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ABSTRACT 

As satellites and spacecraft grow in number and operate farther from Earth, there is an emerging need for increased 

autonomy via onboard decision making that is independent of ground stations but allows for collaboration between 

teams of assets. Such autonomy will relieve the burden on human operators, enable faster responses to dynamic events, 

and reduce communications between orbital assets and ground stations. Orbit Logic’s Autonomous Planning System 

(APS) is flexible and customizable onboard software that enables teamed autonomy through the use of Tasking, 

Collection, Processing, Exploitation, and Dissemination (TCPED) pipelines onboard the satellites. Its small 

computational/memory footprint makes it especially suitable for small satellites: APS has been successfully 

demonstrated on constrained platforms such as the Raspberry Pi and the Unibap e2100. While APS is employed to 

create, plan and orchestrate TCPED pipelines, its flexible architecture allows it to interface with other satellite or 

software components that can provide states or events to inform or trigger planning, and to integrate with satellite 

resources that can execute those plans. For example, in an Earth-imaging satellite mission, APS tasks the satellite to 

perform collections, facilitates delivery of the collected data to onboard processing/analysis modules, and uses the 

results to inform future tasking, e.g., following-up with additional collection or processing. APS on a given asset 

employs one or more Specialized Autonomous Planning Agents (SAPAs), software modules that plan onboard 

activities for a specialized need. Through configurable plugins, they can be customized to the capabilities and mission 

roles of the host asset. Each SAPA is dedicated to a general mission- or system-level need (e.g., separate SAPAs may 

focus on collection planning, contact scheduling, and fault management) and issue one or more high-level activities 

to fulfill that need. These activities are fielded by the Master Autonomous Planning Agent (MAPA), which performs 

intelligent deconfliction of the onboard resources that activity execution requires. The resource execution timeline is 

composed to maximize the “goodness” of all competing activities using a configurable multi-factor figure of merit 

(FOM). APS’s modular architecture and well-defined interfaces facilitate rapid development and deployment of novel 

or enhanced capabilities. The level of autonomy is customizable and can be tuned over the course of the mission to 

allow the satellite more autonomy as it gains trust. These features allow APS to be easily deployed for complex satellite 

missions with multiple competing mission objectives. APS’s constellation-level collaborative autonomy seamlessly 

extends its asset-level autonomy. Multiple APS-enabled satellites equipped with inter-satellite links or access to a 

space network can coordinate without ground station communications, e.g., a constellation of imaging satellites can 

perform load balancing among themselves to ensure coverage and limit redundancy. Such autonomous collaboration 

is especially important in scenarios where evolving conditions change mission parameters, e.g., if one satellite collects 

imagery from a region, and processing of that imagery identifies signatures warranting follow-up tasking, a different 

satellite overflying the location in the near future can perform the collection. APS has been developed and extended 

for multi-domain, multi-asset mission applications through multiple programs sponsored by AFRL, DARPA, NASA, 

and ONR.

INTRODUCTION 

Planning and scheduling for traditional spacecraft 

operations occur on the ground and the resulting 

instructions are uplinked to the spacecraft for execution. 

This procedure has inherent time delays and such a 

centralized commanding architecture imposes 

drawbacks whose impacts compound with scale, e.g., as 

spacecraft operate further from Earth and as they operate 

in larger constellations. Communication latency limits 

spacecraft operations, potentially causing the loss of 

critical mission opportunities or even of the spacecraft 

itself. These issues compound as spacecraft 

responsibilities comprise more of a Tasking, Collection, 

Processing, Exploitation, and Dissemination (TCPED) 

pipeline where tasks are coupled through dependent 

links. Although the completion of individual tasks may 

not take a long time, significant latency would be 

accrued in waiting for coordination from a ground station 

between each pair of steps in the TCPED pipeline. 

Moreover, constellation operations are sensitive to any 

issues that affect ground control, from communications 
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errors to processing overload to weather conditions and 

beyond. 

The availability of more capable flight hardware and 

inter-satellite links (ISLs) provides a way to address 

these shortcomings through onboard planning and 

scheduling and distributed commanding architectures. 

The distributed commanding architectures enabled by 

such onboard software allows spacecraft to detect 

opportunities on-orbit and react immediately without 

needing to communicate to the ground station and wait 

for the response plan. Faster response times lead to more 

effective response actions and enhanced mission 

success. Using ISLs, the right planning software can 

orchestrate communication and coordination among 

constellation elements to enable collaborative 

autonomy. This enables spacecraft to cue one another for 

collection or other steps of the TCPED pipeline, and for 

spacecraft to autonomously optimize activity schedules 

at a constellation level. 

Orbit Logic has developed the Autonomous Planning 

System (APS), software that can run onboard spacecraft 

and enable them to respond to onboard and external 

events to meet the planning/scheduling requirements of 

a variety of missions.  Its modular architecture allows 

planning systems to be assembled from individual 

planning components and quickly configured (and 

reconfigured as necessary) to meet initial and dynamic 

mission goals. APS operates using a rolling timeline, 

constantly adding or modifying the existing spacecraft 

Command Queue as new information is received in the 

form of dynamic and frequently ad-hoc events. 

APS has a small footprint that allows it to be deployed 

onboard small satellites or other robotic agents with 

modest computing power. APS has uses beyond satellite 

operations; it can enable autonomy on any platform and 

can enable collaborative autonomy on any group of 

robotic agents that can communicate amongst 

themselves. The APS architecture reduces the cost, 

schedule, and risk of implementing planning systems – 

making asset more able to respond to dynamic mission 

goals and more efficient with the use of their processing 

resources. Beyond various satellite programs, Orbit 

Logic has applied APS to teams of robotic vehicles in 

underwater and space exploration missions. 

The remainder of the paper is organized as follows. First, 

we provide background on traditional, centralized 

satellite mission scheduling, autonomous spacecraft 

operations, and distributed commanding architectures. 

We then outline a motivating scenario that will provide 

a concrete touchstone for the rest of the paper. Using this 

motivation, we then describe the architecture of APS as 

installed on each asset; broadly speaking. The following 

section provides details on the APS architecture, 

including how constellation different assets interact for 

distributed planning, how APS is deployed on assets, and 

how the APS Mission Executive module facilitates in-

situ management of the APS on-asset configuration once 

deployed. After these technical details, we discuss APS 

for enabling an autonomous on-board TCPED pipeline. 

We then return to the motivating scenario and present 

simulation results illustrating the efficacy of APS. 

Moving beyond this scenario, we then discuss several 

different deployments of APS and illustrate the breadth 

of its potential. Finally, we provide concluding remarks. 

BACKGROUND ON COMMANDING 

ARCHITECTURES 

Background on Satellite and Spacecraft Mission 

Planning and Scheduling 

In traditional operations, satellite mission planning is 

performed at ground stations and the resulting schedules 

are transmitted to satellites via command load during 

periods of communications availability, generally during 

periodic ground station contacts. This approach inserts 

significant delays in responding to new information and 

new opportunities.  These delays can range from several 

minutes to several hours and can cause the loss of 

opportunities for the collection of critical intelligence 

data, the degradation of the satellite due to a slow 

response to a system failure, or even the loss of the 

satellite (as in the case of an orbital collision between 

two satellites). These communications latencies can arise 

due to adherence to pre-planned contact schedules or 

speed of light delays. 

