eacd,,_eaaf“'gehwched...eeff...fg>
(n—1) B/dw V' e ge.ag® 96 edwlfhff...fg)
Eaed. oM Iwete? . . eeff...fg)
e qeet 90 edwfeff...fg)

Cacd.ce" I ey )

S
|
—
@
—
>,
€
T T/

Cmdé_aef...gec R edéeff c. fg> .
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For the Weyl vector terms we have

5 = (n—-1)8 / 6w (Saca..ce™Iwerel . e“fy .. )
+(n—1) ﬁ/aw ((—1)“ Eac..ac™! 96 | etwh.fy ... fg)
— (1) B/(Sw (07 (0~ 1l wese ety 1,
t(n—1) ﬁ/w ((4)" ()" w (—1)7 (n — )16 5% ey . fg)
= (n—1) 5/5w (@ —w) (=1 (n - 1)16 9. e ff .. . £,

= 0.

Now check the spin connection terms. Expand the spin connection as w¢, = wc,u-ei +wchifi, and

the variation as dw = Ajej + ijj, o)

o = (n—1)p / ow <€acd.__€5“f"'9ehwched cooefp fg>
+(n—1) B/(Sw ((—1)”71 Eac.. g™ 96 . edwhefhff .. fg)
= (n—-1)p / ow (sacd”,eeaf“'gehwchieied. efp.. fg>
+(n— 1)5/640 ((—1)"71 Eac..ae"9eC . MW ety .. . f )
+(n—1) B/&u (Eacd“,eeaf"‘gehwchified .effp fg>
+(n—-1)p / ow ((—1)”_1 Eae. g™l 9eC . edwheififhff o fg)
= (-1)"(n—-1) B/ijf}ﬁ- <5ahdmeekeied eI fg)
+(-1)"(n—-1)p / Biuh. <5acmdeiec .. edeakf”'gfjfhff .. fg)
+(n—-1)p / Ajw’}gi (sahd“_ee“f'"gejekfied cefpl fg)

(n—1) B/A]w (= Eae. qc™ 96T .edfifhff e fg> .
Define the volume forms,

a b _ €a...b¢)n’



Then
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fa . fb = 5a...b<I)na

e = PP,

(-1)"(n—-1)p / Biuh, (eahd._.eeke"ed eI fg>
f,)
+(-1)"(n—-1)p / Ajw’",;i <6ahdm65“f”‘gejeked .effifp fg>

—(-)"(n-1)p / Al <5ac,._d5“kf”'gejec el f .fg>

+(-)"(n—-1)p / ij};%» <5ac...deiec. i .edsakf“'gfjfhff .

(=1)"(n—1) /B/ij};ci (Eahd...egkid'”eq)ngafmggjf“.gq)n)

+(=1)"(n— 1)6/3%/}“- (eac_,,dsic“'d@%“kf“'gsjhf, g >

+ (=" (n - 1)5/Ajwf2i (%hd‘..e&“f‘“%jkd“'e‘I’"&'f. g n)

V" (=1 [ A (a0 B8,

(—1)"(n—1) 8 / ij}}m- 2 (n — 2165 (n — 1)16¢ + (n — 1)1622 (n — 2)!5(*) P
(1) (n—1) B/Ajwk n— 6% (n — 1)162 — 2 (n — 2)15% (n—l)'éj)q)”

(=)™ (n—1) (n — 1)} (n — 213 / B (= + iy — ) 0

HED ) (0= D - 2018 [ Ay (7 i - ) @

0.

This leaves the field equation in terms of the torsion and cotorsion, as expected,

0 = (n-— 1)5/50} (5acd.._65“f”'g’i‘ced...eeff ) ..fg>

+(n-1)p / dw ((—1)"71 Eae. ac®T 96 . edgeff .. fg> .
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Expanding the variation gives two equations,

0 = (n - 1) /Bej <€acd...65af”'g’i‘ced e eeff . fg)
+(n—1)pe’ ((—1)"71 Eac..ac®T 96 . edgeff . fg) ,
0 = (n—1)pf; (Eacdmea“f”'g’i‘ced .efp fg)

