
Center 1 35th Annual

 Small Satellite Conference

SSC21-I-02

Autonomous Planning System (APS) for an Onboard TCPED Pipeline

Ken Center, Ella Herz, Evan Sneath, Sam Gagnard, Robert Glissmann, Rey Juarez, Neil Dhingra

Orbit Logic Incorporated

7852 Walker Dr, Suite 400, Greenbelt, MD 20770

ken.center@orbitlogic.com

ABSTRACT

As satellites and spacecraft grow in number and operate farther from Earth, there is an emerging need for increased

autonomy via onboard decision making that is independent of ground stations but allows for collaboration between

teams of assets. Such autonomy will relieve the burden on human operators, enable faster responses to dynamic events,

and reduce communications between orbital assets and ground stations. Orbit Logic’s Autonomous Planning System

(APS) is flexible and customizable onboard software that enables teamed autonomy through the use of Tasking,

Collection, Processing, Exploitation, and Dissemination (TCPED) pipelines onboard the satellites. Its small

computational/memory footprint makes it especially suitable for small satellites: APS has been successfully

demonstrated on constrained platforms such as the Raspberry Pi and the Unibap e2100. While APS is employed to

create, plan and orchestrate TCPED pipelines, its flexible architecture allows it to interface with other satellite or

software components that can provide states or events to inform or trigger planning, and to integrate with satellite

resources that can execute those plans. For example, in an Earth-imaging satellite mission, APS tasks the satellite to

perform collections, facilitates delivery of the collected data to onboard processing/analysis modules, and uses the

results to inform future tasking, e.g., following-up with additional collection or processing. APS on a given asset

employs one or more Specialized Autonomous Planning Agents (SAPAs), software modules that plan onboard

activities for a specialized need. Through configurable plugins, they can be customized to the capabilities and mission

roles of the host asset. Each SAPA is dedicated to a general mission- or system-level need (e.g., separate SAPAs may

focus on collection planning, contact scheduling, and fault management) and issue one or more high-level activities

to fulfill that need. These activities are fielded by the Master Autonomous Planning Agent (MAPA), which performs

intelligent deconfliction of the onboard resources that activity execution requires. The resource execution timeline is

composed to maximize the “goodness” of all competing activities using a configurable multi-factor figure of merit

(FOM). APS’s modular architecture and well-defined interfaces facilitate rapid development and deployment of novel

or enhanced capabilities. The level of autonomy is customizable and can be tuned over the course of the mission to

allow the satellite more autonomy as it gains trust. These features allow APS to be easily deployed for complex satellite

missions with multiple competing mission objectives. APS’s constellation-level collaborative autonomy seamlessly

extends its asset-level autonomy. Multiple APS-enabled satellites equipped with inter-satellite links or access to a

space network can coordinate without ground station communications, e.g., a constellation of imaging satellites can

perform load balancing among themselves to ensure coverage and limit redundancy. Such autonomous collaboration

is especially important in scenarios where evolving conditions change mission parameters, e.g., if one satellite collects

imagery from a region, and processing of that imagery identifies signatures warranting follow-up tasking, a different

satellite overflying the location in the near future can perform the collection. APS has been developed and extended

for multi-domain, multi-asset mission applications through multiple programs sponsored by AFRL, DARPA, NASA,

and ONR.

INTRODUCTION

Planning and scheduling for traditional spacecraft

operations occur on the ground and the resulting

instructions are uplinked to the spacecraft for execution.

This procedure has inherent time delays and such a

centralized commanding architecture imposes

drawbacks whose impacts compound with scale, e.g., as

spacecraft operate further from Earth and as they operate

in larger constellations. Communication latency limits

spacecraft operations, potentially causing the loss of

critical mission opportunities or even of the spacecraft

itself. These issues compound as spacecraft

responsibilities comprise more of a Tasking, Collection,

Processing, Exploitation, and Dissemination (TCPED)

pipeline where tasks are coupled through dependent

links. Although the completion of individual tasks may

not take a long time, significant latency would be

accrued in waiting for coordination from a ground station

between each pair of steps in the TCPED pipeline.

Moreover, constellation operations are sensitive to any

issues that affect ground control, from communications

Center 2 35th Annual

 Small Satellite Conference

errors to processing overload to weather conditions and

beyond.

The availability of more capable flight hardware and

inter-satellite links (ISLs) provides a way to address

these shortcomings through onboard planning and

scheduling and distributed commanding architectures.

The distributed commanding architectures enabled by

such onboard software allows spacecraft to detect

opportunities on-orbit and react immediately without

needing to communicate to the ground station and wait

for the response plan. Faster response times lead to more

effective response actions and enhanced mission

success. Using ISLs, the right planning software can

orchestrate communication and coordination among

constellation elements to enable collaborative

autonomy. This enables spacecraft to cue one another for

collection or other steps of the TCPED pipeline, and for

spacecraft to autonomously optimize activity schedules

at a constellation level.

Orbit Logic has developed the Autonomous Planning

System (APS), software that can run onboard spacecraft

and enable them to respond to onboard and external

events to meet the planning/scheduling requirements of

a variety of missions. Its modular architecture allows

planning systems to be assembled from individual

planning components and quickly configured (and

reconfigured as necessary) to meet initial and dynamic

mission goals. APS operates using a rolling timeline,

constantly adding or modifying the existing spacecraft

Command Queue as new information is received in the

form of dynamic and frequently ad-hoc events.

APS has a small footprint that allows it to be deployed

onboard small satellites or other robotic agents with

modest computing power. APS has uses beyond satellite

operations; it can enable autonomy on any platform and

can enable collaborative autonomy on any group of

robotic agents that can communicate amongst

themselves. The APS architecture reduces the cost,

schedule, and risk of implementing planning systems –

making asset more able to respond to dynamic mission

goals and more efficient with the use of their processing

resources. Beyond various satellite programs, Orbit

Logic has applied APS to teams of robotic vehicles in

underwater and space exploration missions.

The remainder of the paper is organized as follows. First,

we provide background on traditional, centralized

satellite mission scheduling, autonomous spacecraft

operations, and distributed commanding architectures.

We then outline a motivating scenario that will provide

a concrete touchstone for the rest of the paper. Using this

motivation, we then describe the architecture of APS as

installed on each asset; broadly speaking. The following

section provides details on the APS architecture,

including how constellation different assets interact for

distributed planning, how APS is deployed on assets, and

how the APS Mission Executive module facilitates in-

situ management of the APS on-asset configuration once

deployed. After these technical details, we discuss APS

for enabling an autonomous on-board TCPED pipeline.

We then return to the motivating scenario and present

simulation results illustrating the efficacy of APS.

Moving beyond this scenario, we then discuss several

different deployments of APS and illustrate the breadth

of its potential. Finally, we provide concluding remarks.

BACKGROUND ON COMMANDING

ARCHITECTURES

Background on Satellite and Spacecraft Mission

Planning and Scheduling

In traditional operations, satellite mission planning is

performed at ground stations and the resulting schedules

are transmitted to satellites via command load during

periods of communications availability, generally during

periodic ground station contacts. This approach inserts

significant delays in responding to new information and

new opportunities. These delays can range from several

minutes to several hours and can cause the loss of

opportunities for the collection of critical intelligence

data, the degradation of the satellite due to a slow

response to a system failure, or even the loss of the

satellite (as in the case of an orbital collision between

two satellites). These communications latencies can arise

due to adherence to pre-planned contact schedules or

speed of light delays.