Latency due to contact scheduling is an artifact of 

spacecraft commanding architectures and it is possible, 

but certainly nontrivial, to limit it. Figure 1 shows a 

traditional mission planning timeline, where planning is 

constrained by contact opportunity timelines. In such an 

architecture, satellite command load can only address 

specific events if the mission planning group knows 

about the event prior to the start of the planning process. 

This concept of operations is not equipped to respond to 

opportunities that are detected between commanding 

opportunities, which can be several minutes or even 

hours apart.   

Latency due to the speed-of-light is unavoidable and can 

only be addressed through autonomous decision making; 

for example, future spacecraft performing geyser-

monitoring missions on Europa and/or Enceladus would 
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need to operate autonomously to react to geyser events 

(e.g., detect, navigate, collect samples, etc.) lest 

communications latency to Earth result in missing the 

data gathering opportunity. A planning agent, such as 

APS, located onboard the spacecraft eliminates this 

major deficiency of the existing mission planning 

concept of operations by making appropriate changes to 

the existing spacecraft command load (or generating a 

new load from scratch) in response to events in near-real-

time. The onboard planning agent can generate and/or 

maintain a plan that responds to evolving conditions 

between ground uplink opportunities. Migration of 

mission planning activities to an autonomous flight 

software agent will allow future missions to implement 

true real-time opportunistic target collections, and other 

unrealized capabilities enabled by onboard planning. 

Recent Advances in Spacecraft Autonomy 

Some satellite missions have implemented onboard 

autonomy, such as Air Force’s TacSat-31 and NASA’s 

EO-12 missions; however, the solutions implemented in 

those and similar missions are typically mission-specific 

so could not be considered a modular architecture easily 

adaptable to new missions, and/or use state-based and 

rules-based planning that cannot scale to meet complex 

planning needs within the constraints of onboard 

resources. Recent work at NASA3,4 addresses the 

growing need for autonomy in fault detection; however, 

there are still significant gaps. In Frank et al.3, station 

operations were moved onboard – from the ground to the 

ISS – but with lots of crew-in-the-loop operation. The 

system tested in Aaseng et al.4 performs complex power 

planning in the presence of power system faults, but 

these faults are previously characterized and there is no 

infrastructure for learning to identify and respond to new 

classes of events. 

The APS Distributed Architecture 

The APS architecture6, 11 consists of Specialized 

Autonomous Planning Agents (SAPAs) that address 

specific planning needs (recorder management, ground 

target imaging, collision avoidance, etc.) and a Master 

Autonomous Planning Agent (MAPA) that ingests the 

output of the SAPAs, deconflicts global resources, and 

creates a final plan that it forwards to the onboard task 

executive for implementation. This unique approach 

contrasts with the current state-of-the-art for planning 

systems which generally try to apply a single algorithm 

type (often state-based and rules-based for flexibility) to 

multiple planning domains in a one-size-fits-all 

approach, which often results in suboptimal planning. 

The autonomous planning ability enabled by APS allows 

satellites to respond much more quickly to capture 

opportunities that might otherwise be missed.  The 

MAPA/SAPA onboard architecture offers the flexibility 

to plan for different kinds of opportunities, keeps the 

system modular and efficient enough to be used in 

constrained computing environments, and makes the 

system extensible to almost any satellite planning 

domain. 

The MAPA/SAPA architecture and planning timelines 

lend themselves to coordinated constellation planning 

because the individual components do not care where the 

event messages originate (on the same satellite, a 

different satellite, or the ground), and planning can be 

performed and re-performed as different systems react to 

the environment as understood from event messages on 

the bus. As more spacecraft need to coordinate activities 

Figure 1. Traditional Ground-Based Mission Planning Timeline with contact occurring between 

Acquisition of Signal (AOS) and Loss of Signal (LOS). 
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to reach specific goals as a whole, a configurable and 

adaptable planning architecture becomes more critical.   

MOTIVATING SCENARIO: COLLABORATIVE 

ROBOTIC EXPLORATION OF MARS 

To provide a concrete motivational example, we will 

present APS in the context of our Mars/Interplanetary 

Swarm Design and Evaluation Framework (MISDEF) 

program. This NASA program was inspired by several 

swarm scenarios of interest from the 70th International 

Astronautical Congress proceedings11. One sample use 

case, shown in Figure 2 and Figure 3, involves a swarm 

of orbiting assets, drones, and a rover.  

Sample Use Case Description: 

1. One Satellite in the orbiting satellite 

constellation identifies an Area of Interest 

(AOI) based on its detection of elevated 

hydrogen readings during a coordinated survey 

of the Martian surface. 

2. The Satellite communicates the detection event 

to the coordinating Rover at the next available 

opportunity, potentially via relay through other 

constellation members. 

3. The Rover queries stored radar and map data 

and determines that there is no radar data for the 

AOI.  However, the region is determined 

“accessible” by previous map data. The science 

is determined valuable enough that the Rover 

will request a radar scan of the region during the 

following orbit. The Rover conveys the location 

of the AOI and the desired scan request to the 

next available satellite.  

4. Meanwhile the Rover requests that several 

Drones return to the Rover, as a result of a high 

science area being deemed “accessible”.  Upon 

return to the Rover, Drones correct their 

location and transfer data to the Rover to clear 

their storage. 

5. The Satellite that received the AOI location and 

scan request determines which orbital assets 

will perform the radar scan, as well as other 

scan specifics (when the scan will be 

performed, attitude maneuvers, scan 

parameters). 

6. The instructed Satellite performs its radar scan 

of the AOI. 

7. The Satellite constellation returns the radar data 

to the Rover. The radar data can be analyzed to 

determine the surface hardness of the crater, 

indicating which areas of the crater should be 

chosen for sample collection. 

8. The Lander distributes the survey plan to the 

Drones, including which Drones will complete 

which survey tasks (sample collect, 

Figure 2. Sample Use Case Steps 1-5. 
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environmental survey, Imaging). 

9. The Drones execute the survey plan. 

10. The Drones return to the Rover and deposit 

their samples and data. 

11. The Rover performs analysis on the samples 

and data, determines that the data reports 

samples with higher likelihood of water and 

requests an additional survey into the area. 

12. The Rover will summarize these and other 

science activities and periodically send results 

through the orbital constellation back to Earth. 

 

AUTONOMOUS PLANNING SYSTEM (APS) 

ARCHITECTURE  

APS is a decentralized software architecture that can be 

distributed across multiple assets (e.g., satellites) in a 

heterogeneous swarm. Each APS instance has access to 

configurable plugins modelling resource capabilities, 

vehicle mission activities, and Specialized Autonomous 

Planning Agents (SAPAs) – software modules that 

orchestrate onboard activities for a specialized need – 

that are particular to the host asset and its capabilities. 

