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ABSTRACT 

The operational complexity of managing the Spire constellation continually increases with the routine introduction 

of additional satellites and new capabilities. The heterogeneous nature of the satellites, payloads, and ground station 

configurations compounds the difficulty of strategic planning and operational scheduling. In order to efficiently 

operate this diverse network of assets, Spire developed a suite of bespoke constellation modeling and management 

tools that are designed to support existing demand and to scale for future needs. The modeling tools enable Spire to 

accurately simulate and optimize the performance of various constellation configurations prior to deployment. The 

operational tools required to harness the full potential of the constellation incorporate complex techniques in order to 

schedule payload operations, maximize data collection, and monitor performance. These tools are developed in a 

modular and scalable fashion to ensure that new capabilities, such as the introduction of inter-satellite links, can be 

readily integrated into the planning system. In addition to these internal tools, Spire also offers a suite of 

standardized APIs and user services through which both internal and external customers can seamlessly integrate 

payloads and software with the Spire constellation, enabling secure access to development and simulation 

environments, scheduling, and data pipeline tools. The constellation modeling, performance prediction, and 

operational management tools developed at Spire are essential to ensure efficient and optimized production in an 

increasingly complex system.

INTRODUCTION 

As Spire’s smallsat constellation grows and more 

capabilities are added to the satellites, operationally 

managing the system becomes an increasingly complex 

task. At the current scale of the constellation, satellites 

can no longer be treated individually, but must be 

planned for as a strongly coupled system. Tasking 

space and ground assets, validating performance, and 

managing limited resources requires implementation at 

the systems level. With hundreds of satellites, dozens of 

ground stations, multiple payloads per satellite, and the 

use of inter-satellite links (ISLs), the scale of systems-

level planning is immense. 

The scope of the problem is compounded by the 

heterogeneous nature of the assets involved. The 

constellation consists of various generations of satellites 

with differing capabilities and constraints, while Spire’s 

ground station network employs mainly owned 

capacity, but can also use leased capacity across 

multiple providers with varying performance 

characteristics. Current satellites are in multiple 

rideshare-based orbits, which causes changes in the data 

collection and communication availability on a daily 

basis. To manage a constellation of over 110 satellites 

and approximately 30 ground stations, Spire has 

designed and built a suite of constellation modeling and 

management tools.  

The constellation modeling tool assesses the 

performance of potential future constellation 

configurations. This tool models satellite orbits, 

evaluates ground station placement, computes visibility 

between all assets, schedules communications, and 

determines figures of merit for the Earth observation 

data collected by the constellation. This information is 

synthesized to determine the return on investment for 

launches, ground station deployments, hardware and 

software features, and other critical concepts of 

operations. 

Spire’s operational planning tool, ‘the Optimizer,’ 

manages space and ground assets tasking in such a way 

as to maximize the business value of the fleet given a 

variety of operational considerations using a mixed-

integer programming (MIP) model. Operational 

performance of payload collections and radio contacts 

are used to calculate value, and constraints in the model 

include limited resources on the satellites, such as 

power, available payloads, etc. Communication 

availability and contention between satellites and 

ground stations is also a key input to the tool. 

mailto:jeroen@spire.com
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To close the feedback loop, Spire monitors a variety of 

metrics that measure constellation performance and 

compares them with the modeled performance. These 

metrics monitor a variety of critical components of the 

system. Deviations from nominal values trigger 

automated alerts that are sent out to relevant working 

groups. Spire has also developed the ‘Spire Operations 

Center’ application which provides detailed monitoring 

of each asset in the constellation. Any identified 

discrepancies are then analyzed and corrected. 

With the use of these tools and standardized 

constellation management system, Spire serves a large 

number of internal and external customers. Customers 

are provided an operational performance prediction 

before launch. During operations, customers may have 

Spire operate their assets as a service or use the 

operational planning and tasking tools themselves. 

Customers can also rely on quality performance 

through Spire's continuous monitoring of operations. 