+(n—1) pf; ((—1)77“_1 Eac. ac®T 96 . edseff ... fg> .
For the first,

0 = (n—1)pe (5acd“_eeaf"'g’i‘ced et f 4 (—1)" 1 ege. qe®l9e¢ eIS.f; ... fg>
= (n—-1)p (aacdmee“f“‘g'i‘cejed - fg>
+(n-1)p ((—1)n_1 e, g™ 96l . . .edSeff . fg)
= (n—-1)p (sacdmesaf‘“QTChkfhekejed ey fg)
+(n-1)8 ((—1)"—1 Eac..ac™l9edec .. ed%SE L7878 T3 fg>
= (=) B (1) cact..ce™ TN e, ) B
+(n—-1)8 ((—1)"_1 %56 h’“sac...da“ef'"gsjc'"dahkf...g> P!
— 2= 2 Dt 1) (41" 8 (AT - 15, Msiaiy) @)
= n-2)(n—D!n-1)(-1)"p (Tﬂ“k -, — %S;, Je 4 %S‘e 6]’) ",
SO
ng ik _ 3 (Tjkk B Tkjk) _

Similarly, for the second,

0 = (n—1)pf; (eacdmeaaf“'g’i‘ced. efp o fy + (—1)"71 Eae. ac®T9e° .edseff . fg)

= (n—-1)p ((—1)” Eacd. £ IT %% .. eFify .. £ + cae ac®T 90 . IS 1) . fg)

1 -
= (n—-1)p <(—1)" isacdmeaaf”'ch hkeheked .effifp fg>
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+(n—1)8 (aacmdgaefwgeﬁ elSh  fetEif, .fg>

= (n—-1)8 <(—1)“ %sacd,,,eaafmgcfc wneefed L eCfify ... fg>
—(n=1)p (aacmdaaef'“ggeh €. .edekfhfjff .. .fg>

— =2 (n—1)(n—1)B ((—1)” %em,_egafwg%:fc hkahkd~~-%jf,,_g> "
—2n-2)!(n—-1)!(n-1)8 (sac...déaef”'ggeh kECMdkEhjf...g) @,

(=)l (—1)(n—1)8 ((—1)" (s16% — slt) (%TC hk) "
=2 —1(n—1)8 ((5;15;% —558%) (—1)" 1 gk S, k) P

= (=== 1) (1" B (T° o+ 5F - 5" ) @,

o)
= & h &k
BT jc:ﬁ<5h j_Sj k)'
Check
Assume the tensorial character, so from the action
S = / (a2 + GOy + vefy) e act el e, ... fy,
we have

58
= B/d(&w)aacmdeae“'fec...edfe...ff

- B / uc.as [d (dwee . e, .. fr) + dwd (e e, .. 17 )]
- 8 / T CHRN S A )

= (n-1)8 / 0w (2acq..az" 67 ., .. £ )

+n—1)8 / b (1) e a0 S eS8, 1)
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With dw = A,e* + BFfy,

0 = (n—1) B/éw <5acg_._d5“e'"f’i‘ce9 e fr + (—1)" ! ege.qe®9fel . edgefg .. ff>
= (n—1) B/Ak (Eacgmde“e“'f'i‘cekeg L A ff)
+(n-1)p8 / Ay, ((—1)"_1 e, g9 Tekec . .edsefg .. ff)
+(n—1) B/Bk <(—1)" 5acg._d5“e“‘f”i‘ceg T /% A ff)
+(n-1)8 / B <5ac,,,d€a€9“'fec .. .edgefkfg .. ff)
= (n—1) B/Ak ((—1)” eacg__,de“e'“ffcmne"ekeg = A% A ff>
+(n — 1)5/Ak <(—1)”1aac,._de“g-~feke0...edéée m”fmfnfg...ff>
+(n — 1)5/B’f ((—1)” gacg,,_dg%--féfc mememed . elf,f, . ..ff)

+(n—-1)p / Bk ((—1)" Eac.. ac®9Temel . . edgemnfmfkfg .. ff) )
Therefore, the field equations are

0 = (n-1)8 ((—1)" Eacg...dsae'"ffcmna‘”kg'“dsme...f>
t(n-1)8 <(_1)n1 €ac...d€aeg"'f€kc"'d%Se mngmng.‘.f>
— 2= (0= 111" 8 (ST, - 5,38, ™)
= (n-D!n—1)(-1)"8 (Tkmm — kG k) ,
1

0 = 200Dt — ! 1) 8 (AT LS )

= (=D =D DB (T o+ 8 = S i)

and therefore,

B (Skmm - S, k) = —BT .
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These check.