Each SAPA is dedicated to a general mission or system-

level need (e.g., to monitor a region of the Earth) and 

issue one or more high-level activities needed to fulfil 

that need. These issued activities are fielded by the 

Master Autonomous Planning Agent (MAPA), which 

focuses on intelligent deconfliction of the available 

resources that are capable of carrying out the given 

activity. 

Specialized Autonomous Planning Agents 

Each instance of APS is equipped with platform- and 

mission-specific SAPAs to perform particular functions 

using tailored algorithms. For example, an imaging 

collection SAPA would understand the parameters of the 

sensor, imaging modes, types of targets, considerations 

such as weather and incidence angle, etc. The SAPA 

elements of the APS architecture give it flexibility since 

it allows different types of planning routines, algorithms, 

and considerations for different kinds of operations.  

Each SAPA can perform planning for a different kind of 

operation (imaging vs. orbit maneuvering vs. downlink 

planning), and the MAPA is used to generate the 

integrated, deconflicted multi-SAPA schedule for 

execution. To illustrate the strength of this approach, we 

discuss four different SAPAs here 

• Ground Observation SAPA 

• Communication SAPA 

• Processing SAPA 

• Fault Learning Agent for Prediction, Protection 

and Early Response (FLAPPER). 

The basic process flow that all SAPAs follow is shown 

in Figure 4. The execution flow involves work item 

Figure 3. Sample Use Case Steps 5-11. 
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assessment translated to activity needs and activity 

capability assessment. Spawned activities are then 

assessed in the MAPA as they are received for resource-

level deconfliction. 

We now discuss several example SAPAs. These do not 

constitute an exhaustive list of the SAPAs that Orbit 

Logic has developed or the capabilities that APS can 

support, but they form a representative sample of SAPAs 

that are relevant for space operations. 

Ground Observation SAPA  

This SAPA plans ground image collections using 

multiple supported sensor types as they are available on 

the satellite platforms. This may include sensor types 

such as Synthetic Aperture Radar (SAR), Electro-

Optical (EO), or Infra-Red (IR) imagery. The collection 

schedule is driven by the latest satellite ephemeris data 

available onboard, the latest set of targets of interest 

(provided by event messages from onboard or external 

sources like the ground or other satellites), and available 

sensors and their attributes. 

The Ground Observation SAPA has specialized internal 

logic and algorithms to compute access times from 

configurable sensors to ground targets of interest during 

the current rolling planning period. Using a figure-of-

merit, the most valuable constraint-conforming 

collection time and mode will be selected within 

configurable imaging buffers. For situations where 

multiple targets have overlapping or conflicting beam 

access, the same figure-of-merit is used to select the most 

valuable target acquisition with the lesser merit 

collection being shifted to a deconflicted window. At the 

end of the process, the Ground Observation SAPA 

outputs a series of high-fidelity target acquisition activity 

requests for the current planning period to be consumed 

and deconflicted by the MAPA to resolve spacecraft 

resource-level constraints. The SAPA retains ground 

observation target fulfillment status for all identified 

targets for use during future planning windows, and 

Figure 4.  SAPA Workflow. 
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updates that fulfillment status based on messages from 

the MAPA or telemetry from other external flight 

software components. Updated target status is reported 

to the APS Constellation Data Manager component for 

syncing of work item state to all constellation and ground 

entities. 

Communication SAPA  

This SAPA plans the exchange of data via 

communication links between constellation and ground 

assets. This is not only required for periodic connection 

with ground station, but also used for dissemination of 

information between constellation assets and transfer of 

data resulting from constellation work items for further 

processing or downstream tasks on other constellation 

assets. For instance, a stereoscopic collection between 

two spacecraft may require onboard processing and 

analysis of the stereoscopic image pair. In this case, at 

least one of the stereoscopic images must be transferred 

to a constellation asset capable of processing 

stereoscopic imagery. The Communication SAPA is 

used in this case to model, plan, and facilitate this 

transfer of information. 

The Communication SAPA models constellation asset 

positions based on propagated states as well as the 

communication sensor capabilities of each of these 

assets. This information along with geometrical data 

informs the vehicle of possible access windows between 

assets. If it is determined that data must be transferred 

from one constellation asset to another, the 

Communication SAPA will then plan the best period in 

which the transfer of data can be carried out. The newly-

spawned communication activity requested from the 

SAPA will be assessed for a figure of merit, and issued 

to the MAPA for further vehicle-level resource 

deconfliction. When successfully deconflicted, this 

activity then follows the standard path of being added to 

the internal schedule of resource constraints and issued 

out as a fully realized plan by APS for execution by an 

onboard timeliner component. 

Processing SAPA  

The objective of this SAPA is to perform onboard 

processing on a constellation asset for any given onboard 

processing algorithm while modeling processing 

capabilities and resource loads and requirements for the 

vehicle. Based on these configurable conditions, the 

vehicle is then able to both bid on processing-related 

work items in the list of shared constellation work items 

based on onboard processing capabilities and work item 

needs. 

Similar to other SAPAs mentioned, relevant work items 

are assessed against asset capabilities and, if capability 

is found, relevant processing activities are planned and 

requested to the MAPA based on estimated availability 

of processing algorithm input data. This processing 

activity is rated based on multiple figures of merit (most 

notably on the time required to perform the processing 

given available memory and computing resources) and 

then further deconflicted at a vehicle level in the MAPA. 

The Processing SAPA is often paired with a data 

collection SAPA such as the Ground Observation SAPA 

and optionally may be paired with the Communication 

SAPA for heterogeneous constellations where vehicles 

collecting data may not have capability to process the 

collected data. 

Fault Learning Agent for Prediction, Protection and 

Early Response (FLAPPER) SAPA 

This SAPA is currently under development and will 

enable autonomous fault management that leverages 

Machine Learning (ML) capable of detecting, isolating, 

and mitigating anomalies in real- or near-real-time with 

minimal ground intervention. A set of defined fault 

detection and correction constraints will be employed, 

along with the capability for operators to classify new 

types of faults and responses. These constraints, along 

with spacecraft data input, will be used to train the 

FLAPPER Fault Detection Service to detect and classify 

faults and their corresponding responses based on novel 

telemetry limits and value trends. The scheduling 

component of the FLAPPER SAPA will subsequently 

plan correlated corrective actions. An initial prototype of 

FLAPPER was demonstrated on flight-like hardware 

and tested on telemetry from the NASA Lunar 

Atmosphere and Dust Environment Explorer (LADEE) 

mission. The FLAPPER ML model was run on the 

Unibap e2100 flight processor that Orbit Logic utilized 

on AFRL’s Resilient Bus Experimental Laboratory 

(REBEL) Testbed, which is representative of hardware 

supporting many current mission concepts. 

The FLAPPER ML engine was also validated in an 

experiment replicating the NMS (Neutral Mass 

Spectrometer) temperature failure that occurred on 

LADEE February 26, 2014. The process that was 

performed to train the model is similar to what would be 

performed during mission development and in 

operations.  First, a TensorFlow model was configured 

with ML parameters and configurations.  Then telemetry 

features that represented the NMS temperature state 

were identified. Training for this model took 

approximately 10 mins for the 6 features for a month-

long period of healthy spacecraft telemetry. Subsequent 

to the training an anomaly threshold was chosen. 

