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Abstract—In the early phases of project formulation, mission 

integration and test (I&T) costs are typically estimated via a 

wrap factor approach, analogies to similar missions adjusted 

for mission specifics, or a Bottom Up Estimate (BUE). The 

wrap factor approach estimates mission I&T costs as a 

percentage of payload and spacecraft hardware costs. This 

percentage is based on data from historical missions, with the 

assumption that the project being estimated shares similar 

characteristics with the underlying data set used to develop 

the wrap factor. This technique has worked well for 

traditional spacecraft builds since typically as hardware costs 

grow, I&T test costs do as well. However, with the 

emergence of CubeSats and nanosatellites, the cost basis of 

hardware is just not large enough to use the same approach. 

This suggests that there is a cost “floor” that covers basic I&T 

tasks, such as a baseline of labor and testing.  

This paper begins the process of developing a parametric 

model for estimating Small Satellite (SmallSat) Integration & 

Test (I&T) costs. Parametric models are a result of a cost 

estimating methodology using statistical relationships 

between historical costs and other program variables to 

develop cost estimating relationships (CERs). The objective 

is to generate a CER equation to show a relationship between 

the dependent variable, cost, to one or more independent 

variables. We will use the results of this analysis to develop 

a CER that can be used to better predict SmallSat I&T costs. 

TABLE OF CONTENTS 

1. INTRODUCTION ....................................................... 1 
2. GROUND RULES AND ASSUMPTIONS ..................... 1 
3. METHODOLOGY ..................................................... 1 
4. ANALYSIS AND RESULTS........................................ 2 
5. AREAS FOR FURTHER RESEARCH ......................... 3 
6. CONCLUSION........................................................... 3

BIOGRAPHY ................................................................ 4 

1. INTRODUCTION

When we look at constellations of SmallSats, we begin to see 

cost sharing between SmallSats in the same constellation. 

With the evolution of new technologies, the way we estimate 

costs needs to evolve as well.  Our research will examine 

approaches to estimating I&T costs when the base hardware 

1 Powers, N. "Analysis of Integration and Test (I&T) Costs for Recent 

NASA Missions." AIAA/San Diego Aerospace Conference, 2014. 

cost is much lower than a traditional space science mission, 

making historical wrap factors inapplicable. Since SmallSats 

are generally simpler, less complex, and cheaper hardware, 

the cost of integrating multiple identical hardware elements 

isn’t accurately reflected.  

We drew motivation from and leveraged previous work 

looking at I&T costs for historical APL robotic missions1. 

The missions in that analysis were all New Frontiers, 

Discovery, or NASA directed missions. Thus, they have large 

hardware bases. A lognormal curve fits the APL I&T data 

with an 𝑅2 of 97%, meaning 97% of the variation in the

dependent variable can be attributed to the independent 

variable. The CER for I&T is 𝑦 = 30,805 ln(𝑥) − 69,164 

where x is the total number of points of integration (discussed 

in more detail below) calculated for the mission that is being 

estimated and y is predicted I&T costs in FY15$K. 

We ran small satellite missions through this CER. For single 

unit satellite missions, this CER underestimates by an 

average prediction error of -708%. For multiple unit satellite 

missions, this CER overestimates by an average prediction 

error of 912%. Our research aims to develop a specific 

SmallSat CER that can better predict SmallSat I&T costs for 

missions with smaller hardware bases. 

2. GROUND RULES AND ASSUMPTIONS

The NASA Cost Analysis and Data Requirements (CADRe) 

database was used to discover SmallSat NASA missions. 

CADRe is a three part document that  records important data 

and specifications for a NASA project at each lifecycle 

milestone. Part A describes the project; part B contains key 

technical parameters such as mass, power, instrument types, 

etc.; and part C captures the NASA project’s cost estimate. 

We also looked at internal records for Department of Defense 

(DoD) and grant missions. Because we were only able to 

obtain data for one NASA grant mission and one DoD 

mission, these missions were excluded from the analysis. 

Thus, the undermentioned models should only be used for 

Class D NASA missions. 

3. METHODOLOGY

Mass and cost data was collected via CADRe, parts B and C 

respectively. Using CADRe-only data provided a standard 
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format for the data points 

collected. We focused on 

missions with total hardware, 

payload and spacecraft, mass of 

less than 180 kilograms per small 

satellite2. Our dataset is 

comprised of two single 

spacecraft missions and three 

multiple-spacecraft missions as 

seen in Table 1. The NASA New 

Start Inflation Index was used to 

normalize real-year cost data into FY$21. For purposes of 

this paper, costs for I&T include integration of the spacecraft 

subsystems and instruments. Available data was normalized 

accordingly. 

With the objective being to develop a parametric CER that 

calculates I&T costs for small satellites, all of the variables 

in Table 2 were considered. Due to a limited dataset, finding 

meaningful statistical relationships was difficult. For 

example, we believe risk classification could be a statistically 

significant variable. However, all of the missions in this 

analysis are the same risk class. After exploring all of the 

variables, we chose to 

focus on points of 

integration due to it being 

the best predictor and due 

to previous success.  

For the purposes of this 

paper, points of 

integration are defined as 

the total number of 

instruments and 

spacecraft subsystems 

excluding flight software. 

Each spacecraft 

subsystem is treated as 

one point of integration 

regardless of the number 

of separately integrated 

parts the subsystem may contain. For example, if we have a 

SmallSat mission with one unit having six spacecraft 

subsystems and a one instrument payload (seen in Figure 1), 

                                                 
2 Mabrouk, Elizabeth. What Are SmallSats AND CUBESATS? 

www.nasa.gov/content/what-are-smallsats-and-cubesats.  

the points of integration for one unit (𝑃𝑠𝑐) would be seven: 

6+1=7. 