CONSTELLATION MODELING AND 

PERFORMANCE PREDICTION 

Spire makes extensive use of constellation modeling in 

order to accurately predict and assess the performance 

characteristics of different constellation designs or 

configurations. At Spire, a constellation refers not only 

to the satellites and their orbits, but also to the ground 

station network and concept of operations. Modeling-

derived performance data is a key input into the 

constellation design decision-making process (e.g., 

orbit selection, location of the ground stations, antenna 

definition parameters, etc.) and provides insights into 

the various trade-offs that may exist. This data-driven 

approach helps Spire ensure that the constellation will 

be able to meet the targets imposed by an increasingly 

diverse set of customers. 

Modeling is used to translate business requirements into 

engineering requirements. Every customer imposes a 

unique set of requirements based on the characteristics 

of the data that must be produced by the Spire 

constellation. The requirements for the data collected 

from the sensors (the payloads) are usually quantified 

using the following metrics: latency, revisit, probability 

of detection, refresh, and timeliness. 

Latency is the time delay from collecting data on a 

satellite to that data being available to a customer 

through one of the Spire application programming 

interfaces (APIs).  

Revisit is the time between two consecutive 

observations by the constellation of a specific point on 

Earth. 

Probability of Detection is how likely a satellite is to 

successfully collect the desired data while observing a 

specific point on Earth.  

Refresh is the combination of revisit and probability of 

detection (i.e., the time between successful observations 

of a given target).  

Timeliness is the combination of refresh and latency 

(i.e., how old is the latest message from a given target 

in the API). A boundary value for the maximum 

timeliness is the maximum refresh plus the maximum 

latency. 

These concepts are further illustrated in Figure 1. An 

example of a customer requirement is the International 

Civil Aviation Organization (ICAO) 4D/15 requirement 

for air traffic monitoring. To comply with this standard, 

the operator must obtain four-dimensional aircraft 

position information (latitude, longitude, altitude, and 

time) at 15-minute intervals or less, which is a 

timeliness requirement that can be translated into 

latency and refresh requirements. 

 

Figure 1: Metrics for measuring on-orbit data 

collection. 

Inputs and Constraints 

Details about the existing and future satellites and 

ground stations are required in order to define a 

candidate constellation. 

For the satellites it is necessary to define the two-line 

element set (TLE), license country, hardware version, 

payloads, communications configurations, and 

scheduling constraints. The communications 

configurations define the type (i.e., ISL: satellite to 

satellite or GS: satellite to ground station), geometric 

https://lucid.app/lucidchart/invitations/accept/inv_4fa71104-f2c2-4001-a574-7e62c79adde4
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requirements, regulatory constraints, and transmission 

rates. 

Payload operations determine the quantity and quality 

of data collected by a satellite. Spire’s satellites are 

multi-sensor and can collect Automatic Identification 

System (AIS) messages from maritime vessels, 

Automatic Dependent Surveillance-Broadcast (ADS-B) 

messages from aircraft, and a range of Global 

Navigation Satellite System (GNSS) measurements, 

including GNSS-Radio Occultation (GNSS-RO) and 

Reflectometry (GNSS-R). Each payload definition 

includes a footprint shape, a fixed or variable data 

collection rate (bits collected per unit of time), the 

priority of the data collected by the payload, the 

probability of detection, and the scheduling constraints 

(e.g., duty cycle, maximum and minimum operational 

times, conflicting payloads, etc.). 

For the ground stations, the location needs to be 

specified along with the communication configuration 

and scheduling constraints. 

Customers must provide objectives for the constellation 

in order to evaluate the performance variances between 

different proposed configurations. These goals contain 

the areas of interest, the revisit rates, and the latency 

requirements for each of the data products generated 

from the payload data. The model also receives a set of 

parameters containing data used by the contact 

efficiency model and by the latency simulator modules, 

which are explained in the following section. The final 

input parameters are the start and end times of the 

simulations. 

Model Architecture  

The constellation model architecture can be divided 

into two parts, one for the revisit and refresh and one 

for the latency, as described in Figure 2. Inputs are 

represented in yellow, modules in purple, and final 

outputs in green. The modules that fall within the 

Optimizer are grouped in the red box. 

