
Cappaert 1 35th Annual

 Small Satellite Conference

SSC21-I-13

Constellation Modeling, Performance Prediction, and Operations Management for the

Spire Constellation

Jeroen Cappaert, Frantisek Foston, Pablo Sierra Heras, Barry King, Nick Pascucci, Jordan Reilly, Conor Brown,

Joey Pitzo, Marcus Tallhamn

Spire Global, Inc

8000 Towers Crescent Dr, Vienna, VA 22182; (202) 301-5127

jeroen@spire.com

ABSTRACT

The operational complexity of managing the Spire constellation continually increases with the routine introduction

of additional satellites and new capabilities. The heterogeneous nature of the satellites, payloads, and ground station

configurations compounds the difficulty of strategic planning and operational scheduling. In order to efficiently

operate this diverse network of assets, Spire developed a suite of bespoke constellation modeling and management

tools that are designed to support existing demand and to scale for future needs. The modeling tools enable Spire to

accurately simulate and optimize the performance of various constellation configurations prior to deployment. The

operational tools required to harness the full potential of the constellation incorporate complex techniques in order to

schedule payload operations, maximize data collection, and monitor performance. These tools are developed in a

modular and scalable fashion to ensure that new capabilities, such as the introduction of inter-satellite links, can be

readily integrated into the planning system. In addition to these internal tools, Spire also offers a suite of

standardized APIs and user services through which both internal and external customers can seamlessly integrate

payloads and software with the Spire constellation, enabling secure access to development and simulation

environments, scheduling, and data pipeline tools. The constellation modeling, performance prediction, and

operational management tools developed at Spire are essential to ensure efficient and optimized production in an

increasingly complex system.

INTRODUCTION

As Spire’s smallsat constellation grows and more

capabilities are added to the satellites, operationally

managing the system becomes an increasingly complex

task. At the current scale of the constellation, satellites

can no longer be treated individually, but must be

planned for as a strongly coupled system. Tasking

space and ground assets, validating performance, and

managing limited resources requires implementation at

the systems level. With hundreds of satellites, dozens of

ground stations, multiple payloads per satellite, and the

use of inter-satellite links (ISLs), the scale of systems-

level planning is immense.

The scope of the problem is compounded by the

heterogeneous nature of the assets involved. The

constellation consists of various generations of satellites

with differing capabilities and constraints, while Spire’s

ground station network employs mainly owned

capacity, but can also use leased capacity across

multiple providers with varying performance

characteristics. Current satellites are in multiple

rideshare-based orbits, which causes changes in the data

collection and communication availability on a daily

basis. To manage a constellation of over 110 satellites

and approximately 30 ground stations, Spire has

designed and built a suite of constellation modeling and

management tools.

The constellation modeling tool assesses the

performance of potential future constellation

configurations. This tool models satellite orbits,

evaluates ground station placement, computes visibility

between all assets, schedules communications, and

determines figures of merit for the Earth observation

data collected by the constellation. This information is

synthesized to determine the return on investment for

launches, ground station deployments, hardware and

software features, and other critical concepts of

operations.

Spire’s operational planning tool, ‘the Optimizer,’

manages space and ground assets tasking in such a way

as to maximize the business value of the fleet given a

variety of operational considerations using a mixed-

integer programming (MIP) model. Operational

performance of payload collections and radio contacts

are used to calculate value, and constraints in the model

include limited resources on the satellites, such as

power, available payloads, etc. Communication

availability and contention between satellites and

ground stations is also a key input to the tool.

mailto:jeroen@spire.com

Cappaert 2 35th Annual

 Small Satellite Conference

To close the feedback loop, Spire monitors a variety of

metrics that measure constellation performance and

compares them with the modeled performance. These

metrics monitor a variety of critical components of the

system. Deviations from nominal values trigger

automated alerts that are sent out to relevant working

groups. Spire has also developed the ‘Spire Operations

Center’ application which provides detailed monitoring

of each asset in the constellation. Any identified

discrepancies are then analyzed and corrected.

With the use of these tools and standardized

constellation management system, Spire serves a large

number of internal and external customers. Customers

are provided an operational performance prediction

before launch. During operations, customers may have

Spire operate their assets as a service or use the

operational planning and tasking tools themselves.

Customers can also rely on quality performance

through Spire's continuous monitoring of operations.