Injecting the mission data in playback fashion from a 

four-month timeframe surrounding the NMS 

temperature event, the ML Trained Model detected 

anomalous behavior in mid-November 2013 (green line), 

3 months prior to the detection of the event (orange line) 

during the actual mission operations (see Figure 6). 
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The Master Autonomous Planning Agent 

After capability windows are determined by SAPAs - 

given the high-level activities, derived actions, and any 

timing or geometric constraints, the individual activity 

actions are levied against the resources required to 

perform them. Each resource assesses its ability to carry 

out the action alongside the previously committed 

actions in the schedule – which results in resource 

deconfliction through action shuffling or merging. The 

“goodness” of an activity to be inserted into the timeline 

is scored using a configurable multi-factor figure of 

merit (FOM). Activities are scheduled in a rolling 

timeline, and fully resolved and scheduled activity 

actions are submitted over a messaging interface 

interpretable by an onboard command timeliner service. 

Resources in APS maintain an internal timeline of all 

committed activity actions and through this are able to 

provide lookahead appraisal of resource usage at a 

desired time that is grounded in the various subsystem 

states as reported in spacecraft telemetry. 

Mission flexibility is a central tenant of APS. This 

includes the flexibility to enable advanced concepts of 

operation by supporting multiple behaviors within the 

lifetime of a mission, support for development of new 

mission needs per operational program, support for 

flexibility in sensor and onboard resource types across 

any operational domains, and flexibility to execute APS 

on various computing architectures with the intention to 

minimize overhead in both computation cycles and 

memory footprint. These APS capabilities are achieved 

through a robust set of core services, tools, and base 

functionality which are used across missions. From these 

tools, SAPAs and resource models specific to mission 

needs can be developed and applied as-needed to a 

heterogenous set of constellation assets based on vehicle 

capabilities. For example, a space vehicle with an EO/IR 

imager may be defined with a SAPA specializing in 

ground location observation, while a ground vehicle may 

have APS executing with a SAPA specializing in terrain 

mapping via LIDAR sensing resources. Both missions in 

this case would be executing the same core APS 

application, but would utilize a different set of SAPAs 

and resources. The advanced planning, scheduling, and 

deconfliction capabilities are identical. This makes APS 

ideal for complex mission examples with connected 

constellation assets across domains where each asset 

needs to be configured to meet specific roles at different 

points in the mission timeline. Examples of resource 

Figure 5. APS architecture with FLAPPER for machine-learning-driven fault detection and correction 
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configuration point include sensors, actuators, data 

storage, communication, and processors. 

APS IMPLEMENTATION 

Coordination Between Constellation Elements 

APS has been extended through multiple programs for 

AFRL, DARPA, NASA, ONR, and commercial entities 

to include support for fully decentralized collaborative 

asset autonomous planning. This is facilitated through 

the sharing of a Common Relevant Operating Picture 

(CROP), essentially a distributed database, containing 

asset states (dynamic and related to onboard resources) 

and a representation of the mission-oriented “work 

items” that the swarm is being asked to perform. These 

work items align with a “workflow pipeline” defining the 

various steps that need to be undertaken to accomplish a 

high-level mission objective. The module in the APS 

architecture that handles the synchronization of this 

CROP between the assets in the system is called the 

Constellation Data Manager (CDM). It employs 

intelligent approaches to the distribution of data (namely 

the use of gossip protocols, value thresholding, relevance 

scoping, and compression techniques) to maintain the 

CROP data across the networked assets using minimal 

bandwidth. 

Regardless of mission objective and resource differences 

between APS-enabled constellation assets, all assets and 

ground interfaces communicate to the APS constellation 

across a set of synchronization messages between 

instances CDM running on each deployed asset and 

ground station. The CROP representation is composed of 

chained pipelines of work items in which each work item 

represents an atomic portion of work to be performed in 

fulfilling a higher-level request. The synchronization 

messages containing work item details are then sent 

between CDM instances to disseminate high-level 

requests from users, notify the constellation of 

autonomous follow-up work items triggered by 

completed work items, and to relay work item state 

across the constellation. The combination of APS’s 

mission flexibility features and the lightweight 

synchronization of work item state between CDM extend 

single-asset autonomous planning and scheduling to 

constellation-level plan optimization. 

To minimize bandwidth requirements, we leverage an 

Event-Triggered Distributed Data Fusion (ET-DDF) 

algorithm to coordinate the CROP. The specifics of the 

algorithm are beyond the scope of this paper, but the 

central idea is that instead of constantly exchanging 

information – as one may do to share relative positions 

when using a standard approach such as a Kalman filter 

– only statistically relevant changes (the eponymous 

‘events’) are shared. This greatly reduces the 

communication traffic required to effectively coordinate 

the CROP. We refer the interested reader to Ahmed et 

al.7,8 for a more detailed discussion of ET-DDF.  

Load Balancing Among Constellation Elements 

The shared awareness of constellation capabilities 

gained via CROP data sharing is used by APS to 

coordinate activities across constellation elements. APS 

constellation coordination can manifest in several ways; 

we present two basic interaction methods here: bidding 

and handoffs. While these capabilities are foundational, 

they are straightforward and we note that there are more 

nuanced and complicated ways of coordinating actions 

across the constellation. A proper treatment of ways to 

coordinate actions9 or design network topologies10 is a 

big area of ongoing research in Multi-Agent Systems 

(MAS) and is thus beyond the scope of this paper. 

However, APS’s flexibility allows any such interaction 

methodology to be implemented within the current 

architecture. 

Bidding may occur when multiple constellation assets 

individually perform work item assessment and either 

bid on a work item based on estimate of the FOM to 

complete it, or standing down if the estimated FOM is 

lower that what any other asset has asserted. In this way, 

the multi-factor FOM associated with the work item is 

optimized to a maxima with vehicle capability and 

schedule conflicts in mind via this coordinated hill 

climbing technique. The bidding technique has innate 

resiliency to the single point failures that might occur in 

systems employing centralized planning and scheduling 

approaches, or when communication disruption occur. In 

the case where communication is disturbed between 

constellation assets, the worst-case result is over-

Figure 6. Loss MAE with NMS fault telemetry 

from LADEE Mission; orange arrow indicates 

when the fault occurred and green arrow indicates 

when FLAPPER detected it 
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satisfaction of work items by multiple constellation 

assets. True redundancy is also realized through this 

bidding approach, since inoperable constellation assets 

do not prevent work items from being fulfilled. 

Work item handoffs occur when different work items in 

a pipeline are fulfilled by different constellation assets. 

Handoffs may occur in missions with advanced 

objectives and heterogenous constellations. For 

example, in a case where collected data might 

subsequently be processed on another capable vehicle, 

the data must be transferred. In these cases, SAPAs must 

track work item dependencies as they are planned and 

fulfilled in order to be able to plan downstream items in 

the pipeline. This technique may also be used in 

conjunction with bidding to provide further optimization 

and redundancy to more complex missions. 