Latency due to contact scheduling is an artifact of

spacecraft commanding architectures and it is possible,

but certainly nontrivial, to limit it. Figure 1 shows a

traditional mission planning timeline, where planning is

constrained by contact opportunity timelines. In such an

architecture, satellite command load can only address

specific events if the mission planning group knows

about the event prior to the start of the planning process.

This concept of operations is not equipped to respond to

opportunities that are detected between commanding

opportunities, which can be several minutes or even

hours apart.

Latency due to the speed-of-light is unavoidable and can

only be addressed through autonomous decision making;

for example, future spacecraft performing geyser-

monitoring missions on Europa and/or Enceladus would

Center 3 35th Annual

 Small Satellite Conference

need to operate autonomously to react to geyser events

(e.g., detect, navigate, collect samples, etc.) lest

communications latency to Earth result in missing the

data gathering opportunity. A planning agent, such as

APS, located onboard the spacecraft eliminates this

major deficiency of the existing mission planning

concept of operations by making appropriate changes to

the existing spacecraft command load (or generating a

new load from scratch) in response to events in near-real-

time. The onboard planning agent can generate and/or

maintain a plan that responds to evolving conditions

between ground uplink opportunities. Migration of

mission planning activities to an autonomous flight

software agent will allow future missions to implement

true real-time opportunistic target collections, and other

unrealized capabilities enabled by onboard planning.

Recent Advances in Spacecraft Autonomy

Some satellite missions have implemented onboard

autonomy, such as Air Force’s TacSat-31 and NASA’s

EO-12 missions; however, the solutions implemented in

those and similar missions are typically mission-specific

so could not be considered a modular architecture easily

adaptable to new missions, and/or use state-based and

rules-based planning that cannot scale to meet complex

planning needs within the constraints of onboard

resources. Recent work at NASA3,4 addresses the

growing need for autonomy in fault detection; however,

there are still significant gaps. In Frank et al.3, station

operations were moved onboard – from the ground to the

ISS – but with lots of crew-in-the-loop operation. The

system tested in Aaseng et al.4 performs complex power

planning in the presence of power system faults, but

these faults are previously characterized and there is no

infrastructure for learning to identify and respond to new

classes of events.

The APS Distributed Architecture

The APS architecture6, 11 consists of Specialized

Autonomous Planning Agents (SAPAs) that address

specific planning needs (recorder management, ground

target imaging, collision avoidance, etc.) and a Master

Autonomous Planning Agent (MAPA) that ingests the

output of the SAPAs, deconflicts global resources, and

creates a final plan that it forwards to the onboard task

executive for implementation. This unique approach

contrasts with the current state-of-the-art for planning

systems which generally try to apply a single algorithm

type (often state-based and rules-based for flexibility) to

multiple planning domains in a one-size-fits-all

approach, which often results in suboptimal planning.

The autonomous planning ability enabled by APS allows

satellites to respond much more quickly to capture

opportunities that might otherwise be missed. The

MAPA/SAPA onboard architecture offers the flexibility

to plan for different kinds of opportunities, keeps the

system modular and efficient enough to be used in

constrained computing environments, and makes the

system extensible to almost any satellite planning

domain.

The MAPA/SAPA architecture and planning timelines

lend themselves to coordinated constellation planning

because the individual components do not care where the

event messages originate (on the same satellite, a

different satellite, or the ground), and planning can be

performed and re-performed as different systems react to

the environment as understood from event messages on

the bus. As more spacecraft need to coordinate activities

Figure 1. Traditional Ground-Based Mission Planning Timeline with contact occurring between

Acquisition of Signal (AOS) and Loss of Signal (LOS).

Center 4 35th Annual

 Small Satellite Conference

to reach specific goals as a whole, a configurable and

adaptable planning architecture becomes more critical.

MOTIVATING SCENARIO: COLLABORATIVE

ROBOTIC EXPLORATION OF MARS

To provide a concrete motivational example, we will

present APS in the context of our Mars/Interplanetary

Swarm Design and Evaluation Framework (MISDEF)

program. This NASA program was inspired by several

swarm scenarios of interest from the 70th International

Astronautical Congress proceedings11. One sample use

case, shown in Figure 2 and Figure 3, involves a swarm

of orbiting assets, drones, and a rover.

Sample Use Case Description:

1. One Satellite in the orbiting satellite

constellation identifies an Area of Interest

(AOI) based on its detection of elevated

hydrogen readings during a coordinated survey

of the Martian surface.

2. The Satellite communicates the detection event

to the coordinating Rover at the next available

opportunity, potentially via relay through other

constellation members.

3. The Rover queries stored radar and map data

and determines that there is no radar data for the

AOI. However, the region is determined

“accessible” by previous map data. The science

is determined valuable enough that the Rover

will request a radar scan of the region during the

following orbit. The Rover conveys the location

of the AOI and the desired scan request to the

next available satellite.

4. Meanwhile the Rover requests that several

Drones return to the Rover, as a result of a high

science area being deemed “accessible”. Upon

return to the Rover, Drones correct their

location and transfer data to the Rover to clear

their storage.

5. The Satellite that received the AOI location and

scan request determines which orbital assets

will perform the radar scan, as well as other

scan specifics (when the scan will be

performed, attitude maneuvers, scan

parameters).

6. The instructed Satellite performs its radar scan

of the AOI.

7. The Satellite constellation returns the radar data

to the Rover. The radar data can be analyzed to

determine the surface hardness of the crater,

indicating which areas of the crater should be

chosen for sample collection.

8. The Lander distributes the survey plan to the

Drones, including which Drones will complete

which survey tasks (sample collect,

Figure 2. Sample Use Case Steps 1-5.

Center 5 35th Annual

 Small Satellite Conference

environmental survey, Imaging).

9. The Drones execute the survey plan.

10. The Drones return to the Rover and deposit

their samples and data.

11. The Rover performs analysis on the samples

and data, determines that the data reports

samples with higher likelihood of water and

requests an additional survey into the area.

12. The Rover will summarize these and other

science activities and periodically send results

through the orbital constellation back to Earth.

AUTONOMOUS PLANNING SYSTEM (APS)

ARCHITECTURE

APS is a decentralized software architecture that can be

distributed across multiple assets (e.g., satellites) in a

heterogeneous swarm. Each APS instance has access to

configurable plugins modelling resource capabilities,

vehicle mission activities, and Specialized Autonomous

Planning Agents (SAPAs) – software modules that

orchestrate onboard activities for a specialized need –

that are particular to the host asset and its capabilities.

Each SAPA is dedicated to a general mission or system-

level need (e.g., to monitor a region of the Earth) and

issue one or more high-level activities needed to fulfil

that need. These issued activities are fielded by the

Master Autonomous Planning Agent (MAPA), which

focuses on intelligent deconfliction of the available

resources that are capable of carrying out the given

activity.

Specialized Autonomous Planning Agents

Each instance of APS is equipped with platform- and

mission-specific SAPAs to perform particular functions

using tailored algorithms. For example, an imaging

collection SAPA would understand the parameters of the

sensor, imaging modes, types of targets, considerations

such as weather and incidence angle, etc. The SAPA

elements of the APS architecture give it flexibility since

it allows different types of planning routines, algorithms,

and considerations for different kinds of operations.