 

 

Figure 2: Constellation model architecture. 

https://lucid.app/documents/edit/be6454ff-e44e-4a96-b5ba-ec2056d89f71/0?callback=close&name=docs&callback_type=back&v=871&s=569
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For revisit and refresh calculations, the user defines an 

Earth grid with the points at which the revisit rate will 

be calculated. The definition of this grid is dependent 

on the customer’s use case and their area of interest. 

Then, the code makes an API call to the Optimizer to 

retrieve the payload schedule. The Optimizer is Spire’s 

operational planning tool, and it is used both for 

operations and for simulation purposes. The next step in 

the process is the revisit simulator. For a given payload, 

with the payload schedule and the inputs (e.g., TLEs of 

the satellites, footprint shape of the payload, etc.), the 

revisit simulator generates the orbital path for each 

satellite and calculates the frequency of data collection 

for each point in the defined Earth grid. This collection 

frequency is used to calculate a variety of revisit 

statistics for the constellation (e.g., revisit heatmaps, 

revisit statistics per latitude, etc.). If desired, there is 

also an option to provide a probability of detection 

model to translate the revisit statistics into refresh 

statistics. 

For latency calculations, the code makes two calls to 

the Optimizer, followed by one to the ISL scheduler. 

The first call to the Optimizer generates the payload 

schedule while the second call schedules the ground 

station (GS) contacts. For GS contact scheduling, the 

Optimizer first generates the transits (visibility period 

between a satellite and a ground station given the 

geometric and regulatory constraints) by processing the 

inputs and then schedules the best contacts among 

them. This will be presented in further detail in a later 

section of this paper. 

Once the payload and GS contact schedules are 

complete, the ISL scheduler uses the geometric and 

regulatory constraints to generate ISL transits for the 

satellites. ISL contacts are then scheduled using the 

approach described in the Journal of Aerospace 

Information Systems.1 The scheduled payload and 

contact operations are then fed into the latency 

simulator, which models how data travels through the 

constellation. The duration of the simulation is divided 

into time steps, and the simulation of each time step 

consists of (1) calculating the data generated by the 

payloads for each satellite and (2) modeling how that 

data is transmitted through the constellation.  

To simulate how data is transmitted through the 

constellation, the latency simulator uses a contact 

efficiency model, which considers that anomalies can 

and will occur during a contact and that some contact 

time will not be useful for data transfer. This non-

transfer time includes pointing of the ground station, 

contact acquisition, and communication of the current 

health of the satellite and subsystems. The size of the 

individual data packages, the data routing strategy, and 

the data package build time (i.e., the time needed for 

the satellite to collect and then bundle the data into files 

for transfer) can be modified in the input parameters for 

the simulator. The simulation of data transmission 

through the network is then used to compute several 

metrics (e.g., latency statistics and heatmaps, data 

volumes, etc.) for the constellation. 

Use Case Example 

A case with four ISL satellites is presented in this 

section to illustrate the outputs of the constellation 

model. The four satellites are located in different sun-

synchronous orbit (SSO) planes with a right ascension 

of the ascending node (RAAN) increment of 30 degrees 

and with the same true anomaly. Their orbits are 

presented in Figure 3. Note that nine ground stations are 

used for this example with two payloads per satellite: 

PAYLOAD-1 and PAYLOAD-2. The payload windows 

in this example cannot be scheduled at the same time. 

Figures 4 and 5 present the payload schedule created by 

the Optimizer. The example uses a minimum 

operational time of 15 minutes and a duty cycle of 30% 

for PAYLOAD-1 and a maximum operational time of 

30 minutes and no limits in the duty cycle for 

PAYLOAD-2. 

 

Figure 3: Orbits of the four satellites used for the 

example. 
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Figure 4: PAYLOAD-1 schedule.  

 

Figure 5: PAYLOAD-2 schedule.  

 

Figure 6 illustrates the GS/ISL contact schedule created 

by the Optimizer for the example constellation.  The GS 

contacts are represented in green, while the dark red 

lines represent a transmission ISL contact, and the rose 

lines represent a reception ISL contact. 

 

Figure 6: GS/ISL contact schedule.  

