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ABSTRACT

New generations of spacecrafts are required to perform tasks with an increased level of autonomy. Space
exploration, rendezvous services, space robotics, etc. are all growing fields in Space that require more sensors
and more computational power to perform these missions. Furthermore, new sensors in the market produce
better quality data at higher rates while new processors can increase substantially the computational power.
Therefore, near-future spacecrafts will be equipped with large number of sensors that will produce data at
rates that has not been seen before in space, while at the same time, data processing power will be significantly
increased. In regards to guidance navigation and control applications, vision-based navigation has become
increasingly important in a variety of space applications for enhancing autonomy and dependability. Future
missions such as Active Debris Removal will rely on novel high-performance avionics to support image
processing and Artificial Intelligence algorithms with large workloads. Even more complex is the case of
vision-based precision landing, that high rate processing is a must and can be the tipping point of a successful
mission. This new scenario of advanced Space applications and increase in data amount and processing
power, has brought new challenges with it: low determinism, excessive power needs, data losses and large
response latency. In this article, a novel approach to on-board artificial intelligence (AI) is presented that is
based on state-of-the-art algorithmic trading software techniques, which is a field that underwent a similar
challenge, although is a different scale, in the early 2010. The approach presented here optimizes the limited
available computing resources, and makes Al applications much more reliable, therefore somewhat reshaping
the paradigm of embedded software engineering. A benchmarks is presented here for a pose estimation of the
asteroid 67P /Churyumov—Gerasimenko using Al base of images from the Rosetta mission. In this paper, we
show that the data processing rate and power saving of the applications increase substantially with respect
to standard AT solutions.
Introduction cumbersome, error-prone, sub-optimal and usually
delay incurring.* Although the work presented here
is general to all embedded systems, the specific fields
where tests were performed are Al onboard and a
real space application. Hence, the specific discussion
about the state of the art in both fields is included
in this introduction.

It is common ground that embedded systems
have evolved hugely in the last decade.! New genera-
tions of autonomous embedded systems are required
to perform more and faster on-board data process-
ing. Sensors, embedded processors, and hardware
in general have hugely evolved in the last decade,

. . AI S t
equipping embedded systems with large number of pace systems

sensors that will produce data at rates that has not
been seen before while simultaneously having com-
puting power capable of large data processing,?.?
However, embedded software engineering has remain
virtually unchanged for the last two decades, making

the development of advanced application extremely

Space applications requiring on-board signal pro-
cessing at high rate is a growing field. It is particu-
larly important the use of Al for reducing signal-to-
noise-ratio (SNR). Typical applications are Internet
of Things (IoT), traffic control, telecomms applica-
tion, etc.
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Another field where Al is becoming critical is
Earth Observation. There is a growing number of
Synthetic Aperture Radar (SAR) sensors in satel-
lites due to the increasing demand for Earth appli-
cations for SAR data. The amount of data produced
by a SAR sensor prevents real-time data transfer to
the ground due to the limitations of downlink speeds,
thus requiring large on-board data storage. Several
high-level solutions have been proposed to improve
this:

e Use specialised on-board compression algo-
rithms.

e Use on-board Artificial Intelligence (AI) to fil-
ter irrelevant or low quality data and send only
a subset of data.

Space autonomous navigation systems

In a different field, vision based navigation, there
is also a challenge of data processing combined
with AI algorithms. Omne example is rendezvous
with uncooperative objects in space, e.g., debris re-
moval,®,5.7 Another example of this is autonomous
pinpoint planetary landing, where the number of
sensors and the complexity of the Guidance Naviga-
tion and Control (GNC) algorithms make this disci-
pline still one of the biggest challenges in space,?,?.10
One common element to these two use cases, is a well
known fact in control engineering: for optimal con-
trol algorithms, the higher the rate of sensor data,
the better is the performance of the algorithm.'!

Inference in Artificial Intelligence

There are several components to artificial intel-
ligence (1). First, there is the training and design
of the model. This activity is usually carried out by
data scientists for a specific field of interest. Once
the model is designed and trained, the model is de-
ployed to the target computer for real-time execu-
tion. This is what is called inference. Inference con-
sists of two parts, the trained model and the AI in-
ference engine to execute the model. The focus of
this research has been solely on the inference engine
software algorithms.

Trends in Artificial Intelligence inference ac-
celeration

The most common operation in Al inference by
far is matrix multiplications. These operations are
constantly repeated for each input data to the Al

model. In recent years, there has been a substan-
tial development in this area with both industry
and academia progressing substantially in this field.
While the current trend is to focus on hardware ac-
celeration like Graphic Processing Units (GPU)!2
and Field-programmable gate array (FGPA),'3 these
techniques are currently not broadly available to the
Space industry due to radiation issues and excessive
energy consumption for the former, and program-
ming costs for the latter. The use of CPU for infer-
ence, however, has been also undergoing an impor-
tant revolution when the CPU core has a Floating
processing unit (FPU) connected to it.1* CPUs are
widely used in Space due to large Space heritage and
also ease of programming and use. Several Al infer-
ences engines are available for CPU+FPU setups.
The work presented here will show the results of ex-
tensive research in building a new Al inference that
both reduces power consumption and also increases
data throughput.

Parallel processing applied to Artificial Intel-
ligence inference

Within the field of inference engines for
CPU+FPU, there has been an over-focus on ma-
trix multiplication parallelisation,'®.'6 This process
consists in splitting the operations required for a ma-
trix multiplication into smaller to be executed by
several threads in parallel. Figure 2 shows an ex-
ample of this type of process, where rows from the
left-hand matrix and columns from the right-hand
matrix are individual operations to be executed by
different threads.