The greatest challenge to distributed TCPED 

architectures in general is the orchestration of data 

transfer between steps in the workflow pipeline given 

that some system configurations may have very dynamic 

or intermittent communication opportunities among 

certain assets. This necessitates the use of the delay-

tolerant networking approaches and decentralized 

planning logic implemented in APS. In certain cases, 

APS will need to determine how to route data between 

system elements using multiple network hops. 

The Mission Executive 

The Mission Executive software manages the software 

modules comprising an APS deployment on a hosting 

platform, whether that be on the flight computer or on a 

dedicated co-processor. It is responsible for starting, 

stopping, and monitoring the APS application suite (e.g. 

MAPA, SAPA, other services). The Mission Executive 

makes use of various configurations settings to maintain 

flexibility over a variety of host platforms. 

The Mission Executive can be broken down into the 

following functional components: 

• Process Control & Monitor. This function 

entails Mission Process Control – the ability to 

start/stop APS-related processes and receive 

statistics on each– and Mission Process 

Monitoring – the ability to monitor process 

startup and health (via heartbeats). 
• Host System Interactions. This component 

entails Message Interpretation – the ability to 

receive configuration/control commands from 

the hosting asset (includes settings changes 

and manual process controls) – and Telemetry 

Formatting – the production of telemetry 

packets containing Mission Executive and 

APS application module status. 

The Mission Executive software is an "always running" 

process on the hosting Linux OS. The software is 

invoked by default (i.e. as a service) any time the host 

system is booted into a normal operating mode. Upon 

startup (or based on a user directive to restart the 

service), the Mission Executive software reads in the 

contents of the "Application Suite" defined in its 

Software Suite Specification file. This file serves as a 

configuration file for various necessary parameters, and 

Figure 7. Block Diagram of Demonstration Simulation Environment. 
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contains a list of application entries to be controlled by 

the Mission Executive software. Since the Mission 

Executive functions outside of the Aspire middleware 

that allows plug-and-play interoperability between APS-

related software modules, it maintains a "direct line" of 

communication to the host platform for command and 

telemetry messages. Once the APS Aspire applications 

are started, they can attach to the middleware and 

communicate application health and status data to the 

Mission Executive. 

The Mission Executive starts the applications that 

comprise APS and monitors their health. Once an app is 

started, registered, and has successfully hooked all its 

message dependencies, the Mission Executive tracks its 

health using a heartbeat "ping-pong" to assess 

responsiveness. An app is considered nominal if a 

heartbeat response is received within a configurable 

timeout window. 

An app that fails to respond soon enough (within a 

configurable time window) is considered "dead", and is 

subject to a series of possible failure responses. The 

failure responses are specified on a per-app basis as 

defined in the Software Suite Specification. Configured 

response behaviors may change based on specific 

mission needs, mission phase (i.e. commissioning vs. 

nominal flight) and other factors as dictated by the 

Operations Team. Potential responses include no action, 

stopping the app, restarting the app, stopping the entire 

APS application suite, restarting the entire suite, or 

resetting the application suite to a previous system state. 

The Vehicle Interface Translator 

To facilitate deployment on arbitrary platforms, we have 

developed a Vehicle Interface Translator to pass 

messages between internal and external messaging 

protocols. It describes all components designed to 

interface directly with the vehicle system in order to 

relay known vehicle state to APS, carry out APS planned 

activities, and provide a maintenance port for updating 

APS binaries and configuration. 

As a concrete example, we consider a demonstration 

scenario in simulation, where APS must communicate 

with robotic and orbital simulation software suites, 

Gazebo and 42, respectively; see Figure 7. Figure 8 

provides a detailed view of the mapping configured in 

the translator. The exchange of information between the 

42 and Gazebo realms was facilitated by the 

configuration of a translator to map between the Robot 

Operating System (ROS) and Aspire messages 

supported by each of the simulation environments (ROS 

on the Gazebo side and Aspire on the 42/APS side). The 

translator was built using technology already matured in 

other AFRL-sponsored research efforts, where it plays a 

vital role in allowing modular middleware-based 

onboard software architectures to seamlessly 

interoperate with the legacy data protocols of the hosting 

platforms that autonomy software is installed on. Here it 

merely allows us to easily allow two middleware 

environments to communicate. Previous 

bridging/translation with our compatibility layer had 

addressed mapping Aspire messaging to custom mission 

protocols for AFRL, namely payload-to-bus protocols 

Figure 8. Detailed mapping between Aspire/APS and 42 data protocols 
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associated with their TacSat and EAGLE missions. 

These are custom packet protocols exchanged over 

point-to-point physical interconnects like SpaceWire or 

RS-422. 

This translator is shown as the yellow/cyan sandwiched 

blocks at the middle bottom of Figure 7. The translator 

allows the time as modelled by Gazebo to be delivered 

to 42 and the truth states of the satellites, as modeled by 

the dynamics engine of the 42 simulator, to be delivered 

to the Gazebo-supported elements. 

Hardware Details 

APS has been deployed on Unibap e2100, Raspberry Pi 

computers, and other constrained platforms. It has been 

used on Raspberry Pi for testing in deployed unmanned 

underwater vehicle (UUVS) applications. It will fly on 

two satellite missions in 2021 and 2022. One employing 

an Innoflight CFC-400 and a the second employing a 

custom board utilizing a Xilinx Versal chip. APS runs on 

Linux- and Windows-based systems on 32- and 64-bit 

x86 and ARM hardware computing architectures with 

minimal package requirements and low memory and 

computing requirements, making it suitable for 

installation on resource constrained flight computers for 

satellites and various classes of unmanned vehicles.  

APS AND THE TCPED PIPELINE 

Our approach manages and orchestrates processing 

across all platforms in the architecture using a 

decentralized database that maintains representations of 

data processing pipelines, essentially a collection of 

relational graphs where the nodes are work items (the 

types of which represent steps in the TCPED process) 

and the vertices represent the dependencies between 

them (which steps need to be completed in order to move 

to the next step). Pipelines may be simple linear 

workflows (collect, process, disseminate), or complex 

(multiple collects of different phenomenologies, fuse via 

a processing step, use processing results to cue another 

type of collection, process that data to identify features, 

disseminate features to specific users). These pipelines 

include the status of each work item (whether it has been 

planned, is in progress, or is complete) as well as 

metadata associated with accomplishing the step 

(begin/end times, platform satisfying the step, and a 

multi-factor figure of merit score representing how well 

the work item will be satisfied). These pipeline 

representations are synchronized across all platforms 

using a gossip protocol that minimizes data exchange on 

the communication links. 

This approach is layered-upon (and agnostic-to) the 

underlying physical layer that supports communication 

between assets. A decentralized planning suite on each 

platform consults the work pipelines to determine 

whether local resources can be utilized to satisfy various 

work items. If possible/feasible, an optimized plan will 

be created and an associated score posted within the 

work item. Other assets in the system may also develop 

plans, but will stand down if their scores are lower. The 

result is a fully decentralized self-selection of which 

steps in the pipeline will be satisfied by which platforms. 