Each SAPA can perform planning for a different kind of

operation (imaging vs. orbit maneuvering vs. downlink

planning), and the MAPA is used to generate the

integrated, deconflicted multi-SAPA schedule for

execution. To illustrate the strength of this approach, we

discuss four different SAPAs here

• Ground Observation SAPA

• Communication SAPA

• Processing SAPA

• Fault Learning Agent for Prediction, Protection

and Early Response (FLAPPER).

The basic process flow that all SAPAs follow is shown

in Figure 4. The execution flow involves work item

Figure 3. Sample Use Case Steps 5-11.

Center 6 35th Annual

 Small Satellite Conference

assessment translated to activity needs and activity

capability assessment. Spawned activities are then

assessed in the MAPA as they are received for resource-

level deconfliction.

We now discuss several example SAPAs. These do not

constitute an exhaustive list of the SAPAs that Orbit

Logic has developed or the capabilities that APS can

support, but they form a representative sample of SAPAs

that are relevant for space operations.

Ground Observation SAPA

This SAPA plans ground image collections using

multiple supported sensor types as they are available on

the satellite platforms. This may include sensor types

such as Synthetic Aperture Radar (SAR), Electro-

Optical (EO), or Infra-Red (IR) imagery. The collection

schedule is driven by the latest satellite ephemeris data

available onboard, the latest set of targets of interest

(provided by event messages from onboard or external

sources like the ground or other satellites), and available

sensors and their attributes.

The Ground Observation SAPA has specialized internal

logic and algorithms to compute access times from

configurable sensors to ground targets of interest during

the current rolling planning period. Using a figure-of-

merit, the most valuable constraint-conforming

collection time and mode will be selected within

configurable imaging buffers. For situations where

multiple targets have overlapping or conflicting beam

access, the same figure-of-merit is used to select the most

valuable target acquisition with the lesser merit

collection being shifted to a deconflicted window. At the

end of the process, the Ground Observation SAPA

outputs a series of high-fidelity target acquisition activity

requests for the current planning period to be consumed

and deconflicted by the MAPA to resolve spacecraft

resource-level constraints. The SAPA retains ground

observation target fulfillment status for all identified

targets for use during future planning windows, and

Figure 4. SAPA Workflow.

Center 7 35th Annual

 Small Satellite Conference

updates that fulfillment status based on messages from

the MAPA or telemetry from other external flight

software components. Updated target status is reported

to the APS Constellation Data Manager component for

syncing of work item state to all constellation and ground

entities.

Communication SAPA

This SAPA plans the exchange of data via

communication links between constellation and ground

assets. This is not only required for periodic connection

with ground station, but also used for dissemination of

information between constellation assets and transfer of

data resulting from constellation work items for further

processing or downstream tasks on other constellation

assets. For instance, a stereoscopic collection between

two spacecraft may require onboard processing and

analysis of the stereoscopic image pair. In this case, at

least one of the stereoscopic images must be transferred

to a constellation asset capable of processing

stereoscopic imagery. The Communication SAPA is

used in this case to model, plan, and facilitate this

transfer of information.

The Communication SAPA models constellation asset

positions based on propagated states as well as the

communication sensor capabilities of each of these

assets. This information along with geometrical data

informs the vehicle of possible access windows between

assets. If it is determined that data must be transferred

from one constellation asset to another, the

Communication SAPA will then plan the best period in

which the transfer of data can be carried out. The newly-

spawned communication activity requested from the

SAPA will be assessed for a figure of merit, and issued

to the MAPA for further vehicle-level resource

deconfliction. When successfully deconflicted, this

activity then follows the standard path of being added to

the internal schedule of resource constraints and issued

out as a fully realized plan by APS for execution by an

onboard timeliner component.

Processing SAPA

The objective of this SAPA is to perform onboard

processing on a constellation asset for any given onboard

processing algorithm while modeling processing

capabilities and resource loads and requirements for the

vehicle. Based on these configurable conditions, the

vehicle is then able to both bid on processing-related

work items in the list of shared constellation work items

based on onboard processing capabilities and work item

needs.

Similar to other SAPAs mentioned, relevant work items

are assessed against asset capabilities and, if capability

is found, relevant processing activities are planned and

requested to the MAPA based on estimated availability

of processing algorithm input data. This processing

activity is rated based on multiple figures of merit (most

notably on the time required to perform the processing

given available memory and computing resources) and

then further deconflicted at a vehicle level in the MAPA.

The Processing SAPA is often paired with a data

collection SAPA such as the Ground Observation SAPA

and optionally may be paired with the Communication

SAPA for heterogeneous constellations where vehicles

collecting data may not have capability to process the

collected data.

Fault Learning Agent for Prediction, Protection and

Early Response (FLAPPER) SAPA

This SAPA is currently under development and will

enable autonomous fault management that leverages

Machine Learning (ML) capable of detecting, isolating,

and mitigating anomalies in real- or near-real-time with

minimal ground intervention. A set of defined fault

detection and correction constraints will be employed,

along with the capability for operators to classify new

types of faults and responses. These constraints, along

with spacecraft data input, will be used to train the

FLAPPER Fault Detection Service to detect and classify

faults and their corresponding responses based on novel

telemetry limits and value trends. The scheduling

component of the FLAPPER SAPA will subsequently

plan correlated corrective actions. An initial prototype of

FLAPPER was demonstrated on flight-like hardware

and tested on telemetry from the NASA Lunar

Atmosphere and Dust Environment Explorer (LADEE)

mission. The FLAPPER ML model was run on the

Unibap e2100 flight processor that Orbit Logic utilized

on AFRL’s Resilient Bus Experimental Laboratory

(REBEL) Testbed, which is representative of hardware

supporting many current mission concepts.

The FLAPPER ML engine was also validated in an

experiment replicating the NMS (Neutral Mass

Spectrometer) temperature failure that occurred on

LADEE February 26, 2014. The process that was

performed to train the model is similar to what would be

performed during mission development and in

operations. First, a TensorFlow model was configured

with ML parameters and configurations. Then telemetry

features that represented the NMS temperature state

were identified. Training for this model took

approximately 10 mins for the 6 features for a month-

long period of healthy spacecraft telemetry. Subsequent

to the training an anomaly threshold was chosen.

Injecting the mission data in playback fashion from a

four-month timeframe surrounding the NMS

temperature event, the ML Trained Model detected

anomalous behavior in mid-November 2013 (green line),

3 months prior to the detection of the event (orange line)

during the actual mission operations (see Figure 6).

Center 8 35th Annual

 Small Satellite Conference

The Master Autonomous Planning Agent

After capability windows are determined by SAPAs -

given the high-level activities, derived actions, and any

timing or geometric constraints, the individual activity

actions are levied against the resources required to

perform them. Each resource assesses its ability to carry

out the action alongside the previously committed

actions in the schedule – which results in resource

deconfliction through action shuffling or merging. The

“goodness” of an activity to be inserted into the timeline

is scored using a configurable multi-factor figure of

merit (FOM). Activities are scheduled in a rolling

timeline, and fully resolved and scheduled activity

actions are submitted over a messaging interface

interpretable by an onboard command timeliner service.

Resources in APS maintain an internal timeline of all

committed activity actions and through this are able to

provide lookahead appraisal of resource usage at a

desired time that is grounded in the various subsystem

states as reported in spacecraft telemetry.