The theoretical advantage of this approach is its
minimal latency.'® However, there is an emerging al-
ternative approach to parallelisation, which is based
in the concept of pipeline.!” This approach works
in a similar manner to an assembly line, where each
part of this line corresponds to a complete matrix
multiplication. This approach is particularly well
suited for AI deep neural networks (DNN). Figure
3 shows this approach. The main advantage make
pipeline a reliable approach to data processing in re-
sources constraint enviroment, like Space on-board
computers, is its higher throughput: pipelining can
enable a substantial increase in throughput with re-
spect to traditional parallelisation.®

Pipelineing of a matrix multiplication se-
quence

Combining the concept of pipelining above with
lock-free algorithms,'® the authors have developed

Pablo Ghiglino

35t" Annual Small Satellite Conference



Al Model

Data " Simulation Deployment
! Design and ‘ and
preparation and Testing

Training Inference
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Figure 2: Parallel matrix multiplication
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Figure 3: Pipelining vs parallelisation
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a new pipelining approach that can process data at
2 to 8 times increased data rate, while at the same
time reduce power consumption up to 75%. This
new pipelining algorithm consists of thee main ele-
ments:

e Use of lock-free eventloops to connect the ma-
trix multiplications operations.

e Use of FPU vectorisation to accelerate the ma-
trix multiplications

e One eventloop per thread, meaning that each
matrix multiplication happens in one thread.

This novel approach can be seen in figure 4.

Matriz multiplication benchmark

In order to validate the previous approach, a
basic benchmark was performed with the following
setup:

e A sequence of n matrix multiplications, With
n = [10 — 60)

e An increase rate of data from 2Hz to 100Hz.

e Each matrix is a squared matrix of 100 side of
float numbers.

e The proposed solution was compared with
OpenMP approach as suggested in figure 3

The test were perform in an AMD64 4-core com-
puter with the results presented in images 5 - 12. In
conclusion, these results show that the new proposed
pipelining approach is extremely efficient, providing
up to 4 times increase in data processing, with up
to 75% reduction in CPU usage.

AT inference pipelining

In the section we present the main aspect of the
author novelty, which is the application of the above
presented lock-free pipelining. This is achieved by
applying the pipelining approach where each layer
is considered an individual operation, as shown in
figure 13

There results of this pipelining can be seen in the
next section.

Experimental Setup

The experimental setup consists of testing of
an Al model for pose estimation of the asteroid
67P /Churyumov—Gerasimenko using Al base of im-
ages from the Rosetta mission. The benchmark

was done comparing the propose Al inference with
respect to the two main market leaders Tensor-
FlowLite and OpenCV-CNN. The test was done in
the two different computers with the following pa-
rameters:

e CPUs: ARMG64 (2-cores, x86_64 (4-cores)

e Data rate: 5 FPS for ARM64, 10FPS for

x86-64

e Performance criteria:
CPU usage and RAM

throughput, latency,

The results are shown in the tables 1 and 2.

Results analysis

Table 1: AI Benchmarks for x86_64

Criteria Pipeline AI TFL OCV-CNN
Throughput 10 4.8 3.6
Latency 8ms 11ms 25ms
CPU 24 51 32
RAM 450Mb 425Mb 375Mb
Table 2: AI Benchmarks for ARM64
Criteria Pipeline AI TFL OCV-CNN
Throughput 5 2.6 2.2
Latency 15ms 18ms 32ms
CPU 48 76 56
RAM 450Mb 415Mb 354Mb

This results show ground breaking performance
by duplicating the data rate and reducing power con-
sumption by 50%. All these is achieved with keeping
RAM and latency not only within acceptable limits,
but also improving latency.

These results varied from model to model, but
with an overall improvement when using the pipelin-
ing AT algorithm.

Conclusions

In this paper, we have presented the state of
the AT techniques for on-board computers for Space-
crafts. We have presented the two main approaches
to data processing acceleration, i.e., FPGA/GPU
and CPUs. Within the CPU approach, we have cov-
ered the different approaches to data parallelisation
currently in the market, including the here presented
pipelining approach. This paper has shown that
lock-free pipelining is extremely efficient for matrix
multiplications and specifically to Al applications.
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Figure 4: Novel proposed pipelining approach

This techniques can both substantially increase data
throughput, reduce power consumption, while at the
same time keeping the latency, and RAM completely
under control and event with improvement with re-
spect of the industry standard tools.

Lock-free pipelining advantages are particularly
beneficial to Space applications, in particular for
planetary landing, where the rate of data is quite
high and required very high responsiveness. Sim-
ilarly, for Earth Observation application, lock-free
pipelining is very well suited for the current large
volume of data requirements.

Future Work

In terms of future work, the main area of re-
search are two. First, is the expansion of the current
pipelining to support not only sequential DNNs but
also graph DNNs that require a different configura-
tion and approach to pipelining. Preliminary tests
show extremely promising results with even higher
performance gains.

Secondly, the validation of lock-free pipelining in
real-time operating systems is also an area of large
research. While a substantial amount of research has
to be carried out still, preliminary results of matrix
multiplication are quite promising.
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Figure 5: CPU for 10 multiplication steps.
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Figure 7: CPU for 20 multiplication steps.
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Figure 9: CPU for 40 multiplication steps.
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Figure 10: Data throughput for 40 steps.
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