F.3. Spin connection variation

Now vary the spin connection,

0 = 65
= a/ (0€27) Eac. acTel .. e, . .
= a/ (déwf, — dwiw', — wgbéwag) e qTel .. e, ... £y
= a/sac__dsbe'“fd (&.u“bec e, ff> + a/sac_.debe“'féw”},d (ec e, ff)
/ (6w W'y + wh oW’ ) Cac.accTe .. e, .. A
= /6wb ) €ac.. eI dec. edfe...ff)
+a/5wab ((—1)”71 (n — 1) €ge.qc® e .. eddf, . .. ff>

—a/eac,,_debe“‘f (5wgbw“g + wgbéwag) e...e, ... fy.

Now, substitute from the structure equations and expand the spin connection and its variation

as
wh = wziei—i—w‘fqifi,
ol = Ale 4+ Bhf,.

Then

0 = /5wb ) €ac.. 4T dec. edfe...ff>

—I—a/dw“b (—1)"_1 (n—1) eqe..qc® e .. eldf, ... ff>
—a / Egc..aee (6wgbw‘fq + wgb5wag) e...e, . .. £y
= a/ ( abiei + B%ifi) ((n -1 Each. qe?ef (egwcg + we’ + 'i‘c) el e, ... ff>

+a / (A%e’ + BY'f) ((—1)”‘1 (n—1)ege.ae”" et .. e (wgefg —wf, + Se) £,... ff)



—a/sac e ((Ag e —I—ngifl-) (wagjej +w‘quf )e .
—a/aacmdabe'“f ((wgbjej —l—w%jfj) (Aagiei +B‘;Zf )e g

= a/(n — 1)6achmdsbe“'fA‘§nei (egw + we’ + Tc> h ..edfe...ff

+a/ (=)™ (n — 1) eqe. ge®M T A% leC .. e? (wgefg —wf, + Se) fr...f;

a be... j 1 d . f bj i
—a/A bi <€mc...d€ fu/g]e’fjec. e tege.ae™ Fw fie'ec. ..

—I—a/ (n—1) each._.dsbe“'fBabifi (egwcg + we’ + ’i‘c) e .. e, ... fr

/ ( 1)n ! (n - 1) €ac.. df‘:beh fBa lfe (wgefg — wfe + Se> fh ce ff

—a/B be--I'f; (w’gej—i—wrgjfj))ec...edfe...ff

—a/Bb €ac..dE"C" f( e]+wbjf)f>ec...edfe...ff.
So we have two equations,

0 = a(n—1)Ap* (aach“_dsbe”‘fei'i‘ceh TCC A ff>
+a(n—1) AP ((—1)"_1 Eac. actMfelel .. S, 1, ... ff>
+a(n—1) Ag‘]‘lsach__dsbe“‘feiweceh G A At
+(—1)"a(n —1)eae._ac?Te'ec ... e Wt 8y, ... £
+a(n—1) Aﬁ“aach._.dsbe'”feiegwcgjfjeh e, f;

+ (—l)n_1 a(n—1) e qeTelel .. .edwgejfjfgfh .
—a (1) A, et T elel el f, . 1y
—a(=1)" 5ac.._d5me”‘fwbwzeiec . edfjfe S

0 = a(n-1) Aﬁ“sach._,dsbe“'ffi’i‘ceh el f;
+a (—1)"_1 (n—1) Eac. actPTEe0 . eS8, . .. £y
+a(n—1) Ag’}ﬂeach_,.dgbe”'ffiweceh e £y
o (=1)" (n — 1) eqe..qe? T £ie° . . MWk, 1, . .. fy

+a(n—1) A%‘lsach__dsbe“‘ffiegw’;jejeh e £

145



146
+a (=1 (n = 1) gge.qe”P T fie . . edwgejejfgfh .