Mission flexibility is a central tenant of APS. This

includes the flexibility to enable advanced concepts of

operation by supporting multiple behaviors within the

lifetime of a mission, support for development of new

mission needs per operational program, support for

flexibility in sensor and onboard resource types across

any operational domains, and flexibility to execute APS

on various computing architectures with the intention to

minimize overhead in both computation cycles and

memory footprint. These APS capabilities are achieved

through a robust set of core services, tools, and base

functionality which are used across missions. From these

tools, SAPAs and resource models specific to mission

needs can be developed and applied as-needed to a

heterogenous set of constellation assets based on vehicle

capabilities. For example, a space vehicle with an EO/IR

imager may be defined with a SAPA specializing in

ground location observation, while a ground vehicle may

have APS executing with a SAPA specializing in terrain

mapping via LIDAR sensing resources. Both missions in

this case would be executing the same core APS

application, but would utilize a different set of SAPAs

and resources. The advanced planning, scheduling, and

deconfliction capabilities are identical. This makes APS

ideal for complex mission examples with connected

constellation assets across domains where each asset

needs to be configured to meet specific roles at different

points in the mission timeline. Examples of resource

Figure 5. APS architecture with FLAPPER for machine-learning-driven fault detection and correction

Center 9 35th Annual

 Small Satellite Conference

configuration point include sensors, actuators, data

storage, communication, and processors.

APS IMPLEMENTATION

Coordination Between Constellation Elements

APS has been extended through multiple programs for

AFRL, DARPA, NASA, ONR, and commercial entities

to include support for fully decentralized collaborative

asset autonomous planning. This is facilitated through

the sharing of a Common Relevant Operating Picture

(CROP), essentially a distributed database, containing

asset states (dynamic and related to onboard resources)

and a representation of the mission-oriented “work

items” that the swarm is being asked to perform. These

work items align with a “workflow pipeline” defining the

various steps that need to be undertaken to accomplish a

high-level mission objective. The module in the APS

architecture that handles the synchronization of this

CROP between the assets in the system is called the

Constellation Data Manager (CDM). It employs

intelligent approaches to the distribution of data (namely

the use of gossip protocols, value thresholding, relevance

scoping, and compression techniques) to maintain the

CROP data across the networked assets using minimal

bandwidth.

Regardless of mission objective and resource differences

between APS-enabled constellation assets, all assets and

ground interfaces communicate to the APS constellation

across a set of synchronization messages between

instances CDM running on each deployed asset and

ground station. The CROP representation is composed of

chained pipelines of work items in which each work item

represents an atomic portion of work to be performed in

fulfilling a higher-level request. The synchronization

messages containing work item details are then sent

between CDM instances to disseminate high-level

requests from users, notify the constellation of

autonomous follow-up work items triggered by

completed work items, and to relay work item state

across the constellation. The combination of APS’s

mission flexibility features and the lightweight

synchronization of work item state between CDM extend

single-asset autonomous planning and scheduling to

constellation-level plan optimization.

To minimize bandwidth requirements, we leverage an

Event-Triggered Distributed Data Fusion (ET-DDF)

algorithm to coordinate the CROP. The specifics of the

algorithm are beyond the scope of this paper, but the

central idea is that instead of constantly exchanging

information – as one may do to share relative positions

when using a standard approach such as a Kalman filter

– only statistically relevant changes (the eponymous

‘events’) are shared. This greatly reduces the

communication traffic required to effectively coordinate

the CROP. We refer the interested reader to Ahmed et

al.7,8 for a more detailed discussion of ET-DDF.

Load Balancing Among Constellation Elements

The shared awareness of constellation capabilities

gained via CROP data sharing is used by APS to

coordinate activities across constellation elements. APS

constellation coordination can manifest in several ways;

we present two basic interaction methods here: bidding

and handoffs. While these capabilities are foundational,

they are straightforward and we note that there are more

nuanced and complicated ways of coordinating actions

across the constellation. A proper treatment of ways to

coordinate actions9 or design network topologies10 is a

big area of ongoing research in Multi-Agent Systems

(MAS) and is thus beyond the scope of this paper.

However, APS’s flexibility allows any such interaction

methodology to be implemented within the current

architecture.

Bidding may occur when multiple constellation assets

individually perform work item assessment and either

bid on a work item based on estimate of the FOM to

complete it, or standing down if the estimated FOM is

lower that what any other asset has asserted. In this way,

the multi-factor FOM associated with the work item is

optimized to a maxima with vehicle capability and

schedule conflicts in mind via this coordinated hill

climbing technique. The bidding technique has innate

resiliency to the single point failures that might occur in

systems employing centralized planning and scheduling

approaches, or when communication disruption occur. In

the case where communication is disturbed between

constellation assets, the worst-case result is over-

Figure 6. Loss MAE with NMS fault telemetry

from LADEE Mission; orange arrow indicates

when the fault occurred and green arrow indicates

when FLAPPER detected it

Center 10 35th Annual

 Small Satellite Conference

satisfaction of work items by multiple constellation

assets. True redundancy is also realized through this

bidding approach, since inoperable constellation assets

do not prevent work items from being fulfilled.

Work item handoffs occur when different work items in

a pipeline are fulfilled by different constellation assets.

Handoffs may occur in missions with advanced

objectives and heterogenous constellations. For

example, in a case where collected data might

subsequently be processed on another capable vehicle,

the data must be transferred. In these cases, SAPAs must

track work item dependencies as they are planned and

fulfilled in order to be able to plan downstream items in

the pipeline. This technique may also be used in

conjunction with bidding to provide further optimization

and redundancy to more complex missions.

The greatest challenge to distributed TCPED

architectures in general is the orchestration of data

transfer between steps in the workflow pipeline given

that some system configurations may have very dynamic

or intermittent communication opportunities among

certain assets. This necessitates the use of the delay-

tolerant networking approaches and decentralized

planning logic implemented in APS. In certain cases,

APS will need to determine how to route data between

system elements using multiple network hops.

The Mission Executive

The Mission Executive software manages the software

modules comprising an APS deployment on a hosting

platform, whether that be on the flight computer or on a

dedicated co-processor. It is responsible for starting,

stopping, and monitoring the APS application suite (e.g.

MAPA, SAPA, other services). The Mission Executive

makes use of various configurations settings to maintain

flexibility over a variety of host platforms.

The Mission Executive can be broken down into the

following functional components:

• Process Control & Monitor. This function

entails Mission Process Control – the ability to

start/stop APS-related processes and receive

statistics on each– and Mission Process

Monitoring – the ability to monitor process

startup and health (via heartbeats).
• Host System Interactions. This component

entails Message Interpretation – the ability to

receive configuration/control commands from

the hosting asset (includes settings changes

and manual process controls) – and Telemetry

Formatting – the production of telemetry

packets containing Mission Executive and

APS application module status.

The Mission Executive software is an "always running"

process on the hosting Linux OS. The software is

invoked by default (i.e. as a service) any time the host

system is booted into a normal operating mode. Upon

startup (or based on a user directive to restart the

service), the Mission Executive software reads in the

contents of the "Application Suite" defined in its

Software Suite Specification file. This file serves as a

configuration file for various necessary parameters, and

Figure 7. Block Diagram of Demonstration Simulation Environment.