This approach is ideal for highly dynamic systems of 

systems that are handling large numbers of user data 

requests of differing priorities from a large community 

of users. 

DEMONSTRATION SCENARIO 

To illustrate APS in operation, we present a 

demonstration scenario from our MISDEF program, 

initially described in the Section, Motivating Scenario: 

Collaborative Robotic Exploration of Mars. The scenario 

for which we will show results concerns heterogeneous 

swarms of satellites, rovers, and atmospheric vehicles. 

Figure 9. APS and the TCPED pipeline. 
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Figure 7 shows a block diagram of the simulation, which 

includes Gazebo for modelling robot dynamics and the 

42 simulation framework12 for modeling the orbital 

environment. 

Gazebo acts as the simulation time reference since it has 

no native ability to be driven by an external time source. 

Thus, 42 references off Gazebo’s time. We 

accomplished the synchronization capability by 

extending the 42 message set to be capable of receiving 

a run-time message setting the desired “current” time. 

On the ROS side, Gazebo publishes a Time topic that 

was usable to assert the “wall-clock” time as it executed. 

The demo scenario involves four satellites in orbits 

(300km altitude at a variety of inclinations) that result in 

them all converging over a specific ground area at 

roughly the same time. The satellites host Positioning, 

Navigation, and Timing (PNT) transmitters that deliver 

signals toward nadir as they traverse their respective 

ground tracks. A PNT receiver installed on any surface 

or atmospheric asset is able to determine its absolute 

position to a level of fidelity that depends on the number 

of satellite signals being obtained and the relative line of 

sight geometries to the transmitting satellites. When 

multiple satellites are in view of any surface asset, that 

asset is able to have knowledge of a “GPS-like” position 

fix. When not providing PNT service over the 

operational theater, the satellite assets would 

autonomously plan and execute orbit to surface image 

collection. 

Demo Scenario Description 

The Demo brings together a relevant Mars 

heterogeneous asset decentralized planning, 

orchestration, and execution capability leveraging the 

team’s collective capabilities. The robotic team is 

entrusted with an over-arching high-level objective – to 

identify potential areas of interest (AOIs) within a large 

Mars surface region and perform successive stages of 

further inspection/follow-up using assets with varying 

capability, as shown in the left graphic of Figure 13. This 

top-level goal includes specification of a large region 

surrounding the location of the surface team (we used a 

rectangular latitude/longitude bounded region of 

20x20km). This objective could be issued by an Earth-

resident mission operator, or it could alternatively have 

Figure 10. 42 screenshots of the satellites’ converging orbits over the surface assets’ operating area 

Figure 11. MRACC algorithm determining drone sortie to image AOI 1 and return data. 
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been generated autonomously by some mission decision 

logic (out of scope of this demo). 

Orbital Assets 

The satellite assets, being in possession of sensors 

capable of acquiring tiled imagery of the region, receive 

the center points of sub-regions that have been 

decomposed from the full region specification. Each 

satellite’s APS planning software determines access 

opportunities to image each sub-region, as well as a 

goodness score. Those scores are shared between all 

satellites that might perform the collections. The satellite 

with the best score ends up committing to the image 

acquisition activity, while others with lower scores stand 

down. When a satellite performs its collections they 

simulate passing those images through a detection 

algorithm to reveal possible AOIs. Any AOIs discovered 

are transmitted in an event message to the rover acting as 

the surface activity coordinator (base station). 

Atmospheric Vehicles 

When the rover orchestrating surface activity detects, 

using PNT signals, that the satellites have exited the 

surface theater, it accumulates all AOIs into a single 

message and provides it to the MRACC algorithm 

running decentralized on all atmospheric vehicle drones. 

MRACC then orchestrates the dispatch and navigation 

of the drone team to service each AOI in an order based 

on the over-surface path distance and the AOI’s 

associated priority. “Servicing” each AOI means that a 

drone hovers over the location and acquires imagery, 

which it relays to the base station through a “chain” of 

drones (because of range-based communication 

limitations). 

Each of these acquisition/relay activities is conducted by 

the drone team until all AOIs have been serviced, at 

which point the sortie concludes and all drones return 

back to the base station location. 

Rover Operations 

As soon as the data for the last AOI acquisition is 

returned by the final relay configuration, software on the 

base station processes the acquired data and looks to see 

if there are indications that follow-up by a rover might 

be appropriate, e.g., to perform contact surface science. 

In this demo scenario, one AOI is deemed worthy of 

follow up. Decision logic on the base station makes the 

determination that a certain rover should perform the 

follow-up activity. For our demo we simply made that 

determination based upon proximity to the AOI’s center 

– closet rover is favored to make the excursion. That 

instruction (to navigate to the AOI) is published on the 

message bus and acted upon by the chosen rover. Once 

the rover is en-route, the demo concludes. 

Figure 13. Satellites coordinating and executing image collection and processing to reveal AOIs. 

Figure 12. MRACC servicing successive AOIs. 
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Figure 14. Follow-up with contact science by rover. 

Details on Interactions Between Platforms 

Figure 15 depicts key interactions between modules 

involved in the demo. As previously mentioned, all 

activities are directed in decentralized fashion by the 

collaborative team once the initial “Directive” is 

introduced (also called a Mission Data Request, or 

MDR). We used one of the tools accompanying AFRL’s 

Aspire middleware (called the Aspire Studio browser) to 

provide the initial message (indicated by #1 on the 

figure). We created the Mission Objective Manager (or 

MOM) module to field the MDR and decompose it into 

a set of “work items” aligned with steps in the TCPED 

process (the life cycle of delivering a final end data 

product to a user or users resulting from the tasking of 

sensors). The MOM decomposes the top-level MDR into 

multiple collection, processing and dissemination tasks. 

Each of these is pushed into a workflow specification 

held by the Ground Target Manager component 

(leveraged from other programs with AFRL and 

DARPA). At this point, all assets know that the work 

items exist and are in need of being planned. 

 

Figure 15. Module interaction diagram supporting 

Demo capabilities. 

The APS SAPAs on each satellite consider each work 

item and plan the time at which they can occur (if 

possible), scoring each and pushing that score to the 

Common Relevant Operating Picture (CROP) 

decentralized database. As previously mentioned, all 

assets will use those scored to either self-select or stand-

down on each work item. Plan status is also held in the 

CROP, so any module with access to the CROP 

interfaces (which includes the MOM) will be aware of 

the fact that work items have been planned, and aware of 

each work item’s completion. 

Once the MOM recognizes all work items as having been 

completed (satisfactorily or not, for the current satellite 

fly-over) any resulting AOIs detections are bundled and 

delivered to  the module called the Surface Orchestrator, 

which lives on the ROS side of the simulation 

architecture and is presumed to run on a rover designated 

as acting in the role of the base station (most likely 

because it hosts the best surface-orbit communication 

equipment, or perhaps because it has the greatest 

processing/memory resource capacity of any of the 

surface team).  