When the simulation ends, the model provides the 

memory state (i.e., the amount of data of each data tier 

that the satellite stores) for all the satellites at each 

moment of the simulation. For this example, 

PAYLOAD-1 corresponds to tier 0, which has a higher 

priority for data downloading than PAYLOAD-2 (tier 

1). The following Figure 7 shows the memory state of 

one of the satellites from the modeled constellation; 

data is generated at a different rate for each tier and is 

transmitted through green GS contacts and dark red ISL 

contacts and is received through rose ISL contacts.

  

 

Figure 7: Memory state for a single satellite from the example.
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The latency percentile curves shown in Figure 8 allow 

analysis of latency distribution at a glance. The latency 

percentile curves show in the y-axis the percentage of 

data that has a latency below the x-axis value, and each 

payload has an associated curve. In this example, 

PAYLOAD-1 has better latency because its data 

priority level is higher than that of PAYLOAD-2. 

 

Figure 8: Latency percentile curves. 

The constellation model is also able to provide the 

revisit and refresh metrics for the constellation. Figure 

9 presents a revisit heatmap for PAYLOAD-2, and 

Figure 10 presents the revisit statistics per latitude for 

the same payload. A circular footprint with a 2000km 

radius is used for this simulation. 

 

Figure 9: Average revisit heatmap. 

 

Figure 10: Revisit statistics by latitude. 

The constellation model has been validated using real 

revisit and latency data from the current Spire 

constellation, and the average relative error between the 

predictions and reality is less than 10%. 

CONSTELLATION OPERATIONAL PLANNING 

(THE OPTIMIZER) 

The system that coordinates Spire constellation 

resources, known as the Optimizer, is responsible for 

maximizing the efficiency of the constellation and the 

value it produces through intelligent scheduling. The 

system consists of a set of automated schedulers that 

are capable of determining when constellation assets 

should perform operations such as GS contacts, ISL 

contacts, payload collections, and orbital maneuvers. 

The schedulers operate on a batch processing model, 

allowing users to submit scheduling jobs to the system 

for processing and retrieve the results through the 

‘Optimizer Service API’ upon completion. The system 

is separated into two queues: one for production 

scheduling and another for simulations. Production jobs 

generate the true constellation schedule and the Service 

API gives these jobs priority access to the solvers. 

Simulations, such as those performed in support of 

mission design, are run during any unused time which 

in practice is abundant. All jobs run asynchronously 

and their results are stored in a database for future 

analysis. 

Optimally scheduling constellation operations is (at a 

minimum) an NP-Hard problem. The schedulers 

operate by encoding input problems as MIP problems 

which are solved using IBM’s CPLEX solver. CPLEX 
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is fast and robust, meaning the models (which include 

hundreds of thousands to millions of variables) are 

solved to very tight optimality bounds, to within a few 

percentage points of the global optimal solution, in 

minutes. Wrapping the CPLEX core, the solvers are 

written using the Rust programming language and 

utilize FFI-bindings to the CPLEX C API for low-

overhead interoperability. 

Payload Scheduling  

The ‘Spire Payload Scheduler’ is an advanced satellite 

constellation scheduling system which sees active 

production use. Within Spire, it is known as ‘SPORE’ 

(Scheduling Payloads for Objects Revolving Earth). 

The system performs multiple functions such as 

payload deconfliction, area-of-interest targeting, and 

general power management (through flexible duty ratio 

constraints) in order to schedule optimized data 

collection for Spire’s entire constellation of satellites. 

SPORE is fully automated and incorporates information 

on each individual satellite’s power, coverage, and 

conflicting hardware subsystems to balance collections 

across time. This works not only for a single satellite, 

but also across the Spire fleet as a whole, ensuring that 

redundant collections are minimized while novel 

collections and revisit targets are achieved. 

Figure 11 shows payload operations when the 

constellation is instructed to deprioritize data collection 

over the Atlantic Ocean. The satellites instead use this 

flight time to preserve power in order to provide better 

coverage over the rest of the globe. Automatic and 

coordinated scheduling makes prioritization like this 

possible with declarative, user-provided configurations. 

 

Figure 11: Payload schedules designed to avoid 

collections over the Atlantic Ocean. 