Center 11 35th Annual

 Small Satellite Conference

contains a list of application entries to be controlled by

the Mission Executive software. Since the Mission

Executive functions outside of the Aspire middleware

that allows plug-and-play interoperability between APS-

related software modules, it maintains a "direct line" of

communication to the host platform for command and

telemetry messages. Once the APS Aspire applications

are started, they can attach to the middleware and

communicate application health and status data to the

Mission Executive.

The Mission Executive starts the applications that

comprise APS and monitors their health. Once an app is

started, registered, and has successfully hooked all its

message dependencies, the Mission Executive tracks its

health using a heartbeat "ping-pong" to assess

responsiveness. An app is considered nominal if a

heartbeat response is received within a configurable

timeout window.

An app that fails to respond soon enough (within a

configurable time window) is considered "dead", and is

subject to a series of possible failure responses. The

failure responses are specified on a per-app basis as

defined in the Software Suite Specification. Configured

response behaviors may change based on specific

mission needs, mission phase (i.e. commissioning vs.

nominal flight) and other factors as dictated by the

Operations Team. Potential responses include no action,

stopping the app, restarting the app, stopping the entire

APS application suite, restarting the entire suite, or

resetting the application suite to a previous system state.

The Vehicle Interface Translator

To facilitate deployment on arbitrary platforms, we have

developed a Vehicle Interface Translator to pass

messages between internal and external messaging

protocols. It describes all components designed to

interface directly with the vehicle system in order to

relay known vehicle state to APS, carry out APS planned

activities, and provide a maintenance port for updating

APS binaries and configuration.

As a concrete example, we consider a demonstration

scenario in simulation, where APS must communicate

with robotic and orbital simulation software suites,

Gazebo and 42, respectively; see Figure 7. Figure 8

provides a detailed view of the mapping configured in

the translator. The exchange of information between the

42 and Gazebo realms was facilitated by the

configuration of a translator to map between the Robot

Operating System (ROS) and Aspire messages

supported by each of the simulation environments (ROS

on the Gazebo side and Aspire on the 42/APS side). The

translator was built using technology already matured in

other AFRL-sponsored research efforts, where it plays a

vital role in allowing modular middleware-based

onboard software architectures to seamlessly

interoperate with the legacy data protocols of the hosting

platforms that autonomy software is installed on. Here it

merely allows us to easily allow two middleware

environments to communicate. Previous

bridging/translation with our compatibility layer had

addressed mapping Aspire messaging to custom mission

protocols for AFRL, namely payload-to-bus protocols

Figure 8. Detailed mapping between Aspire/APS and 42 data protocols

Center 12 35th Annual

 Small Satellite Conference

associated with their TacSat and EAGLE missions.

These are custom packet protocols exchanged over

point-to-point physical interconnects like SpaceWire or

RS-422.

This translator is shown as the yellow/cyan sandwiched

blocks at the middle bottom of Figure 7. The translator

allows the time as modelled by Gazebo to be delivered

to 42 and the truth states of the satellites, as modeled by

the dynamics engine of the 42 simulator, to be delivered

to the Gazebo-supported elements.

Hardware Details

APS has been deployed on Unibap e2100, Raspberry Pi

computers, and other constrained platforms. It has been

used on Raspberry Pi for testing in deployed unmanned

underwater vehicle (UUVS) applications. It will fly on

two satellite missions in 2021 and 2022. One employing

an Innoflight CFC-400 and a the second employing a

custom board utilizing a Xilinx Versal chip. APS runs on

Linux- and Windows-based systems on 32- and 64-bit

x86 and ARM hardware computing architectures with

minimal package requirements and low memory and

computing requirements, making it suitable for

installation on resource constrained flight computers for

satellites and various classes of unmanned vehicles.

APS AND THE TCPED PIPELINE

Our approach manages and orchestrates processing

across all platforms in the architecture using a

decentralized database that maintains representations of

data processing pipelines, essentially a collection of

relational graphs where the nodes are work items (the

types of which represent steps in the TCPED process)

and the vertices represent the dependencies between

them (which steps need to be completed in order to move

to the next step). Pipelines may be simple linear

workflows (collect, process, disseminate), or complex

(multiple collects of different phenomenologies, fuse via

a processing step, use processing results to cue another

type of collection, process that data to identify features,

disseminate features to specific users). These pipelines

include the status of each work item (whether it has been

planned, is in progress, or is complete) as well as

metadata associated with accomplishing the step

(begin/end times, platform satisfying the step, and a

multi-factor figure of merit score representing how well

the work item will be satisfied). These pipeline

representations are synchronized across all platforms

using a gossip protocol that minimizes data exchange on

the communication links.

This approach is layered-upon (and agnostic-to) the

underlying physical layer that supports communication

between assets. A decentralized planning suite on each

platform consults the work pipelines to determine

whether local resources can be utilized to satisfy various

work items. If possible/feasible, an optimized plan will

be created and an associated score posted within the

work item. Other assets in the system may also develop

plans, but will stand down if their scores are lower. The

result is a fully decentralized self-selection of which

steps in the pipeline will be satisfied by which platforms.

This approach is ideal for highly dynamic systems of

systems that are handling large numbers of user data

requests of differing priorities from a large community

of users.

DEMONSTRATION SCENARIO

To illustrate APS in operation, we present a

demonstration scenario from our MISDEF program,

initially described in the Section, Motivating Scenario:

Collaborative Robotic Exploration of Mars. The scenario

for which we will show results concerns heterogeneous

swarms of satellites, rovers, and atmospheric vehicles.

Figure 9. APS and the TCPED pipeline.

Center 13 35th Annual

 Small Satellite Conference

Figure 7 shows a block diagram of the simulation, which

includes Gazebo for modelling robot dynamics and the

42 simulation framework12 for modeling the orbital

environment.

Gazebo acts as the simulation time reference since it has

no native ability to be driven by an external time source.

Thus, 42 references off Gazebo’s time. We

accomplished the synchronization capability by

extending the 42 message set to be capable of receiving

a run-time message setting the desired “current” time.

On the ROS side, Gazebo publishes a Time topic that

was usable to assert the “wall-clock” time as it executed.

The demo scenario involves four satellites in orbits

(300km altitude at a variety of inclinations) that result in

them all converging over a specific ground area at

roughly the same time. The satellites host Positioning,

Navigation, and Timing (PNT) transmitters that deliver

signals toward nadir as they traverse their respective

ground tracks. A PNT receiver installed on any surface

or atmospheric asset is able to determine its absolute

position to a level of fidelity that depends on the number

of satellite signals being obtained and the relative line of

sight geometries to the transmitting satellites. When

multiple satellites are in view of any surface asset, that

asset is able to have knowledge of a “GPS-like” position

fix. When not providing PNT service over the

operational theater, the satellite assets would

autonomously plan and execute orbit to surface image

collection.

Demo Scenario Description

The Demo brings together a relevant Mars

heterogeneous asset decentralized planning,

orchestration, and execution capability leveraging the

team’s collective capabilities. The robotic team is

entrusted with an over-arching high-level objective – to

identify potential areas of interest (AOIs) within a large

Mars surface region and perform successive stages of

further inspection/follow-up using assets with varying

capability, as shown in the left graphic of Figure 13. This

top-level goal includes specification of a large region

surrounding the location of the surface team (we used a

rectangular latitude/longitude bounded region of

20x20km). This objective could be issued by an Earth-

resident mission operator, or it could alternatively have

Figure 10. 42 screenshots of the satellites’ converging orbits over the surface assets’ operating area

Figure 11. MRACC algorithm determining drone sortie to image AOI 1 and return data.