_aAgfzaEmc...dEbe"'ffiwygjeJec. elf, . f)

_agac‘..dgme"’fwbmjejfiec - edfe ... ff
Look at the Weyl vector pieces,

0 = a(n-1) Agffeach._.debe“'feiweceh = A f;
+(-1)"a(n—-1) e ac?Telel .. etwt.ty . .. fy
= a(mn-1) AZZL“EaCh...d&tbe"'feinfjeceh e, £y
+ (=) (n — 1) £ge. qe™"Telel . . edefjfefh .
= a(n—1)Arew? ((—1)”_1 Each..ac’Telece .. ef)f, . .. ff)
a(n—1) Ayewd <(—1)" Eac..qe'eC ... el TEf 6, . ff)
= (-D)"a(n—1)Ap W/ (—Each...dsbe'"faieh'“deje...f + Eac,..da‘“”'dEbEh“'fejeh...f> "
= (D" (=) ARTW (= (n = D! (n = 11856 + (n = D! (n— 1)18%6; ) @
= 0,
8 = a(n-1) AZZLaeach._.debe'"ffiweceh = A fy
o (=1)" (n — 1) eqe..qe? T £ie° . . €Mk, 1, . .. £y
= am-1)(-D"A (Eachmdabe“‘ijejeceh = 7 A .ff>
—a(n—1)(=1)" A (aac,,,dgbehwfefe? WL, ff>
= a(n—1)(=1)"W;Ap" (ffach...dé‘be“'ijCh“'dEie...f - €ac...dEbeh'"f€jc'“d€ieh...f) o)
= (=Dl —Dla(n = 1) (~1)" Apew; (8300 - 5307 @

= 0.
Here are the spin connection terms, dropping the full volume form,

o = a(n—1)(=1)" A eqen. ac" T ey

+ (_1)n—1 o (n o 1) Wgeanc...d5b€h'“f5icmd5jgh...fAZ£a
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—APa (1) whTep, geteTeiedey,

he...fgic...d

n bj
—a(—1)"weqe...ae Eje. fAP

= an-1)(-1)"2(n-1)!(n-2)I1A" (wcgjdac ; 7004

b wgejébeéi)
—a (1" (n — 1) (n — 1)1AD (u/g ighst, — w%é?‘éé)
= a(m—1)(n—1)!(n—2)Are ((—1)" (wccbcsg — Wit webg 4 wbeeag))
—a(n—1)(n—1)!(n— 2)IAPa ((-1)”*1 (wi;’ - wbmmag))
— a(n—1)(n—1)!(n—2)Ane ((—1)" (wccb(sg — Wit webgi wb;(sg))
ta(n—1)(n— 1) (n—2)IADa ((-1)” (wiab - wbmmag))
= a(n—1)(n—1)(n—2)(~1)" A (—wia” +whest +wib — wbmm(sg)
= 0,
o = am—1)(-1)" zr;lawcgjgach“.debe...fggjh...dgiemf
Ya(n—1)(-1)" g:lawagngejea&..dsbeh‘..ijc...dEighmf
— (=1)" ey ieme. .ag" T 1 ey
—a (=1)" " AP, ege..ag T e e g
= a2(n—1)!(n— 1) (=1)" Aptw,;6/690 + a2 (n — 1)! (n — 1)1 (=1)" Aptw?, 5360

—(=1)"(n — D! (n — D)!aA%W™ 56, —a(n — 1) (n — 1)1 (=1)"" P APab 6mal

aj”i mj®i

— a(n—1Dl(n—1)(=1)"Ana (wc 50 — w9 67 + w0 — wh, — W™ 5’?+wbm)

ac-t ga~ €a -1 a am=-1

= 0.

Therefore, we correctly find two relationships among the curvatures,

0 = alAp? <5ach“_d5be“‘fe"’i‘ceh e, A+ (—1)"71 Eac..actMTelel . elS, 1, . . . ff) ,
0 = alAp? (Eachmdabe“'ffi'i‘ceh ..ef, fr+ (—1)”_1 Eae. actPTEe0 . eS8y . .. ff) .