CONSTELLATION MODELING AND

PERFORMANCE PREDICTION

Spire makes extensive use of constellation modeling in

order to accurately predict and assess the performance

characteristics of different constellation designs or

configurations. At Spire, a constellation refers not only

to the satellites and their orbits, but also to the ground

station network and concept of operations. Modeling-

derived performance data is a key input into the

constellation design decision-making process (e.g.,

orbit selection, location of the ground stations, antenna

definition parameters, etc.) and provides insights into

the various trade-offs that may exist. This data-driven

approach helps Spire ensure that the constellation will

be able to meet the targets imposed by an increasingly

diverse set of customers.

Modeling is used to translate business requirements into

engineering requirements. Every customer imposes a

unique set of requirements based on the characteristics

of the data that must be produced by the Spire

constellation. The requirements for the data collected

from the sensors (the payloads) are usually quantified

using the following metrics: latency, revisit, probability

of detection, refresh, and timeliness.

Latency is the time delay from collecting data on a

satellite to that data being available to a customer

through one of the Spire application programming

interfaces (APIs).

Revisit is the time between two consecutive

observations by the constellation of a specific point on

Earth.

Probability of Detection is how likely a satellite is to

successfully collect the desired data while observing a

specific point on Earth.

Refresh is the combination of revisit and probability of

detection (i.e., the time between successful observations

of a given target).

Timeliness is the combination of refresh and latency

(i.e., how old is the latest message from a given target

in the API). A boundary value for the maximum

timeliness is the maximum refresh plus the maximum

latency.

These concepts are further illustrated in Figure 1. An

example of a customer requirement is the International

Civil Aviation Organization (ICAO) 4D/15 requirement

for air traffic monitoring. To comply with this standard,

the operator must obtain four-dimensional aircraft

position information (latitude, longitude, altitude, and

time) at 15-minute intervals or less, which is a

timeliness requirement that can be translated into

latency and refresh requirements.

Figure 1: Metrics for measuring on-orbit data

collection.

Inputs and Constraints

Details about the existing and future satellites and

ground stations are required in order to define a

candidate constellation.

For the satellites it is necessary to define the two-line

element set (TLE), license country, hardware version,

payloads, communications configurations, and

scheduling constraints. The communications

configurations define the type (i.e., ISL: satellite to

satellite or GS: satellite to ground station), geometric

https://lucid.app/lucidchart/invitations/accept/inv_4fa71104-f2c2-4001-a574-7e62c79adde4

Cappaert 3 35th Annual

 Small Satellite Conference

requirements, regulatory constraints, and transmission

rates.

Payload operations determine the quantity and quality

of data collected by a satellite. Spire’s satellites are

multi-sensor and can collect Automatic Identification

System (AIS) messages from maritime vessels,

Automatic Dependent Surveillance-Broadcast (ADS-B)

messages from aircraft, and a range of Global

Navigation Satellite System (GNSS) measurements,

including GNSS-Radio Occultation (GNSS-RO) and

Reflectometry (GNSS-R). Each payload definition

includes a footprint shape, a fixed or variable data

collection rate (bits collected per unit of time), the

priority of the data collected by the payload, the

probability of detection, and the scheduling constraints

(e.g., duty cycle, maximum and minimum operational

times, conflicting payloads, etc.).

For the ground stations, the location needs to be

specified along with the communication configuration

and scheduling constraints.

Customers must provide objectives for the constellation

in order to evaluate the performance variances between

different proposed configurations. These goals contain

the areas of interest, the revisit rates, and the latency

requirements for each of the data products generated

from the payload data. The model also receives a set of

parameters containing data used by the contact

efficiency model and by the latency simulator modules,

which are explained in the following section. The final

input parameters are the start and end times of the

simulations.

Model Architecture

The constellation model architecture can be divided

into two parts, one for the revisit and refresh and one

for the latency, as described in Figure 2. Inputs are

represented in yellow, modules in purple, and final

outputs in green. The modules that fall within the

Optimizer are grouped in the red box.

Figure 2: Constellation model architecture.

https://lucid.app/documents/edit/be6454ff-e44e-4a96-b5ba-ec2056d89f71/0?callback=close&name=docs&callback_type=back&v=871&s=569

Cappaert 4 35th Annual

 Small Satellite Conference

For revisit and refresh calculations, the user defines an

Earth grid with the points at which the revisit rate will

be calculated. The definition of this grid is dependent

on the customer’s use case and their area of interest.