Center 14 35th Annual

 Small Satellite Conference

been generated autonomously by some mission decision

logic (out of scope of this demo).

Orbital Assets

The satellite assets, being in possession of sensors

capable of acquiring tiled imagery of the region, receive

the center points of sub-regions that have been

decomposed from the full region specification. Each

satellite’s APS planning software determines access

opportunities to image each sub-region, as well as a

goodness score. Those scores are shared between all

satellites that might perform the collections. The satellite

with the best score ends up committing to the image

acquisition activity, while others with lower scores stand

down. When a satellite performs its collections they

simulate passing those images through a detection

algorithm to reveal possible AOIs. Any AOIs discovered

are transmitted in an event message to the rover acting as

the surface activity coordinator (base station).

Atmospheric Vehicles

When the rover orchestrating surface activity detects,

using PNT signals, that the satellites have exited the

surface theater, it accumulates all AOIs into a single

message and provides it to the MRACC algorithm

running decentralized on all atmospheric vehicle drones.

MRACC then orchestrates the dispatch and navigation

of the drone team to service each AOI in an order based

on the over-surface path distance and the AOI’s

associated priority. “Servicing” each AOI means that a

drone hovers over the location and acquires imagery,

which it relays to the base station through a “chain” of

drones (because of range-based communication

limitations).

Each of these acquisition/relay activities is conducted by

the drone team until all AOIs have been serviced, at

which point the sortie concludes and all drones return

back to the base station location.

Rover Operations

As soon as the data for the last AOI acquisition is

returned by the final relay configuration, software on the

base station processes the acquired data and looks to see

if there are indications that follow-up by a rover might

be appropriate, e.g., to perform contact surface science.

In this demo scenario, one AOI is deemed worthy of

follow up. Decision logic on the base station makes the

determination that a certain rover should perform the

follow-up activity. For our demo we simply made that

determination based upon proximity to the AOI’s center

– closet rover is favored to make the excursion. That

instruction (to navigate to the AOI) is published on the

message bus and acted upon by the chosen rover. Once

the rover is en-route, the demo concludes.

Figure 13. Satellites coordinating and executing image collection and processing to reveal AOIs.

Figure 12. MRACC servicing successive AOIs.

Center 15 35th Annual

 Small Satellite Conference

Figure 14. Follow-up with contact science by rover.

Details on Interactions Between Platforms

Figure 15 depicts key interactions between modules

involved in the demo. As previously mentioned, all

activities are directed in decentralized fashion by the

collaborative team once the initial “Directive” is

introduced (also called a Mission Data Request, or

MDR). We used one of the tools accompanying AFRL’s

Aspire middleware (called the Aspire Studio browser) to

provide the initial message (indicated by #1 on the

figure). We created the Mission Objective Manager (or

MOM) module to field the MDR and decompose it into

a set of “work items” aligned with steps in the TCPED

process (the life cycle of delivering a final end data

product to a user or users resulting from the tasking of

sensors). The MOM decomposes the top-level MDR into

multiple collection, processing and dissemination tasks.

Each of these is pushed into a workflow specification

held by the Ground Target Manager component

(leveraged from other programs with AFRL and

DARPA). At this point, all assets know that the work

items exist and are in need of being planned.

Figure 15. Module interaction diagram supporting

Demo capabilities.

The APS SAPAs on each satellite consider each work

item and plan the time at which they can occur (if

possible), scoring each and pushing that score to the

Common Relevant Operating Picture (CROP)

decentralized database. As previously mentioned, all

assets will use those scored to either self-select or stand-

down on each work item. Plan status is also held in the

CROP, so any module with access to the CROP

interfaces (which includes the MOM) will be aware of

the fact that work items have been planned, and aware of

each work item’s completion.

Once the MOM recognizes all work items as having been

completed (satisfactorily or not, for the current satellite

fly-over) any resulting AOIs detections are bundled and

delivered to the module called the Surface Orchestrator,

which lives on the ROS side of the simulation

architecture and is presumed to run on a rover designated

as acting in the role of the base station (most likely

because it hosts the best surface-orbit communication

equipment, or perhaps because it has the greatest

processing/memory resource capacity of any of the

surface team).

As previously described, the Surface Orchestrator will

perform the delivery of messages for AOI exploration by

the drone team, and will also apply simple (at this point

in the research) decision logic to select a rover for

contact follow-up of any AOIs that have the greatest

likelihood of high science return using certain rover-

hosted instruments.

Mars Robotic Asset Cooperative Control (MRACC)

In the demo, Mars Robotic Asset Cooperative Control

(MRACC) coordinates multiple air and ground assets

with limited communication range to overcome data

delivery issues using a multi-hop communication

scheme.

The MRACC algorithm is a distributed optimization

algorithm based upon the Communication-Aware

Robotic Information Gathering (CARING) framework

developed by the University of Colorado5. Figure 16

shows the block diagram that illustrates how MRACC

operates between communication and platform. Firstly,

MRACC receives a data package by communication

status. The package consists of the current ET-DDF

estimates of quadrotors over multi-hop communication

from the base station, decision set of other quadrotors,

and science data. If a quadrotor disconnects to other

quadrotors, then the quadrotor uses data packages that

are received recently. Then MRACC predicts future

positions of quadrotor assets through delivered decisions

of other quadrotors with higher ranks in a hierarchy and

one of the quadrotor's discrete decisions. Next, MRACC

optimization performs using a local utility formulated as

a sum of all possible values of which element refers a

specific communication event. The value is computed by

multiplication between a probability of delivery and

information gain given the configuration (Figure 17).

Center 16 35th Annual

 Small Satellite Conference

This demo considered the information gain as a function

of the relative distance between a selected AOI and

quadrotor position estimates, where the information gain

increases as the quadrotor approaches to the AOI.

Finally, MRACC computes local utilities for variation of

decisions itself and takes one of them that maximizes the

local utility. The optimization recurs periodically.

Figure 16. Block diagram of MRACC. MRACC uses

received data over communication and given discrete

decision-set to compute local utilities and select

decisions that maximize local utility. The quadrotor

moves based on the decision and requests MRACC

when planning interval time elapses.

Due to imperfect communication, MRACC works in a

distributed way, where each quadrotor locally takes

MRACC to make its decisions. One way to

cooperate/coordinate distributed robotic systems is to

receive the decision data from other quadrotors based on

the rank in a hierarchy. Other quadrotors' decisions are

transmitted with sensor data and current estimates served

by base station over communication. Note that the

decisions may not be delivered when two quadrotors are

disconnected. In that case, the quadrotor ignores the

decision even though the disconnected quadrotors have

a higher rank in a hierarchy.

Figure 17. Black diagram of MRACC local utility

computation. MRACC considers N cases of multi-

hop communication events of quadrotor assets and a

base station where each event has its information

gain. MRACC computes local utility by taking the

sum of the product between the probability of

communication configuration and its information

gain, which results in the expected communication-

aware information gain given predicted quadrotor

states.