Expanding the torsion and cotorsion and simplifying the first,

0 = alA}? (5achmdebe“'fTC7fmfkemeieh el ff)
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1 A -
+O‘AZZLG (2 (_l)n—l 5acmd€beh...fezec o edSe mkfmfkfh o ff>
- 27711(1 ((_1)71 TCkmgach...dgbe."fgmih"'dfke...f> (I.Z

1 .
ta lr)rTLla (2 (_1)n—1 Se mkgac...dgbehmfgwmdsmkh...f) @Z

- 1 - )
= a(n-1)2(n-2)IAp <(1)" T 0k + 5 (1) 5, mka;a%) P
= aln—1)l(n—2)(=1)" Ape (Tib =T g s be) 38

and therefore,

ma [ b 2 Y _ mit & be
aAlm (T a_T 06a> - aAlm e

Timn _ 5ma5bnj—vib "= dfflj—vcmc + 5mi5bnj—vcbc _ 5;5«6 me 5mi5bn§e be'

There is only one independent trace. Taking the trace over ni gives

QA (Tnba _ deb 653> — aAmng, be
Q- «Q = o i o S
e Qgreg i, ~ )T, = 2n-1)8, ™
0Ty = —(n—=1)8wS, " = (n—2)0aT" .

So we have two results,

2A%Tcmn — 5701516 me 5mc5lm§e be + 61iflcmc . 5m05bnch o

N 1 .
S, be = ——(n- nT*,.
Now, looking at the second,
1 -
0 = « <2 (=1)" €qeh...qceI T kmekemeh = 7 A .ff>
+a (eac_._debeh“‘fec . edgek miem ity .. ff)

1 ~
- <2 (_1)11 gach...debemec kmgkmh"'dez‘e...f> (I)Z



+o ((_l)n gek mgac.‘.dgbeh'”fgmcmdgkih...f) (I)Z

= (-D)"2(n-1)!(n—-2)a (;T kmOae 07 + 5" mag%aﬁ;g) @,
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N -
D (1) (n— 2la <2Tc o (GR07" — ob07) o + 5., (oo — 5?52)) o)

= (~1)"(n-1)!(n-2)a (5§?Tc YL a(s;?) 3.

Therefore,

o (T 4ot 5,7 = 5.5 400) =0

Taking the trace over bi,

nT* ac  — (’I’L— 1) S’bb a
- 1 ~
T ac — ;(n_ 1) Sbb a*

We also have

n

1, -

b b
Sc a = Eacsee a*
So we get two relations,
~ 1
b b

Sz a ﬁéiscc a’
- 1 -
e ac ﬁ(n_l)sb a*

Check

Varying the action we have,

0 = 48

= a/((592)5a6md5b6“‘fec...edfe...ff
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g

= a/eacmdabe”'fcswgD (ec el ff)

= (n—1) oz/éwg 5agcmd£be'“f’i‘9ec. e ff)

= a/(déwb dwiw? —wgéw)sac acTel e, .. 1y

+(n-1) /5‘% )" ege..acte T ¢ ..engfe...ff)
= (n— 1)a/ (Agke + By fk) (esagcmdabe'“f’i‘gec...edfe...ff>

+(n-1) a/ (Agk,ek + ngfk> <(—1)n_1 Eac..ac?Tec . IS, f, ... ff) .
Then

0 = (n—1) a/Agk (Eagc,_,dabe“'f’i‘gekec el .ff)
+(n—1)a / A% ((—1)”_1 Eae. qet9eTekel . . edsgf6 .. ff)
+(n—-1) /B " €age.. eI TYec . dfkfe...ff)
+(n—1)«a / Bg* (&tacmdsbge'“fec . .edggfkfe ... ff)

= (n— 1)a/Agk (—1)"eagcmdebe ngm e"efec .. edfmfe...ff)
1~
(n—1) / Abk< bge---fekeC...edisg m”fmfnfe...ff>
1 -
+(n—1) a/B ( " €age...d€ be. "ngg mn€eel . .. el f. ... ff>

+(n—1)a/B ( gete-fenec .edggmnfmfkfe...ff),

so the field equations are

0 = (n _ 1) aAgZ <€agcu.dgbe...fj-vgmngnkc...dgmemf)

1 -
. (n . 1) Q/Ag;z (E(lcmdgbge...fgkc...d2Sg mn£mne...f>

= (n—1)!(n— 1Al (kaa — SET — %5, bg)

a“mk

0 = 2(n—1!(n—1)laA} (55;;# +6ns%,. 5, )



= (D= DA (T o+ 5~ oS
and therefore,

OZAZ? (5ZTC achS’kb a 52§mm a) = 0,

a (kb kb kg b
QA (T o= ORT™ kS, 9) = 0.