Then, the code makes an API call to the Optimizer to

retrieve the payload schedule. The Optimizer is Spire’s

operational planning tool, and it is used both for

operations and for simulation purposes. The next step in

the process is the revisit simulator. For a given payload,

with the payload schedule and the inputs (e.g., TLEs of

the satellites, footprint shape of the payload, etc.), the

revisit simulator generates the orbital path for each

satellite and calculates the frequency of data collection

for each point in the defined Earth grid. This collection

frequency is used to calculate a variety of revisit

statistics for the constellation (e.g., revisit heatmaps,

revisit statistics per latitude, etc.). If desired, there is

also an option to provide a probability of detection

model to translate the revisit statistics into refresh

statistics.

For latency calculations, the code makes two calls to

the Optimizer, followed by one to the ISL scheduler.

The first call to the Optimizer generates the payload

schedule while the second call schedules the ground

station (GS) contacts. For GS contact scheduling, the

Optimizer first generates the transits (visibility period

between a satellite and a ground station given the

geometric and regulatory constraints) by processing the

inputs and then schedules the best contacts among

them. This will be presented in further detail in a later

section of this paper.

Once the payload and GS contact schedules are

complete, the ISL scheduler uses the geometric and

regulatory constraints to generate ISL transits for the

satellites. ISL contacts are then scheduled using the

approach described in the Journal of Aerospace

Information Systems.1 The scheduled payload and

contact operations are then fed into the latency

simulator, which models how data travels through the

constellation. The duration of the simulation is divided

into time steps, and the simulation of each time step

consists of (1) calculating the data generated by the

payloads for each satellite and (2) modeling how that

data is transmitted through the constellation.

To simulate how data is transmitted through the

constellation, the latency simulator uses a contact

efficiency model, which considers that anomalies can

and will occur during a contact and that some contact

time will not be useful for data transfer. This non-

transfer time includes pointing of the ground station,

contact acquisition, and communication of the current

health of the satellite and subsystems. The size of the

individual data packages, the data routing strategy, and

the data package build time (i.e., the time needed for

the satellite to collect and then bundle the data into files

for transfer) can be modified in the input parameters for

the simulator. The simulation of data transmission

through the network is then used to compute several

metrics (e.g., latency statistics and heatmaps, data

volumes, etc.) for the constellation.

Use Case Example

A case with four ISL satellites is presented in this

section to illustrate the outputs of the constellation

model. The four satellites are located in different sun-

synchronous orbit (SSO) planes with a right ascension

of the ascending node (RAAN) increment of 30 degrees

and with the same true anomaly. Their orbits are

presented in Figure 3. Note that nine ground stations are

used for this example with two payloads per satellite:

PAYLOAD-1 and PAYLOAD-2. The payload windows

in this example cannot be scheduled at the same time.

Figures 4 and 5 present the payload schedule created by

the Optimizer. The example uses a minimum

operational time of 15 minutes and a duty cycle of 30%

for PAYLOAD-1 and a maximum operational time of

30 minutes and no limits in the duty cycle for

PAYLOAD-2.

Figure 3: Orbits of the four satellites used for the

example.

Cappaert 5 35th Annual

 Small Satellite Conference

Figure 4: PAYLOAD-1 schedule.

Figure 5: PAYLOAD-2 schedule.

Figure 6 illustrates the GS/ISL contact schedule created

by the Optimizer for the example constellation. The GS

contacts are represented in green, while the dark red

lines represent a transmission ISL contact, and the rose

lines represent a reception ISL contact.

Figure 6: GS/ISL contact schedule.

When the simulation ends, the model provides the

memory state (i.e., the amount of data of each data tier

that the satellite stores) for all the satellites at each

moment of the simulation. For this example,

PAYLOAD-1 corresponds to tier 0, which has a higher

priority for data downloading than PAYLOAD-2 (tier

1). The following Figure 7 shows the memory state of

one of the satellites from the modeled constellation;

data is generated at a different rate for each tier and is

transmitted through green GS contacts and dark red ISL

contacts and is received through rose ISL contacts.

Figure 7: Memory state for a single satellite from the example.

Cappaert 6 35th Annual

 Small Satellite Conference

The latency percentile curves shown in Figure 8 allow

analysis of latency distribution at a glance. The latency

percentile curves show in the y-axis the percentage of

data that has a latency below the x-axis value, and each

payload has an associated curve. In this example,

PAYLOAD-1 has better latency because its data

priority level is higher than that of PAYLOAD-2.

