INTRODUCTION

As the size and prevalence of small satellite constellations grow, so does the interest in
Prognostic and Health Management (PHM). In keeping with the small-satellite philosophy to
maintain low design, manufacturing and operating costs, the small-satellite community is
interested in efficient ground operations and fault management that does not require excessive
labor from trained space systems experts [1]. The expanding scale of small-satellite
constellations has posed a significant challenge for ground operations: how to find a sustainable
way to monitor and manage a large amount of satellites efficiently with minimal cost?

To overcome this challenge, this research introduces an autonomous, ground-based fault-
detection system that was trained using only nominal data, without requiring any prior expert
knowledge of the spacecraft systems. By observing nominal data during the commissioning
phase of the satellite, the fault-detection algorithm learned how to differentiate normal data
from abnormal data without a labelled set of abnormal data. Training and testing results are
presented to show how this one-sided learning method of fault-detection could detect un-
trained failures related to reaction wheel performance. Specifically, this research demonstrates
the utility of one-sided learning methods by autonomously detecting faults in reaction wheel
bearing friction and wheel speed measurement, without any prior exposure to the failures.

METHODOLOGY
The development of the automated fault-detection system started from model simulation
of an attitude control system for a small satellite. Following the training process, a normal
dataset was generated and collected from the simulated attitude control system. With the
collected dataset, the OC-SVM method was implemented for training.

Model simulation

An attitude control system for a small satellite was created from a closed-loop feedback
system using MATLAB / Simulink. Figure 1 shows a design concept of a closed-loop attitude
dynamics control system. A similar closed-loop feedback system was designed for reaction
wheels where the commanded torque from the satellite was the input signal to the
reaction wheel system (in Figure 2). The outputs from the reaction wheel dynamics system
were reaction wheel momentum, torque, current, and angular velocity.
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Figure 1: Attitude Dynamics Control System for a Spacecraft [2]
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Figure 2: Reaction Wheel Dynamics (2]
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The reaction wheel current and angular velocity were selected as the training features over the

other outputs from the reaction wheel dynamics due to their mutual independence. The outputs of

the desired slew rates with reaction wheel current and angular velocity in 4000 seconds are shown
in Figure 3.
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Figure 3: Normal Slews in 4000 Seconds: a) Reaction Wheel Currents, b) Reaction Wheel Angular Velocities

One-Class Support Vector Machine

The OC-SVM methodology is from [3]. The principle of using this method is that labels or data
responses are not required for training. Therefore, the training process only included normal
behavioral attitude control system data. As reaction wheel current and angular velocity were
selected as the training features, 10 consecutive data points were collected for reaction wheel
current and angular velocity at each time point, to enable the algorithm to deduce relevant time-
series features. Hence, there were 4000 data points collected for training with a data rate of 10Hz,
and each training data contained 10 consecutive data points of reaction wheel currents and angular
velocities. With the collected data, the system was trained to learn a hyperplane to separate normal
behavioral data points with untrained abnormal behavioral data points. The input training data was
firstly mapped into a Kernel function, then the general function of the separable hyperplane to
determine the behavioral labels of the satellite was generated. After learning the decision function of
the hyperplane, the detection system was able to identify failures. Label O is assigned to all normal
data which is inside of the hyperplane and label 1 is assigned to all abnormal data which is outside of
the hyperplane. Key functions are:

= Training Dataset: X = {(i(¢), w(t))}
= Mapping Function (Kernel): K(X,X") = ®(X) ®(X")
= Separable Hyperplane Function: F(X) = sgn((w - @(X)) — p)

0, =0
= Failure Detection: y = S Cttest)

1, f(xtest) <0
Where, X is test dataset. When f(xsese) = 0, it represents that the test datapoint falls inside of
the defined decision hyperplane. When f(x¢s:) < 0 it represents that the test datapoint falls
outside of the defined decision hyperplane.

TESTS AND RESULTS

Two 1000-second tests were performed for the trained detection system. Huang et. al [2] provided
an outline for the tests. Each test contained ten random slews with simulated bearing degradation
failures. In the first test, friction failures were added at the 500t" second of the simulation. At the
500 second, the friction failure occurred and began to increase gradually with time. For the second
test, friction failures were added in two different phases of the simulation following trapezoidal-like
viscous friction profiles. The purpose of performing these two tests was to examine the detection
capability of the trained system on long-term failures and intermittent failures in the attitude control
system. Figure 4 shows the plots for the two test datasets (the same test data was used in [2], but
for a different fault detection methodology).

RW Currents in Time Series - Test 2

RW Currents in Time Series - Test 1

) N Ll |
i1 [l

a) b)

V-
i

Figure 4: a) Test 1 Dataset - Reaction Wheel Current, b) Test 2 Dataset - Reaction Wheel Current [2]

The tests were then performed using LIBSVM ([3], [4]). The behavioral labels for the two tests
were predicted. The predicted results are presented in Figure 5. Comparing the results from the
two tests, the proposed one-sided learning-based detection system showed good performance
on test 1, where the detection accuracy reached approximately 90%. However, the system
showed a lower detection accuracy on test 2 where the detection accuracy was around 60%.
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Figure 5: Prediction Results for Tests: a). Viscous Friction Vs. Predicted Behavioral Labels for Test 1, b).
Viscous Friction Vs. Predicted Behavioral Labels for Test 2

From the results, this one-sided learning-based detection system performed better when
detecting normal data as compared to detecting anomalies. Future research will put effort
into developing different fault-detection systems by implementing other suitable one-
sided learning algorithms.
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