
Creating Reliable Software Systems for the DORA CubeSat

The Deployable Optical Receiver Aperture (DORA)
CubeSat is a 3U CubeSat that seeks to demonstrate
data rates of 1 Gbps over distances of thousands. The
DORA technology presents an easy to accommodate
optical communications solution for smallsats, which
previously was limited by the high pointing accuracy
requirement for traditional optical communication
systems. We believe this technology to be best suited
for surface to orbit communications and the crosslink
between small spacecraft, including those in smallsat
constellations/swarms.

| The Software Problem

| Areas of Focus and Accompanying Practices

Memory

Concurrency

Error Handling

| Testing Approach

| Test Cases Example| Testing Environments (For Code Coverage)

| The DORA CubeSat

FlatSat Configuration
• General structure and interactions defined
• Exact hardware not known yet/not available
• Interfaces at a software level clearly defined
• Currently under development
• Used for final software validation

Simulated Hardware-In-The-Loop (HITL)
• Uses flight like hardware to simulate HW interactions
• Learning opportunity for working with HW
• Replicates basic FlatSat configuration
• Simple dev environment
• Used for basic testing and can be used for

architecture level testing

Flight Software Best Practices

1) No dynamic memory allocation of any kind
2) Learn all the forms of dynamic memory allocation
3) Handle all shared resources accordingly
4) Treat all potentially shared resources as shared resources
5) Run concurrency analysis tests and create a concurrency model
6) Maintain control of the software at all times
7) Promote use of fault containment
8) Log all off nominal conditions in an organized manner
9) Code as if you expect the software to be broken (human error)
10) Expect off nominal conditions to occur

Processor-In-The-Loop (PITL)
• Built within KubOS (chosen OS) SDK
• HW interactions simulated with noops or rnd data
• General structure preserved
• Virtual UART ports used for interfacing consistency

• Used for basic app development

• 41.3% failure rate for SmallSats from 2000-2016 [1]
• SmallSats often developed in flexible environments [2]
• Teams face high personnel turnover rates and

Inexperience problems [2]
• Complexity of code is sharply increasing with time [3]
• Higher Complexity = Higher Risk of Failure
• Each line of code is a potential defect
• Virtually impossible to achieve complete code

coverage for complex code bases
• Testing can be limited by equipment available
• COTS Architecture vs Custom Architecture

• How do we create reliable flight software?

Test cases can be derived from the list of best practices and in doing so will
draw focus to major areas of concern for flight software—Error Handling,
Concurrency, and Memory. Areas of concern were chosen based on the risk
they pose to the satellite if handled improperly with the three chosen areas
posing the highest risk of mission failure due to the nature of the respective
faults produced. With these areas in mind, each test case becomes an
opportunity to look at the software’s behavior from multiple perspectives.
They serve as a reminder to check all aspects of the software’s performance,
not just the functionality under test.

In short: New functionality is tested for function, error handling ability,
concurrency risk, and memory management ability.

Point of Contact: Zachary Hoffmann zchoffma@asu.edu

| References
[1] Jacklin, S. A. (2018). (tech.). Small-Satellite Mission Failure Rates (pp. 1–46). Moffett Field,

CA: NASA Ames Research Center.
[2] Gonzalez, C. E., Rojas, C. J., Bergel, A., & Diaz, M. A. (2019). An Architecture-Tracking

Approach to Evaluate a Modular and Extensible Flight Software for CubeSat
Nanosatellites. IEEE Access, 7, 126409–126429.
https://doi.org/10.1109/access.2019.2927931

[3] West, A. (2009). (tech.). (D. L. Dvorak, Ed.) NASA Study on Flight Software Complexity (pp. 1–
264). Pasadena, CA: Jet Propulsion Laboratory.

Zachary Hoffmann, Judd Bowman, Daniel Jacobs
Arizona State University Low Frequency Cosmology Lab

Primary rule being tested against
(number from best practices list)

Secondary rules covered by test

Benefit from
doing test
clearly stated