Simulation Results

Figure 18 shows screenshots of visualization obtained

during a run for the satellite operation component, which

involves a 12 satellite constellation (3 orbit planes with

4 satellites equally spaced within the plane). Their

1000km orbit gives them a wide field of regard, allowing

the imagers mounted on the agile bus platform to be

commanded to acquire ground targets from a collection

of 500, located in 7 regional clusters scattered around the

Martian surface.

APS’s decentralized collaborative planning uses plan

and score sharing to achieve collection of images of the

best quality within the temporal and lighting constraints

associated with each order. Proper targeting of the

ground targets by the 42-hosted satellite models an

erosion of all targets in the mission request queue within

the defined mission execution window was verified.

Figure 18. Visualization Views of Scenario 2, Mars-

wide image collection

The scenario for verification of MRACC was as follows.

This demo's goal was to relay streamed sensor data back

to the base station during collects using quadrotor assets.

The base station would then dispatch the nearest ground

vehicle to the selected AOI based on the data to perform

follow-up science missions based on the collected data

by the quadrotors. Three quadrotors and four ground

rovers were initially at the base station (Figure 19). The

quadrotors team started to achieve missions that provide

hovering data collection of three stationary AOIs, where

the simulation located the AOIs within 1500 meters of

the base station. The quadrotors sequentially selected

one of AOIs (i.e., AOI 1→AOI 2→AOI 3) and figured

out the optimal positioning with communication

boundary (<500 meters) probabilistically determined by

hardware parameters given in Campbell and Ahmed13

and Ahmed14. The simulation used the multi-hop

communication, in which multiple data relays from the

nearest quadrotor that obtained science data of an AOI to

the base station happened. The communication modeled

as a packet erasure channel, where the outcome of

Center 17 35th Annual

 Small Satellite Conference

communication for single-hop was delivered or not

delivered.

Figure 19. Screenshot of Gazebo with three

quadrotors and four ground vehicles.

Figure 20 shows the trajectory using MRACC. This

demo used three quadrotors (Hectors) and one base

station (Jackal) at the origin where the mission planner

sequentially selected one of three AOIs for science

missions. The relative distance between one Hector to

another/base station determined the probability of

delivery over single-hop communication. As referred by

Campbell and Ahmed13 and Ahmed14, the

communication successfully happened within a 500-

meter range, and the probability of delivery drastically

dropped when the distance was between 500 meters and

600 meters. No communication showed over 600 meters.

First, three Hectors took off and headed to AOI 1, the

first selected AOI for sequential science missions. When

the distance between the Hectors and base station was

over 500 meters, Hector 1 took communication relay.

Hector 2 and Hector 3 could collect science data of AOI

1, in which Hector 2 collected, and Hector 3 took a back-

up position to recover when Hector 2 failed. After taking

the science mission for AOI 1, all three Hectors moved

toward AOI 2, where Hector 1 took the relay role to

deliver data from other Hectors to the base station.

Because one Hector was not enough to cover the multi-

hop communication range when collecting data of AOI

2, Hector 2 took the other relay position to deliver data

obtained by Hector 3 to Hector 1. When Hectors finished

the search mission for AOI 2, three Hectors moved to

AOI 3. Hector 2, the nearest asset to AOI 3, collected

data and Hector 1 relayed the generated data to the base

station, which Hector 3 acted as a back-up of Hector 2.

All three Hectors returned to the base station after

finishing data collection for all three AOIs.

Note, MRACC did not use any task allocation for data

collecting/relaying. The MRACC showed the high

fidelity of communication coverage and the mission

achievement in a distributed manner. Furthermore,

MRACC performed in real-time, so no pre-planning

procedures were required.

Figure 20. MRACC sample result for coordination

of three rovers with three AOIs.

DEPLOYMENTS OF APS

In this section, we discuss several domains for which

APS is relevant. A summary of resources for which APS

components has been developed can be found in Table

1. We note that this list is not exhaustive and that

developing additional components can be simple due to

the flexible and powerful architecture underlying APS.

APS on Different Platforms

The integration of APS onto a host platform is designed

to be simple and flexible. Though APS natively uses the

lightweight Aspire middleware messaging framework

for its own inter-modular data interactions, it also

provides flexible translation to and from external data

interfaces through a Vehicle Interface Translator

component that supports customized plugins to meet

mission-specific formats and protocols. As APS plans

are generated and changed, an action interface may be

used by the vehicle to drive a vehicle execution timeliner

component to carry out the results of planning. These

actions are also broken down in several actionable levels

for use by the vehicle based on controller capabilities.

For example, a maneuverable spacecraft may need to

perform a point/hold action to stare a sensor boresight at

a point on Earth’s surface. This point/hold action is also

broken down into more digestible actions as a set of slew

and spin commanding. The customer may then decide

which of these action abstractions works best to carry out

the actuation based on the onboard attitude control

system and its level of commanding and behaviors.

Center 18 35th Annual

 Small Satellite Conference

Orbit Logic’s core ground-based software products

(Collection Planning and Analysis Workstation

(CPAW), Order Logic, and SpyMeSat) have been

integrated with APS to provide more powerful solutions.

This integration allows for a mission to blend the

computational power of the ground-based solutions with

the low Size, Weight, and Power (SWaP) and urgent

tasking capabilities of APS. For example, integration

with Orbit Logic CPAW may be used by an operator to

orchestrate, tweak, and improve a constellation

collection plan and then upload that plan for execution

by an APS-enabled constellation. Individual

constellation assets will execute the CPAW plan, but will

subsequently field urgent (high priority) requests and

attempt to insert them into their execution schedules.

Satellite Deployments of APS

APS was originally developed for AFRL for satellite

operational resiliency, self-protection and the

enhancement of local Space Situational Awareness

(SSA). The use cases addressed include monitoring the

local space environment around the satellite to maintain

state awareness of known proximal objects, to detect and

characterize new objects, and potentially to react in real-

time to these events. An Intelligent Search SAPA

determines optimized search patterns based on user-

specified watch volumes and volumes generated by

fusion algorithms associated with probabilistic regions

of object reachable orbital states. The MAPA generates

a de-conflicted execution schedule for the use of local

satellite resources (SSA camera, satellite attitude

control, communications, and thrusters) to achieve

competing observation and search objectives without

violating satellite/sensor keep-out constraints or over-

utilizing spacecraft resources

For DARPA’s Blackjack program, APS was used to

perform both satellite constellation- and asset-level

planning, employing a fully-decentralized approach

involving only the minimal exchange of assets states and

plan FOM scores and status. In scaled-up testing against

mission simulations, APS’s receding timeline approach

proved capable of effectively developing coordinated

plans for the collection of thousands of user-specified

ground targets by multiple sensor phenomenology types

(EO, IR, RF) hosted on hundreds of satellites.

APS is flying on a Loft Orbital hosted satellite

demonstrator mission for the DARPA Blackjack

program in June of 2021. The mission (focused on

maritime domain awareness) will demonstrate the

collaborative planning elements of the modular

Blackjack system design by participating as a live

element in a ground-based Live-Virtual-Constructive

(LVC) simulation. Part of that experiment’s purpose is

to demonstrate on-orbit reconfiguration/update of APS

software.

APS will also fly on a university operated satellite in

2022. This partnership will mature APS and provide a

platform for the university to test new research and

capabilities in a real-world setting.