As previously described, the Surface Orchestrator will 

perform the delivery of messages for AOI exploration by 

the drone team, and will also apply simple (at this point 

in the research) decision logic to select a rover for 

contact follow-up of any AOIs that have the greatest 

likelihood of high science return using certain rover-

hosted instruments.  

Mars Robotic Asset Cooperative Control (MRACC) 

In the demo, Mars Robotic Asset Cooperative Control 

(MRACC) coordinates multiple air and ground assets 

with limited communication range to overcome data 

delivery issues using a multi-hop communication 

scheme. 

The MRACC algorithm is a distributed optimization 

algorithm based upon the Communication-Aware 

Robotic Information Gathering (CARING) framework 

developed by the University of Colorado5. Figure 16 

shows the block diagram that illustrates how MRACC 

operates between communication and platform. Firstly, 

MRACC receives a data package by communication 

status. The package consists of the current ET-DDF 

estimates of quadrotors over multi-hop communication 

from the base station, decision set of other quadrotors, 

and science data. If a quadrotor disconnects to other 

quadrotors, then the quadrotor uses data packages that 

are received recently. Then MRACC predicts future 

positions of quadrotor assets through delivered decisions 

of other quadrotors with higher ranks in a hierarchy and 

one of the quadrotor's discrete decisions. Next, MRACC 

optimization performs using a local utility formulated as 

a sum of all possible values of which element refers a 

specific communication event. The value is computed by 

multiplication between a probability of delivery and 

information gain given the configuration (Figure 17). 
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This demo considered the information gain as a function 

of the relative distance between a selected AOI and 

quadrotor position estimates, where the information gain 

increases as the quadrotor approaches to the AOI. 

Finally, MRACC computes local utilities for variation of 

decisions itself and takes one of them that maximizes the 

local utility. The optimization recurs periodically. 

 

Figure 16. Block diagram of MRACC. MRACC uses 

received data over communication and given discrete 

decision-set to compute local utilities and select 

decisions that maximize local utility. The quadrotor 

moves based on the decision and requests MRACC 

when planning interval time elapses. 

Due to imperfect communication, MRACC works in a 

distributed way, where each quadrotor locally takes 

MRACC to make its decisions. One way to 

cooperate/coordinate distributed robotic systems is to 

receive the decision data from other quadrotors based on 

the rank in a hierarchy. Other quadrotors' decisions are 

transmitted with sensor data and current estimates served 

by base station over communication. Note that the 

decisions may not be delivered when two quadrotors are 

disconnected. In that case, the quadrotor ignores the 

decision even though the disconnected quadrotors have 

a higher rank in a hierarchy.  

 

Figure 17. Black diagram of MRACC local utility 

computation. MRACC considers N cases of multi-

hop communication events of quadrotor assets and a 

base station where each event has its information 

gain. MRACC computes local utility by taking the 

sum of the product between the probability of 

communication configuration and its information 

gain, which results in the expected communication-

aware information gain given predicted quadrotor 

states. 

 

 

Simulation Results 

Figure 18 shows screenshots of visualization obtained 

during a run for the satellite operation component, which 

involves a 12 satellite constellation (3 orbit planes with 

4 satellites equally spaced within the plane). Their 

1000km orbit gives them a wide field of regard, allowing 

the imagers mounted on the agile bus platform to be 

commanded to acquire ground targets from a collection 

of 500, located in 7 regional clusters scattered around the 

Martian surface. 

APS’s decentralized collaborative planning uses plan 

and score sharing to achieve collection of images of the 

best quality within the temporal and lighting constraints 

associated with each order. Proper targeting of the 

ground targets by the 42-hosted satellite models an 

erosion of all targets in the mission request queue within 

the defined mission execution window was verified. 

 

Figure 18. Visualization Views of Scenario 2, Mars-

wide image collection 

The scenario for verification of MRACC was as follows. 

This demo's goal was to relay streamed sensor data back 

to the base station during collects using quadrotor assets. 

The base station would then dispatch the nearest ground 

vehicle to the selected AOI based on the data to perform 

follow-up science missions based on the collected data 

by the quadrotors. Three quadrotors and four ground 

rovers were initially at the base station (Figure 19). The 

quadrotors team started to achieve missions that provide 

hovering data collection of three stationary AOIs, where 

the simulation located the AOIs within 1500 meters of 

the base station. The quadrotors sequentially selected 

one of AOIs (i.e., AOI 1→AOI 2→AOI 3) and figured 

out the optimal positioning with communication 

boundary (<500 meters) probabilistically determined by 

hardware parameters given in Campbell and Ahmed13 

and Ahmed14. The simulation used the multi-hop 

communication, in which multiple data relays from the 

nearest quadrotor that obtained science data of an AOI to 

the base station happened. The communication modeled 

as a packet erasure channel, where the outcome of 
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communication for single-hop was delivered or not 

delivered.  

 

Figure 19. Screenshot of Gazebo with three 

quadrotors and four ground vehicles. 

Figure 20 shows the trajectory using MRACC. This 

demo used three quadrotors (Hectors) and one base 

station (Jackal) at the origin where the mission planner 

sequentially selected one of three AOIs for science 

missions. The relative distance between one Hector to 

another/base station determined the probability of 

delivery over single-hop communication. As referred by 

Campbell and Ahmed13 and Ahmed14, the 

communication successfully happened within a 500-

meter range, and the probability of delivery drastically 

dropped when the distance was between 500 meters and 

600 meters. No communication showed over 600 meters. 

First, three Hectors took off and headed to AOI 1, the 

first selected AOI for sequential science missions. When 

the distance between the Hectors and base station was 

over 500 meters, Hector 1 took communication relay. 

Hector 2 and Hector 3 could collect science data of AOI 

1, in which Hector 2 collected, and Hector 3 took a back-

up position to recover when Hector 2 failed. After taking 

the science mission for AOI 1, all three Hectors moved 

toward AOI 2, where Hector 1 took the relay role to 

deliver data from other Hectors to the base station. 

Because one Hector was not enough to cover the multi-

hop communication range when collecting data of AOI 

2, Hector 2 took the other relay position to deliver data 

obtained by Hector 3 to Hector 1. When Hectors finished 

the search mission for AOI 2, three Hectors moved to 

AOI 3. Hector 2, the nearest asset to AOI 3, collected 

data and Hector 1 relayed the generated data to the base 

station, which Hector 3 acted as a back-up of Hector 2. 

All three Hectors returned to the base station after 

finishing data collection for all three AOIs. 

Note, MRACC did not use any task allocation for data 

collecting/relaying. The MRACC showed the high 

fidelity of communication coverage and the mission 

achievement in a distributed manner. Furthermore, 

MRACC performed in real-time, so no pre-planning 

procedures were required. 

 

Figure 20. MRACC sample result for coordination 

of three rovers with three AOIs. 

 

DEPLOYMENTS OF APS 

In this section, we discuss several domains for which 

APS is relevant. A summary of resources for which APS 

components has been developed can be found in Table 

1. We note that this list is not exhaustive and that 

developing additional components can be simple due to 

the flexible and powerful architecture underlying APS. 