To calculate the points of integration for multiple units, we 

came up with two different calculations: 

1. First, we looked at total points of integration. Let 

𝑃𝑆𝐶  = total points of integration; 

𝐾 = number of units; 

then, 

(1) 𝑃𝑡𝑜𝑡 = 𝑃𝑠𝑐 ∗ 𝐾 

If there are four SmallSats of the aforementioned 

example mission, the calculation is as follows: 

𝑃𝑡𝑜𝑡 = 7, 

𝐾 = 4, 

𝑃𝑡𝑜𝑡 = 7 * 4 = 28 

2. We also looked at weighted points of integration. 

We know that there is an average of 23% I&T 

savings per additional unit based on industry data. 

Instead of simply using the number of units as a 

multiplier, we apply these savings to come up with 

a weighted number. Let 

𝑊 = savings 

then, 

(2) 𝑃𝑤𝑡𝑑 = 𝑃𝑠𝑐 ∗ {1 + [(𝐾 − 1) ∗ 𝑊]} = 

For our example, this calculation would be:   

𝑃𝑤𝑡𝑑 = 7 * {1 + [(4 – 1) * 77%]} = 23 

4. ANALYSIS AND RESULTS 

To estimate SmallSat I&T costs, we created two models:  

1. A logarithmic model is created using total points of 

integration as the input; the I&T savings are 

accounted for in the model selection since a 

logarithmic model assumes a learning curve. 

2. A linear model is created using weighted points of 

integration as the input; the I&T savings are 

accounted for in the input data. 

The results of the total points and weighted points analyses 

are seen in Figures 2 (top) and 3 (bottom) respectively. A 

lognormal curve fits the total points of integration data with 

an 𝑅2
 of 72% while a linear curve fits the weighted points 

data with an 𝑅2
 of 73%. The CERs are as follows with y being 

 

Table 2. Potential Parameters 

 

Mission Destination Mission Duration

Number of Cubesat/Smallsat Development Duration

Launch Year Bus Provider (Custom vs COTS)

Total Mission Cost Number of Instruments

Total HW Cost Risk Classification

Total I&T Cost Number of I&T Requirements

Who Did I&T Points of Integration

Parameters

Figure 1.  

 

Table 1. Missions in 

Analysis 

 

Mission # of SC

Mission 1 1

Mission 2 5

Mission 3 1

Mission 4 8

Mission 5 6
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predicted I&T costs (FY$21K) and x being the points of 

integration:   

1. 𝑦 = 2,348 ln(𝑥) − 3,196 

2. 𝑦 = 115𝑥 − 753 

To validate the CER, the points of integration were plugged 

back into both CERs as the independent variables to produce 

predicted I&T costs. The predicted costs compared to the 

actual costs of the full dataset can be seen in Table 3.  As 

shown in Table 3, the prediction errors are 7% and -5%. Since 

both CERs have low prediction errors, both models are 

accurately accounting for I&T savings. 

Lastly, we tested for heteroscedasticity, unequal variance and 

scatter, in both models by plotting the residuals against the 

predicted cost as seen in Figures 4 and 5. The residuals should 

be homoscedastic, meaning having a constant variance and 

scatter. Because the trendline has zero slope, the errors are 

uncorrelated, and thus the model is homoscedastic. This is 

desirable in order to be able to trust our model results.  

5. AREAS FOR FURTHER RESEARCH 

Some diagnostic tests revealed a distinction between who 

performed I&T, but there was no statistically significant 

relationship. We hypothesize that when I&T labor consists 

largely of university graduate students, I&T costs are low 

compared to labor performed by professional engineers at 

NASA centers and especially contractors (due to contracting 

fees for outsourcing). However, we need more data to 

confirm or disprove any statistically significant difference. 

In addition, we looked at a wrap factor CER that showed a 

strong relationship for constellations of SmallSats with an 𝑅2
 

of 97%. This model comprises only three data points; thus, 

we need more data to see if this relationship holds. 

Mass also appears to be a good predictor of total points of 

integration and I&T costs with an 𝑅2 of 75% and 80%, 

respectively. Combining the two, mass can be used to predict 

total points. Then, total points of integration (predicted by 

mass) can be used to predict I&T costs resulting in another 

high 𝑅2 of 80%. However, we need more data. 

6. CONCLUSION  

The goal of this study was to develop a CER for SmallSat 

I&T costs. The study also highlights areas for future 

investigation and expansion of the CER. We have reason to 

estimate I&T costs for small satellites differently than typical 

missions with larger hardware bases. However, the models 

that we currently have could be improved. The limited dataset 

prevents us from finding stronger statistical relationships and 

identifying statistically significant variables.  

Table 3. Predictability 

 

Mission Cost Actuals (FY$21K) Predicted Cost Delta Predicted Cost Delta

1 1,511$                        1,513$            0% 1,561$            3%

2 6,643$                        7,755$            17% 7,814$            18%

3 4,284$                        1,513$            -1% 1,561$            3%

4 8,653$                        6,011$            -31% 5,913$            -32%

5 3,188$                        4,726$            48% 2,711$            -15%

Average 7% -5%

Weighted PointsActuals Total Points

Figures 4 & 5. Heteroscedasticity 

 
  

  

Figures 2 & 3. Results 
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In conclusion, the two models that we currently have are 

legitimate and a step in the right direction. Obtaining more 

data will allow for model refinement. 
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