Contact Scheduling  

The results of the payload scheduling optimization are 

then fed into a pipeline which generates the set of 

candidate ground stations accesses, as illustrated in 

Figure 12. The Spire contact scheduler selects the 

optimal set of accesses to ensure that all payload data is 

downlinked quickly and efficiently. The system is 

capable of scheduling the entire constellation in less 

than five minutes, is orbit-aware, and accounts for 

constraints such as RF licensing, compatible frequency 

bands, data transfer directionality, and link protocol 

when determining viable accesses.  

 

Figure 12: Constellation model format 

incorporating the payload scheduler (SPORE) and 

the contact scheduler. 

Incorporating the payload schedule into the contact 

scheduling process allows Spire to allocate contact time 

to assets in the fleet based on the volume and value of 

the data collected. The added context provided by the 

payload schedule enables the scheduler to optimize for 

business objectives such as decreased latency between 

data collection and data downlink. Satellites generating 

data which is highly sensitive to latency may be given a 

large number of small contacts by the contact solver, 

while high-value but latency-insensitive data is 

scheduled for transfer during less contentious accesses 

to ground stations. 

Given the heterogeneous nature of the Spire 

constellation, it is important to have an interface 

mechanism for the schedulers that is flexible enough to 

accommodate a wide range of possible constellation 

architectures. The Spire schedulers are designed to be 

‘intent driven,’ operating on declaratively defined 

models that describe the ‘shape’ of the constellation 

(i.e., its ground stations, satellites, and payloads) and 

the performance goals. The models do not receive input 

parameters on how to achieve these goals; the 

schedulers are responsible for mechanizing the users’ 

goals and finding optimal plans of action to satisfy 

them. 
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Model Design 

All schedulers work with a single model format, known 

as the ‘Unified Model,’ that encapsulates all of the 

information required to represent the constellation at a 

given point in time. Schedulers return results in this 

format as well, describing the constellation state after 

an optimal plan of action has been calculated, as 

illustrated in Figure 13. By standardizing the design of 

the input and output formats across Spire’s solvers, 

users are empowered to compose the solvers to best 

meet their scheduling needs. This standard format also 

enables interesting workflows that would not otherwise 

be possible, including very long-duration simulations 

which cannot be solved monolithically, but can be 

handled as a sequence of smaller problems. 

 

Figure 13: The Unified Model leverages a 

standardized input and output format. 

What, when, and how assets can communicate is a key 

operational concern for the constellation. The Unified 

Model is able to represent these constraints using the 

communications configuration model, which is a 

standardized format for describing possible links 

between assets, including licensing and performance 

data. These channels allow Spire to model the 

communications of each asset at a very fine granularity. 

Configurations include not only the frequencies which 

are enabled for each asset and the directions in which 

they transfer data, but also regulatory and geometric 

constraints that must be taken into consideration in 

order to perform compliant links between assets. 

Beyond simple static licensing rules, the 

communications configurations are also able to capture 

more advanced constraints such as minimum 

separations between orbiting objects, which enables 

Spire to respond to coordination requirements from 

third parties. 

The schedule for the production constellation is 

populated by a set of periodically executing tasks. Each 

task will populate the schedule for one constellation 

operation type, such as ground station contacts or 

payload activity. As seen in Figure 14, tasks run as a 

pipeline that integrates with the required Spire systems 

and performs four major functions: extracting 

constellation data into a scheduling problem, solving 

the problem via the Service API, publishing the result, 

and, in the case of failure, retrieving and publishing a 

fallback solution. 

 

Figure 14: Task flow for the scheduling pipeline. 

Each of these stages is able to run independently of the 

others, though they are run as a single sequence of 

operations by default. Scheduling is entirely automatic 

with the pipeline on AWS Fargate tasks triggered using 

periodic CloudWatch events. The scheduling pipeline 

also generates failover solutions with the publication 

step disabled and an offset planning period. Having a 

precomputed solution available provides robustness in 

the case of solver failures. As part of the final 

publication step, the Spire monitoring service produces 

comprehensive metrics detailing solution quality and 

key health data. 
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As Spire expands the constellation and continues to add 

capabilities, the scheduling systems will evolve. One 

future addition to Spire’s scheduling service is the ISL 

solver. Adding this capability emphasizes the flexibility 

and adaptability of the Optimizer Service. The ISL 

solver will be an extension of the standardized 

constellation model format and process, and as such the 

scheduling systems will be able to accommodate new 

problems by simply adding the ISL-specific solver onto 

the current pipeline. Adding a new solver to production 

involves adding a Service API endpoint to call the 

solver, updating the constellation model to include the 

new solver channels and plan contacts, updating the 

pipeline to extract and publish the contacts, and adding 

the production-ready solver implementation to the 

workers. Because of the modular design of the service 

however, there is no need to build or provision new 

infrastructure to handle the additional scheduling 

requirements. 