Unmanned Vehicle Swarm Deployments of APS

In addition to the MISDEF effort partially described in

this paper, Orbit Logic is teamed with the University of

Colorado Boulder on the Intelligent Navigation,

Planning, and Autonomy for Swarm Systems (IN-PASS)

Table 1. Multi-Domain Resources Supported by APS

Resource Domain Description

Attitude Control Satellite Operations Supports operations to change the orientation of the satellite to support

different operations; e.g., slewing the satellite body to image with a fixed

sensor

Satellite Maneuvering Satellite Operations Supports operations to change satellite orbit, e.g., to avoid a potential
collision

Optical/RF/SAR/HS Imagers Satellite Operations,

Robotic Exploration

Supports operations to collect data with different imaging sensors; this

includes slewing, recorder management, etc.

Wheeled Locomotion Robotic Exploration Supports navigation of wheeled vehicles such as rovers

Rotorcraft Locomotion Robotic Exploration Supports navigation of rotorcraft vehicles such as UAVs

Electrical Power All Supports electrical power management and modeling for activities executed
on any platform; configurable modeling and estimation considers vehicle

position and orientation, solar panels, and power draws incurred through

vehicle actions through the rolling time horizon.

Data Recorder All Supports data capacity estimation and management on board based on data

generated by science activity collection and deletion behavior after data has

been successfully downlinked

Communication and Contact
Resources

All Supports communication device modeling, estimation, and deconfliction
used for contact scheduling between the ownship vehicle and any other

multi-domain asset. Communication modeling models the radio and antenna
capabilities to optimize contact activities between constellation assets

Center 19 35th Annual

 Small Satellite Conference

solution for NASA to address the coordination of

autonomous robotic exploration activity on the Moon.

IN-PASS uses multi-objective control policies to

tradeoff rover navigation performance and resource use.

It is also investigating the most effective means of

interaction between humans and the swarm elements,

including specification of goals/objectives, feedback on

the viability/status of the human’s requests, and the

delivery of the resulting science product back to the

human.

On the MinAu program with the US Navy, Orbit Logic

is partnered with the University of Colorado Boulder and

the University of California San Diego, and NIWC-PAC.

APS is integrated with (and validated against) NIWC’s

hardware systems, which uses SeaRover UUVs -

tetherless versions of the BlueROV2 platform that host a

range of mission-relevant sensors and employ a USBL

system to perform locatization and facilitate data

exchange between assets. The missions investigated to

date have included collaborative bottom mapping and

water volume defense using collaborative

search/detect/track behaviors.

6. Conclusions

Orbit Logic’s Autonomous Planning System (APS) is

onboard software that enables collaborative autonomy

among multiple, heterogeneous assets. At the asset-level,

it enables independent operation so that spacecraft can

operate independently of a ground station, reducing

latency between on-orbit events and responses and

eliminating the ground station as a single point-of-

failure. At the swarm- or constellation-level, it enables

heterogeneous groups of assets to coordinate their

actions in order to better perform their missions; e.g., one

satellite may cue another on a collection it cannot

perform due to orbital geometry or sensor payload. APS

is flexible; it can and has been expanded to support novel

capabilities and it can and has been deployed on diverse

hosting platforms.

APS has been developed to support satellite

constellations in a wide variety of operational concepts.

In addition, it is being developed to coordinate robotic

exploration missions with NASA, and maritime missions

with the US Navy.

Acknowledgments

We would like to acknowledge our collaborators on

different deployments of APS. They include Drs. Nisar

Ahmed, Eric Frew and Morteza Lahijanian of the

University of Colorado Boulder, Dr. Sonia Martinez at

the University of California San Diego, and all of their

research groups as well as Dr. Anthony Jones at NIWC-

PAC’s Unmanned Maritime Vehicles Lab.

References

1. J. Reilly, “Autonomous Operations for

Responsive Spacecraft”, Responsive Space

Conference, 2006.

2. S. Chien, et al, “Improving the Operations of the

Earth Observing One Mission via Automated

Mission Planning”, SpaceOps, Huntsville,

Alabama, April 2010.

3. J. Frank, D. Iverson, C. Knight, S. Narasimhan, K.

Swanson, M. Scott, M. Windrem, K. Pohlkamp, J.

Mauldin, K. McGuire, H. Moses. Demonstrating

Autonomous Mission Operations Onboard the

International Space Station. Proceedings of the

AIAA Conference on Space Operations,

September 2015.

4. G. Aaseng, J. Frank, M. Iatauro, C. Knight, R.

Levinson, John Ossenfort, M. Scott, A. Sweet, J.

Csank, J. Soeder, A. Loveless, D, Carrejo, T. Ngo,

Z. Greenwood. Development and Testing of a

Vehicle Management System for Autonomous

Spacecraft Habitat Operations. Proceedings of the

AIAA Space Conference, 2018.

5. S. Moon and E.W. Frew, 2019. “A

communication-aware mutual information

measure for distributed autonomous robotic

information gathering.” IEEE Robotics and

Automation Letters, 4(4), pp.3137-3144.

6. Herz, Ella, Doug George, Timothy Esposito, and

Kenneth Center. "Onboard autonomous planning

system." In SpaceOps 2014 Conference, p. 1783.

2014.

7. N. Ahmed, J. Cortes and S. Martinez, "Distributed

Control and Estimation of Robotic Vehicle

Networks: Overview of the Special Issue," in

IEEE Control Systems Magazine, vol. 36, no. 2,

pp. 36-40, April 2016, doi:

10.1109/MCS.2015.2512030.

8. Nisar R. Ahmed, Jorge Cortes, Sonia Martinez,

"Distributed Control and Estimation of Robotic

Vehicle Networks: An Overview of Part 2",

Control Systems IEEE, vol. 36, no. 4, pp. 18-21,

2016.

9. Dorri, A., Kanhere, S.S. and Jurdak, R., 2018.

Multi-agent systems: A survey. Ieee Access, 6,

pp.28573-28593.

10. Jovanović, M.R. and Dhingra, N.K., 2016.

Controller architectures: Tradeoffs between

performance and structure. European Journal of

Control, 30, pp.76-91.

Center 20 35th Annual

 Small Satellite Conference

11. IAF (International Astronautical Federation), 70th

International Astronautical Congress, Washington

D.C., United States, Monday, 21 October 2019.

12. N. Dhingra, K. Center, E. Herz, E. Sneath, S.

Gagnard, “APS: Multi-Domain Decentralized

Planning for Responsive Multi-Asset

Collaborative Autonomy”, SpaceOps 2021.

13. E. Stoneking, “42: A General-Purpose Spacecraft

Simulation”, NASA Software Designation GSC-

16720-1,2010-2019.

https://sourceforge.net/projects/fortytwospacecraf

tsimulation, https://github.com/ericstoneking/42

14. M. Campbell and N. Ahmed, “Distributed Data

Fusion: Neighbors, Rumors, and the Art of

Collective Knowledge,” IEEE Control Systems,

vol 36, no. 4, 83-109, 2016.

15. N. Ahmed, “What’s One Mixture Divided by

Another?: A Unified Approach to High-fidelity

Distributed Data Fusion with Mixture Models,”

2015 IEEE Conference on Multisensor Fusion and

Information Integration (MFI 2015), San Diego,

CA.

https://sourceforge.net/projects/fortytwospacecraftsimulation
https://sourceforge.net/projects/fortytwospacecraftsimulation
https://github.com/ericstoneking/42

