

Attitude and In-orbit Residual Magnetic Moment Estimation of Small

Satellites Using only Magnetometer

Raunak Srivastava, Roshan Sah & Kaushik Das TCS Research, Bangalore, India srivastava.raunak@tcs.com

35th Annual **Small Satellite** Conference

SSC-21-P2-11

Motivation

- Limited space and computational power along with a low budget leading to lack of high precision sensors limits attitude estimation accuracy of small satellites.
- Estimation accuracy is also more sensitive to magnetic orbital disturbances.
- Satellite's Residual Magnetic Moment (RMM) should be determined in real time in order to model the magnetic disturbance while estimating attitude.

Contribution

- Magnetic disturbance on Smallsats should be modelled and considered as an external torque instead of considering it as standard white noise.
- Main source of Magnetic perturbation is satellite's own RMM, which should thus be modelled and determined in real time
- Most of current research considers RMM to be a predetermined constant or piece-wise constant parameter.
- Main contribution of this work is to model the satellite RMM using a Random Walk model.
- Magnetic torque due to this time varying RMM is computed and considered as an external disturbance.
- This poster proposes a body referenced EKF to estimate the satellite's RMM in real-time along with the satellite's attitude and angular velocity using only magnetometer.

Body Referenced EKF

- If the satellite states are simply attitude quaternion \overline{q} and angular velocity ω , the covariance matrix can turn out to be singular.
- A body referenced EKF makes use of a lower dimension state vector to avoid singularity.
- The state perturbation for body referenced representation is
- $\Delta \tilde{x} = \begin{bmatrix} \delta q \\ \Delta \omega \end{bmatrix}$
- $\delta \dot{q} = -\omega^{\times} \delta q + \frac{1}{2} \Delta \omega$
- $\Delta \dot{\omega} = J^{-1}[(J\omega)^{\times} \omega^{\times} J] \Delta \omega$
- The only sensor used for this study is a magnetometer.
- This EKF also does not consider magnetic perturbation separately.

explained by the following figure.

- The result in following figure shows timevarying estimates of RMM as opposed to constant predetermined value.
- This proves our proposed hypothesis that RMM should be estimated for better estimation accuracy.

Results

RMM augmented estimator is efficiently able to estimate the attitude quaternion and angular velocity despite the presence of magnetic disturbance.

Conclusion

- Satellite attitude was estimated using only magnetometer as the sensor.
- Magnetic perturbation on satellite was modelled as function of time varying RMM.
- Resulting attitude estimates were better than those estimated by standard state of the art EKF.

Random Walk Model

- If the standard white Gaussian noise D(k)in a state equation needs to be estimated, it can be expressed as a random walk model.
- The state and disturbance are propagated as $\begin{bmatrix} X(k+1)\\ D(k+1) \end{bmatrix} = \begin{bmatrix} F(X(k), U(k), D(k))\\ D(k+1) \end{bmatrix} + \begin{bmatrix} 0\\ I \end{bmatrix} w_d(k)$

RMM Estimation & Modified EKF

· Error in RMM is augmented in the state δq vector as $\Delta \tilde{x} =$ Δω

 Δm

- · Modified state perturbation differential equations are thus
- $\delta \dot{q} = -\omega^{\times} \delta q + \frac{1}{2} \Delta \omega$
- $\Delta \dot{\omega} = I^{-1} [\Delta m \times \tilde{B}] + I^{-1} [(I\omega)^{\times} \omega^{\times} I] \Delta \omega$
- RMM and its differential (error in RMM) are propagated as per Random Walk Model
- $\dot{m} = \eta$
- $\Delta \dot{m} = 0$
- The flow of the estimation algorithm can be