PERFORMANCE MONITORING 

Spire’s monitoring application tracks key performance 

and correctness metrics for the systems, including bi-

directional contact time, total contact time, the number 

of payload windows scheduled, and solve time. A high-

level summary dashboard focused on the cloud 

computing system runs continuously, detailing both 

infrastructure usage (i.e., CPU load, memory usage, 

network traffic, etc.) and scheduling performance. It 

provides automated alerting integrated with a paging 

and on-call escalation system. In the event of a service 

issue, alerts providing situational awareness are 

dispatched through Spire’s internal messaging 

application, and if metrics were to fall into identified 

critical regions, system pages route the alerts directly to 

on-call engineers to allow for immediate response to a 

potential problem. 

For many of the targeted metrics, simple thresholds 

work well and are reliable for monitoring purposes. 

However, the monitoring system also supports more 

advanced application monitoring when required, 

including outlier analysis, trendline prediction, and 

liveness checks. All of Spire’s alerting is configured 

declaratively, which makes keeping alerts up-to-date 

and synchronized across deployments of the service 

simple and ensures that any new features are pre-

equipped with the appropriate monitoring framework. 

Alerts  are passed through to Spire’s Operations Center 

for  viewing and analysis by a team of operators. Figure 

15 shows an example Spire Operations Center 

dashboard for a single satellite, providing a visual 

representation of the health and operational status of the 

spacecraft.  

 

 

Figure 15: Example Spire Operations Center page for a single satellite.  
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ENABLING CUSTOMERS WITH 

STANDARDIZED USER SERVICES  

Spire has created a resilient and fully integrated 

satellite, ground station, and cloud-based operations 

platform to enable efficient data collection from space. 

Spire’s Space Services extend the capabilities of this 

platform to a wide range of customers via 

comprehensive user services, enabling users to easily 

integrate with the constellation management systems 

and tools for scheduling payload operations, interfacing 

with the satellite bus, uploading and retrieving payload 

data, and providing execution environments for 

customer software hosted in space. These user services 

include a suite of APIs, libraries, and operating systems 

that enable seamless integration and operation of 

customer payloads and software within the Spire 

constellation.  

Spire Space Services consist of three primary offerings 

as outlined below. The nature of the offerings is 

relevant as it dictates the scope of the user services 

provided which are referenced herein. 

1. Software in Space: customer-deployed 

software on existing satellites, leveraging 

Spire software defined radios (SDRs) and 

payload systems to test and scale applications 

without the need to launch a dedicated 

spacecraft.  

2. Payload in Space: customer payloads hosted 

on the Spire Low Earth Multi-Use Receiver 

(LEMUR) satellite bus, leveraging Spire’s 

end-to-end launch services and operational 

tools to rapidly deploy, demonstrate, and scale 

systems into production.  

3. Solution in Space: purpose-built end-to-end 

solutions for customers looking to partner with 

Spire, leveraging heritage design architecture 

and in-house development and manufacturing 

expertise. 

 

Figure 16: Spire User Services

https://lucid.app/lucidchart/invitations/accept/inv_20545e94-8e8d-44e3-b65d-7a51e1d0d60c
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Scheduling API 

The ‘Scheduling API’ provides access to the payload 

scheduler, SPORE, in the Optimizer system. This 

allows customers to generate candidate payload 

windows automatically in the same way that Spire 

schedules the entire constellation. The windows 

generated by this service can be submitted to the 

Tasking API for execution on orbit.  

Tasking API 

The Spire constellation is controlled via a globally 

synchronized calendar of fixed-duration operational 

windows. Each window has a fixed start time, a fixed 

duration, a type, and additional window-specific 

parameters that tune its operation. The master schedule 

is stored in Spire-controlled terrestrial infrastructure. 