These agree with the previous results.

F.4. Solder form variation

Now, vary with respect to the solder form,

0 = 68
= / (a6 + BRI + y0ey) eae. ac™ T .. e, .. £}
+ / (n—1) (aQdf + BopQ + ve'fy) Eaca. e 95e%? ... e“fy.. .1,
= / (a (—Agg (5hcfef + hckdek> (ed — hdefe))) Eac. acte el . e, ... fr
+/ (— o (fc + hcfef> <5ek — 5hkefe)> e qcTel .. e, ... f;
—i—/ (—5555ekfk + ’yéekégfb) e qcTel. e, ... f;

+ / (n—1) (a2 + B + vefy) cara..cc?lI0eked .. ef .. .
Expand the variations as

sef = A ™4 BFf,
Shke — <5ek,ee>+<ek,5ee>
= hmeAk oy phmac
hepdh®e = hgh™e AR 4+ hghFmAe
—6hekhhey = hah™hep AR+ heh ™ hep A,

Shef = —haA® f—hpAR .
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This becomes

0 = /aAk m <—A3§hckemhdefe — A%"hfkefhdefe) e acTel .. e, ...

—|—/aAk m (Agg ch®e™f, — A%gfcem) Cae. act el .. e, . £y

+ / adk (Agghmehcfeffe +A‘;§h6mhcfeffk) Eac..ac’e e e, ..

/A’TC 5k + yo% 51;) Eae. a2 T el .. e, ... fr

n—1)A* aQai R TS O Y Eakd. €T IfeleMe? ..
b j b J 7%b

+ / aBF™ (— gghckfmed — A%hcfeffm) e act el et ... fr

£

.eeff ..
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1,

+ / (n—1) Bkm < Qpij + By 5 5 l]> (=" Eakd. ol 96leTe? . .. e“f.fr.. . £,

resulting in two field equations,

0 = (-)""a (—Ai‘a? kh V6" — A hih + A ckhdjéz’“) 5467
F (1) a (Aggar + ARy 4 Agghemhciai) 58"
+(=1)" 1 (—Bop0), + opoL) 520 — 2 (a4 ,85;92‘

j = 1856)

0 = a(ARhub), — Afyhnid),) 626, — 2 < Qij + B 5 U) 5980,
Expand the first,

1 m 1 mc 1 m
0 = —Sadf" + a6 he (5dbhdb) - 500

+%a5“mhak (dah™) + %aé,g” - %aém%ck (dah™)

2

6Jm5b

ak i)

1 1 1 1 1 1
+5and = Sadf + Sadf — Zadh™ (8*he) + S0} = ZaSah™ (5hea)

— B + 0t — aSU O+ o L — B 6+ B 4y (n? —n) o

= aQp?  — a7+ BT — BOT G

1 1
+5 (an =28+ 20%9) 7" + Zad"hei (Sah™ ) — adrph™ (5 hea).



The field equation is, therefore,

0 = a®, —aQf® o + Q™ ) — Q" O
2
Check the trace,

0 = —(n—-1) (aﬂgb o+ BQ° a)

1 1
—|—§n (an—28+ 2n27) — 50 <5mbhmb> (0%heq) -
Therefore, we may write

0 = a@p?,+ " — (ag? , + 50" ) o
—i—% (om — 28+ 2n27) ot + %admchck <5dbhdb> — adph™ (0%heq)
1

1\2

1 1
+5 (an =26+ 20%9) 67" + Sad™he (5dbhdb) — adh™ (§%hey)
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1 1
= o, o™, — — (n (an — 28 +2n*y) — 3@ <5mbhmb> (5achca)) o

—I—% (om — 28+ 2n27) o+ %aémchck <5dbhdb> — adh™ (60%heq)
= oy + B,
1 1
+— (ﬁ —n?y + 3 <<5mbhmb> (0%heq) — n)) o'

n—1

1
+§Ot(5mchck ((5dbhdb) - Ot(skbhmb <5achm) .