APS on Different Platforms 

The integration of APS onto a host platform is designed 

to be simple and flexible. Though APS natively uses the 

lightweight Aspire middleware messaging framework 

for its own inter-modular data interactions, it also 

provides flexible translation to and from external data 

interfaces through a Vehicle Interface Translator 

component that supports customized plugins to meet 

mission-specific formats and protocols. As APS plans 

are generated and changed, an action interface may be 

used by the vehicle to drive a vehicle execution timeliner 

component to carry out the results of planning. These 

actions are also broken down in several actionable levels 

for use by the vehicle based on controller capabilities. 

For example, a maneuverable spacecraft may need to 

perform a point/hold action to stare a sensor boresight at 

a point on Earth’s surface. This point/hold action is also 

broken down into more digestible actions as a set of slew 

and spin commanding. The customer may then decide 

which of these action abstractions works best to carry out 

the actuation based on the onboard attitude control 

system and its level of commanding and behaviors. 
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Orbit Logic’s core ground-based software products 

(Collection Planning and Analysis Workstation 

(CPAW), Order Logic, and SpyMeSat) have been 

integrated with APS to provide more powerful solutions. 

This integration allows for a mission to blend the 

computational power of the ground-based solutions with 

the low Size, Weight, and Power (SWaP) and urgent 

tasking capabilities of APS. For example, integration 

with Orbit Logic CPAW may be used by an operator to 

orchestrate, tweak, and improve a constellation 

collection plan and then upload that plan for execution 

by an APS-enabled constellation. Individual 

constellation assets will execute the CPAW plan, but will 

subsequently field urgent (high priority) requests and 

attempt to insert them into their execution schedules. 

Satellite Deployments of APS 

APS was originally developed for AFRL for satellite 

operational resiliency, self-protection and the 

enhancement of local Space Situational Awareness 

(SSA). The use cases addressed include monitoring the 

local space environment around the satellite to maintain 

state awareness of known proximal objects, to detect and 

characterize new objects, and potentially to react in real-

time to these events. An Intelligent Search SAPA 

determines optimized search patterns based on user-

specified watch volumes and volumes generated by 

fusion algorithms associated with probabilistic regions 

of object reachable orbital states. The MAPA generates 

a de-conflicted execution schedule for the use of local 

satellite resources (SSA camera, satellite attitude 

control, communications, and thrusters) to achieve 

competing observation and search objectives without 

violating satellite/sensor keep-out constraints or over-

utilizing spacecraft resources 

For DARPA’s Blackjack program, APS was used to 

perform both satellite constellation- and asset-level 

planning, employing a fully-decentralized approach 

involving only the minimal exchange of assets states and 

plan FOM scores and status. In scaled-up testing against 

mission simulations, APS’s receding timeline approach 

proved capable of effectively developing coordinated 

plans for the collection of thousands of user-specified 

ground targets by multiple sensor phenomenology types 

(EO, IR, RF) hosted on hundreds of satellites.  

APS is flying on a Loft Orbital hosted satellite 

demonstrator mission for the DARPA Blackjack 

program in June of 2021. The mission (focused on 

maritime domain awareness) will demonstrate the 

collaborative planning elements of the modular 

Blackjack system design by participating as a live 

element in a ground-based Live-Virtual-Constructive 

(LVC) simulation.  Part of that experiment’s purpose is 

to demonstrate on-orbit reconfiguration/update of APS 

software. 

APS will also fly on a university operated satellite in 

2022. This partnership will mature APS and provide a 

platform for the university to test new research and 

capabilities in a real-world setting. 

Unmanned Vehicle Swarm Deployments of APS 

In addition to the MISDEF effort partially described in 

this paper, Orbit Logic is teamed with the University of 

Colorado Boulder on the Intelligent Navigation, 

Planning, and Autonomy for Swarm Systems (IN-PASS) 

Table 1. Multi-Domain Resources Supported by APS 

Resource Domain Description 

Attitude Control Satellite Operations Supports operations to change the orientation of the satellite to support 

different operations; e.g., slewing the satellite body to image with a fixed 

sensor 

Satellite Maneuvering Satellite Operations Supports operations to change satellite orbit, e.g., to avoid a potential 
collision 

Optical/RF/SAR/HS Imagers Satellite Operations, 

Robotic Exploration 

Supports operations to collect data with different imaging sensors; this 

includes slewing, recorder management, etc. 

Wheeled Locomotion Robotic Exploration Supports navigation of wheeled vehicles such as rovers 

Rotorcraft Locomotion Robotic Exploration Supports navigation of rotorcraft vehicles such as UAVs 

Electrical Power All Supports electrical power management and modeling for activities executed 
on any platform; configurable modeling and estimation considers vehicle 

position and orientation, solar panels, and power draws incurred through 

vehicle actions through the rolling time horizon. 

Data Recorder All Supports data capacity estimation and management on board based on data 

generated by science activity collection and deletion behavior after data has 

been successfully downlinked 

Communication and Contact 
Resources 

All Supports communication device modeling, estimation, and deconfliction 
used for contact scheduling between the ownship vehicle and any other 

multi-domain asset. Communication modeling models the radio and antenna 
capabilities to optimize contact activities between constellation assets 
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solution for NASA to address the coordination of 

autonomous robotic exploration activity on the Moon. 

IN-PASS uses multi-objective control policies to 

tradeoff rover navigation performance and resource use. 

It is also investigating the most effective means of 

interaction between humans and the swarm elements, 

including specification of goals/objectives, feedback on 

the viability/status of the human’s requests, and the 

delivery of the resulting science product back to the 

human. 

On the MinAu program with the US Navy, Orbit Logic 

is partnered with the University of Colorado Boulder and 

the University of California San Diego, and NIWC-PAC. 

APS is integrated with (and validated against) NIWC’s 

hardware systems, which uses SeaRover UUVs - 

tetherless versions of the BlueROV2 platform that host a 

range of mission-relevant sensors and employ a USBL 

system to perform locatization and facilitate data 

exchange between assets. The missions investigated to 

date have included collaborative bottom mapping and 

water volume defense using collaborative 

search/detect/track behaviors. 

6. Conclusions  

Orbit Logic’s Autonomous Planning System (APS) is 

onboard software that enables collaborative autonomy 

among multiple, heterogeneous assets. At the asset-level, 

it enables independent operation so that spacecraft can 

operate independently of a ground station, reducing 

latency between on-orbit events and responses and 

eliminating the ground station as a single point-of-

failure. At the swarm- or constellation-level, it enables 

heterogeneous groups of assets to coordinate their 

actions in order to better perform their missions; e.g., one 

satellite may cue another on a collection it cannot 

perform due to orbital geometry or sensor payload. APS 

is flexible; it can and has been expanded to support novel 

capabilities and it can and has been deployed on diverse 

hosting platforms.  

APS has been developed to support satellite 

constellations in a wide variety of operational concepts. 

In addition, it is being developed to coordinate robotic 

exploration missions with NASA, and maritime missions 

with the US Navy. 
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