Relevant windows are synchronized to each satellite 

during regular maintenance procedures and executed by 

each satellite's onboard controller. 

The ‘Tasking API’ is one of several standard RESTful 

API web-services Spire offers, providing customers a 

set of endpoints used to task, configure, and manage 

payload operations. Users interact with the Tasking API 

to create ‘payload windows’ which define the start and 

end times of an operation for a given window type 

(payload operation type), as well as set the 

configuration or parameters of the desired operation. 

The API can be used directly for manual scheduling of 

individual windows or, more commonly, as a service 

for automated system scheduling. 

A single payload window may consist of multiple steps 

that are scheduled together. For example, a 

standardized software defined radio payload task (e.g., 

‘PAYLOAD_SDR’) can orient the satellite, record a 

data sample, and perform an analysis of the recorded 

sample file in one schedulable unit. Additionally, the 

Tasking API can be used to upload software or any 

other arbitrary file to the user's payload. 

Spire Linux Agent 

The ‘Spire Linux Agent’ is a daemon that Payload in 

Space customers install and run on their payload to 

enable seamless integration with the Spire LEMUR 

satellite bus. 

The agent binaries (for supported architectures) and 

source code are provided to Payload in Space customers 

prior to launch to support their development. To 

interface with the Spire Linux Agent, Spire provides a 

C software development kit (SDK) and a Python SDK. 

For other programming languages, users can make 

HTTP requests directly to the agent. The daemon 

provides access to the Data Pipeline API for Payload in 

Space customers to manage data to and from the 

payload. 

Data Pipeline API 

The ‘Data Pipeline API’ allows Payload in Space users 

to download data from their payload to their ground-

based data storage in AWS S3. This API was designed 

to abstract the complications of managing a disruption-

tolerant network from the end user and provide a 

simple, always available way to access the data 

pipeline. 

The Data Pipeline API is made available by the Spire 

Linux Agent and associated SDKs (see Spire Linux 

Agent section above). 

Signaling API 

The ‘Signaling API’ provides payloads hosted on the 

LEMUR satellite bus the ability to receive and act on 

events generated by the bus, such as the start of a 

payload window. The Signaling API currently supports 

Linux-based payloads with an SSH daemon running. 

The satellite bus will execute an executable developed 

by the customer (i.e., ‘payload_exec’), with the 

configuration specified for a given event. 

The Signaling API defines the interface that payloads 

must expose for the satellite bus to inform the payloads 

of upcoming events. The API consists of: 

1. A payload executable used to respond to 

satellite bus events. This executable will be 

called by the bus using SSH. 

2. Conventions of where payload window 

configuration files and uplinked packages are 

placed on the payload file system by the 

satellite bus. 

3. Window configuration file schemas provided 

by the satellite bus for payload executables to 

use. These window configuration files contain 

bus information about the signal as well as 

relevant data passed through from the Tasking 

API. 

4. Argument schemas that payload executables 

must accept to handle satellite bus signals. 

Transmission of data from the payload to the ground is 

handled via the Data Pipeline API described above. It is 

the responsibility of the customer payload to implement 

an executable that can be called with certain parameters 

after the window configuration file is placed on the 
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payload file system. This executable will interpret the 

window configuration file and perform the necessary 

payload actions. 

CONCLUSIONS 

In the months and years to come, Spire anticipates that 

the constellation will continue to diversify with more 

ground stations and satellites with unique payloads, 

capabilities, requirements, and constraints. The 

constellation modeling, monitoring, and operational 

management systems outlined in this paper equip Spire 

and Spire's customers with a flexible set of tools that 

are adaptable and scalable for future generations of 

satellites and constellation configurations. With such a 

wide number of variables and limitless trade-offs, Spire 

strives for continuous improvement to further optimize 

the efficiency, flexibility, and production capabilities of 

the network. Spire recognizes that the data collected 

and the products produced varies by payload, data type, 

use case, and user. Exposing these tools to customers 

through standardized APIs and continuing to improve 

access, adaptability, and responsiveness of these 

systems will enable seamless and scalable deployment 

of next-generation payloads and capabilities. 
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