The second equation is

1
0 = 504 ((n — 2) Rk + Okm ((S(mhna)) — annak — Bk

F.5. Variation of the cosolder form

Finally, we vary with respect to f,,

0 = 65
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= / (a0 + BOLOQ + 7e58y) ac. e’ e ... £}
+ / (ady + By Q2+ vefy) (n — 1) Eae. ac9e T . .edéfgfe .
= / (a (—A;g (6f, + (5hg,;ei) (ej - hjkfk))> Eac..ac? T e, .. f;
+ / (o (=A% (& + hgie?) (=0n7" — 17*38,) ) ) ez T et . e, .. £y
+ / (—poye?of, + veofy) e acTel. e, . .. f;

+ / (¥ + B+ vefy) (n — 1) gge_ac® T .. e@E L. .. £}
To find how hy;, varies we have
(0fa,8) + (fa,08p) = —Ghap,
so with 6f, = Cye’ + D, f;,
D, “hey + Dy “hae = Ohap;

and therefore,

WD, he+ Dy h"hee = h"%hg
hnaDa “hep + Db " —O0h™ hgp
_hnaDa m hmeb n ShM.

Now substitute for the variations and collect terms.

0 = /Cgr (aA?ghjs - ahng?§> (=1)" P ege qeeTerel .. ULt ... fy
1 1
- / Cym <2an” + 2&5{;9“) (=)™ (n = 1) gge._qee T eMe .. U L L, .. £y
+/ <ozAfngg s +ozA?ng mhmrhjs> (-1t 5acn_d5b6“‘ferec...edfsfe...ff

—i—/(aA%’Dr mhgmh3'5> ()" cae. ac el . Uit . £y
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aA“gh h"D,, ) (=D)L ege qeefemel . e f, .. £y
_|_

[ (alhgh Dy *) (<1)" g, gt eTew L ek, £y

\\\\

( aA?ghgrhijm S) (=1)" P ege qeeTemel . ULt ... fy
+ [ (=B0yD, °+~D, *6) (-1 )"71 e acTeTel .. e L. ... f;
+/Dg (a4 BIINE) (n— 1) (1) ege e Teme L e iffe . £y

- / D, ™ (vd;0;) (n—1) (—1)" €qe...qe?Tee . .. e, L, ... fy
The two field equations are

‘ 1 1 ‘
0 = aQf"+pak - 3 (n — 2) ah® — 50[(5’“ ((5jbhjb> ,
0 = aQf" ,—aQ™ o+ Q" — QY 6L

—I-% (na — 20+ 2n2'y) 0y — b hge <5abh“b) + éa&schm (5“bhab> .

Check

From the action,

= 6/ (aQ2p + BOpQ + vefy) Eae. ac?Tel. e, ... f;

= / (a6 + BOLOQ + 7€) e ac?® T .. . .. £}
+ / (n—1) (aQy + Boy Q2 + vefy) e a9 . .. ed6feff .

= / (—a ‘]IZ, <5fi + (5hikek) (ej — hjmfm)) e accTec. . e, .. £
+ / (—aAgg (fi + hikek) (—0hI™8,, — hjméfm)) Cac.ac"Te e, £
+ / (—pope’of, + vedfy) e act e e, ... fy

+ / (n—1) (aQdy + GOy + vefy) Eae. qet?f 960 . ed(Sfeff N
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dw® = whwd + A% (fc + hcfef) (ed - hdefe> + 0

dw = e%f,+ Q.

Now substitute in the variations,

to get

Then

of, = Cue’+D, 'fy,
Shay = <fa,deed+Db dfd>~|—<0acec—|—Da °f,. £,)
- Db Chac+Da Chcba

5hde — _haeDa d—hadDa 67

/ (—aA% (Cikek + D, kfk) (ej — hjmfm)) e accTe. . e, ... fr
_|_

—a % (Dk " hmi€e® + D, mhmkek) (ej — hjmfm)) Cac.accTe .. e, .. At

/ (aA%Cikhjmekfm + OtA%Di kejfk> Eac. act el e, ... fr
+

/ <aA%Dk " hihI" €M, + a A% D; mhmkhj”ekfn) Cac.ac e e, . £
+/<—a

AGRYD,, "hige®t, — aA%R™D,, jhikekfm> Eac..ac el e, .. £}
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+/ (—oz %hjmcmkekfi + ozA%hijm khme”fk) e acTel. . e, ... f;
—I—/ (—B(Sng ky vD, kég) Eoe. act TeIf e .. e, ... f;
/Cek ( aQpm" 4+ ﬁdan"> (=1)" L ege. qel9ekeC . edfmfnff .