Figure 8: Latency percentile curves.

The constellation model is also able to provide the

revisit and refresh metrics for the constellation. Figure

9 presents a revisit heatmap for PAYLOAD-2, and

Figure 10 presents the revisit statistics per latitude for

the same payload. A circular footprint with a 2000km

radius is used for this simulation.

Figure 9: Average revisit heatmap.

Figure 10: Revisit statistics by latitude.

The constellation model has been validated using real

revisit and latency data from the current Spire

constellation, and the average relative error between the

predictions and reality is less than 10%.

CONSTELLATION OPERATIONAL PLANNING

(THE OPTIMIZER)

The system that coordinates Spire constellation

resources, known as the Optimizer, is responsible for

maximizing the efficiency of the constellation and the

value it produces through intelligent scheduling. The

system consists of a set of automated schedulers that

are capable of determining when constellation assets

should perform operations such as GS contacts, ISL

contacts, payload collections, and orbital maneuvers.

The schedulers operate on a batch processing model,

allowing users to submit scheduling jobs to the system

for processing and retrieve the results through the

‘Optimizer Service API’ upon completion. The system

is separated into two queues: one for production

scheduling and another for simulations. Production jobs

generate the true constellation schedule and the Service

API gives these jobs priority access to the solvers.

Simulations, such as those performed in support of

mission design, are run during any unused time which

in practice is abundant. All jobs run asynchronously

and their results are stored in a database for future

analysis.

Optimally scheduling constellation operations is (at a

minimum) an NP-Hard problem. The schedulers

operate by encoding input problems as MIP problems

which are solved using IBM’s CPLEX solver. CPLEX

Cappaert 7 35th Annual

 Small Satellite Conference

is fast and robust, meaning the models (which include

hundreds of thousands to millions of variables) are

solved to very tight optimality bounds, to within a few

percentage points of the global optimal solution, in

minutes. Wrapping the CPLEX core, the solvers are

written using the Rust programming language and

utilize FFI-bindings to the CPLEX C API for low-

overhead interoperability.

Payload Scheduling

The ‘Spire Payload Scheduler’ is an advanced satellite

constellation scheduling system which sees active

production use. Within Spire, it is known as ‘SPORE’

(Scheduling Payloads for Objects Revolving Earth).

The system performs multiple functions such as

payload deconfliction, area-of-interest targeting, and

general power management (through flexible duty ratio

constraints) in order to schedule optimized data

collection for Spire’s entire constellation of satellites.

SPORE is fully automated and incorporates information

on each individual satellite’s power, coverage, and

conflicting hardware subsystems to balance collections

across time. This works not only for a single satellite,

but also across the Spire fleet as a whole, ensuring that

redundant collections are minimized while novel

collections and revisit targets are achieved.

Figure 11 shows payload operations when the

constellation is instructed to deprioritize data collection

over the Atlantic Ocean. The satellites instead use this

flight time to preserve power in order to provide better

coverage over the rest of the globe. Automatic and

coordinated scheduling makes prioritization like this

possible with declarative, user-provided configurations.

Figure 11: Payload schedules designed to avoid

collections over the Atlantic Ocean.

Contact Scheduling

The results of the payload scheduling optimization are

then fed into a pipeline which generates the set of

candidate ground stations accesses, as illustrated in

Figure 12. The Spire contact scheduler selects the

optimal set of accesses to ensure that all payload data is

downlinked quickly and efficiently. The system is

capable of scheduling the entire constellation in less

than five minutes, is orbit-aware, and accounts for

constraints such as RF licensing, compatible frequency

bands, data transfer directionality, and link protocol

when determining viable accesses.

Figure 12: Constellation model format

incorporating the payload scheduler (SPORE) and

the contact scheduler.

Incorporating the payload schedule into the contact

scheduling process allows Spire to allocate contact time

to assets in the fleet based on the volume and value of

the data collected. The added context provided by the

payload schedule enables the scheduler to optimize for

business objectives such as decreased latency between

data collection and data downlink. Satellites generating

data which is highly sensitive to latency may be given a

large number of small contacts by the contact solver,

while high-value but latency-insensitive data is

scheduled for transfer during less contentious accesses

to ground stations.