+ / D, *(n—1) (aQf + BOIQ + vefy) cac. ac" 9" . . Uy fs .. .,
SO

( C’Zkh] + aAY D, ") (—1)”_1 e act TP . M, L. ... fr

I
\

af,Dk mhmh]")( )”_1 eacmdebe“'fekec...edfnfe...ff

™ By h?™) (—1)" ! ege. ae? T ebel . e, L. .. £

_|_

+
\\\\\\

+ GRID, "hik) (—1)" " ege..qe" T ekl e f. . £y

+ h"mD ]hik) (—1)"71 e aeTeke .. e, L, .. £y
+ [ (—aAW W Cy + aARR D, i) (—1)" " ege.ag? T ek el L e f. .
(=80, * 49Dy Fog) (~1)" " carac T ete e iy

+ / Cor (n — 1) (;aggmn + ;55,‘}9’”") (—1)" g ac?l9ekel . ek fr L 1,
+ / D, F(n—1)(—a0f™ ) (—l)n_1 Eue. act®9emeC . .edfmfkff .

—|—/De Fn—1) (=B32Q™ | +70257) (—1)" ! cge.ac?9emeC .. e, 1.8 .. £,
Next,

1 1
0 = GRI"Sh 0k — aAGPRI'S) 6 + 2 (2anmn + 25<5ng"> oksbi |
0 = (aALSE + aARSTOT k™ + A% hgh?™) 8555
+ (AR TS hi — DGR ™ hig, + AT B hi) 65,0
+ (—B650; + 76455 ) 5207

+2 (_anm n - /Bél?ﬂm nt 753517 ) 5%3527
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1 1. .
5 (n—2)aht = Zag (6507)

0 = a2y ,—aQm 0.+ 8Q" — B oL

+% (noc — 28 + 2n*y) &7

— 06" hg, (6abh“b) + %adschm (6“bhab> .

F.6. Summary of field equations

Collecting the field equations we have:

B8,
BTC jc

0

B (T, ~T4,).
(5" =8 1),

QAZ(; (52T0 ac + Skb a (52‘§mm a) ’

Q= a5+ BAT - QT O

% (an — 28 + 2n2y) 67 — adh™ (6%heq) + %aamhck (5dbhdb) :
aQar + Bk — %04 ((n = 2) hank, + Ok (0" hina))

QO 4 B0 — Lo ((n—2) W + 57 (5un) ),

ad -t 0%+ B9, — 5O,

1 . 1
+§ (na — 26+ 2n27) 09 — ad“hmq (5jbh]b> + §a6mbhbg ((5akhka> .



Conditions on the metric from cotorsion field equations

Appendix G
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In Chapter [4] we investigated a simplified version of general, curved biconformal geometry.

Specifically, we chose the simplest possible ansatz for the form of the symmetric spin connection

and set all torsions to zero. We are left with a number of field equations involving the Cartan

curvatures of the Weyl and SO(4) connections and one field equation involving the cotorsions.

This last field equation sets a number of conditions on the form of the metric.

The mixed cotorsion field equation gives the following conditions on the metric derivatives.

1. Letting vn3 = ijk,

2. Letting vr 3 = i0Ml]

3. Letting v78 =440 ,

4. Letting v = 0jk,

0 = 0igjk — OkGij — 9jkSi + GijSk-
0 = 0igro — Okgio — GokSi + JioSk-
1
0 = 59ij50 — gijso
0 = S0-
1
0 = 594k50
S0 = 0.

This is the condition such that we can choose coordinates where g;o = 0, which we do from 2. onward.
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5. Letting v73 = 00k,

1
0 = 59005k — 9005k
s = 0.
6. Letting vw8 = 400,
0 1
= _—— S,L-
2900
si = 0.
7. Letting v = 050,
1 1
0 = B (Gog90; — Gogoj) — 3 (gj050 — gojSo)
0 = 0.
8. Let vwr8 = 000
1 1
0 = Jogoo — 530900 — 530900

0 = 0.
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