Given the heterogeneous nature of the Spire

constellation, it is important to have an interface

mechanism for the schedulers that is flexible enough to

accommodate a wide range of possible constellation

architectures. The Spire schedulers are designed to be

‘intent driven,’ operating on declaratively defined

models that describe the ‘shape’ of the constellation

(i.e., its ground stations, satellites, and payloads) and

the performance goals. The models do not receive input

parameters on how to achieve these goals; the

schedulers are responsible for mechanizing the users’

goals and finding optimal plans of action to satisfy

them.

Cappaert 8 35th Annual

 Small Satellite Conference

Model Design

All schedulers work with a single model format, known

as the ‘Unified Model,’ that encapsulates all of the

information required to represent the constellation at a

given point in time. Schedulers return results in this

format as well, describing the constellation state after

an optimal plan of action has been calculated, as

illustrated in Figure 13. By standardizing the design of

the input and output formats across Spire’s solvers,

users are empowered to compose the solvers to best

meet their scheduling needs. This standard format also

enables interesting workflows that would not otherwise

be possible, including very long-duration simulations

which cannot be solved monolithically, but can be

handled as a sequence of smaller problems.

Figure 13: The Unified Model leverages a

standardized input and output format.

What, when, and how assets can communicate is a key

operational concern for the constellation. The Unified

Model is able to represent these constraints using the

communications configuration model, which is a

standardized format for describing possible links

between assets, including licensing and performance

data. These channels allow Spire to model the

communications of each asset at a very fine granularity.

Configurations include not only the frequencies which

are enabled for each asset and the directions in which

they transfer data, but also regulatory and geometric

constraints that must be taken into consideration in

order to perform compliant links between assets.

Beyond simple static licensing rules, the

communications configurations are also able to capture

more advanced constraints such as minimum

separations between orbiting objects, which enables

Spire to respond to coordination requirements from

third parties.

The schedule for the production constellation is

populated by a set of periodically executing tasks. Each

task will populate the schedule for one constellation

operation type, such as ground station contacts or

payload activity. As seen in Figure 14, tasks run as a

pipeline that integrates with the required Spire systems

and performs four major functions: extracting

constellation data into a scheduling problem, solving

the problem via the Service API, publishing the result,

and, in the case of failure, retrieving and publishing a

fallback solution.

Figure 14: Task flow for the scheduling pipeline.

Each of these stages is able to run independently of the

others, though they are run as a single sequence of

operations by default. Scheduling is entirely automatic

with the pipeline on AWS Fargate tasks triggered using

periodic CloudWatch events. The scheduling pipeline

also generates failover solutions with the publication

step disabled and an offset planning period. Having a

precomputed solution available provides robustness in

the case of solver failures. As part of the final

publication step, the Spire monitoring service produces

comprehensive metrics detailing solution quality and

key health data.

Cappaert 9 35th Annual

 Small Satellite Conference

As Spire expands the constellation and continues to add

capabilities, the scheduling systems will evolve. One

future addition to Spire’s scheduling service is the ISL

solver. Adding this capability emphasizes the flexibility

and adaptability of the Optimizer Service. The ISL

solver will be an extension of the standardized

constellation model format and process, and as such the

scheduling systems will be able to accommodate new

problems by simply adding the ISL-specific solver onto

the current pipeline. Adding a new solver to production

involves adding a Service API endpoint to call the

solver, updating the constellation model to include the

new solver channels and plan contacts, updating the

pipeline to extract and publish the contacts, and adding

the production-ready solver implementation to the

workers. Because of the modular design of the service

however, there is no need to build or provision new

infrastructure to handle the additional scheduling

requirements.

PERFORMANCE MONITORING

Spire’s monitoring application tracks key performance

and correctness metrics for the systems, including bi-

directional contact time, total contact time, the number

of payload windows scheduled, and solve time. A high-

level summary dashboard focused on the cloud

computing system runs continuously, detailing both

infrastructure usage (i.e., CPU load, memory usage,

network traffic, etc.) and scheduling performance. It

provides automated alerting integrated with a paging

and on-call escalation system. In the event of a service

issue, alerts providing situational awareness are

dispatched through Spire’s internal messaging

application, and if metrics were to fall into identified

critical regions, system pages route the alerts directly to

on-call engineers to allow for immediate response to a

potential problem.

For many of the targeted metrics, simple thresholds

work well and are reliable for monitoring purposes.

However, the monitoring system also supports more

advanced application monitoring when required,

including outlier analysis, trendline prediction, and

liveness checks. All of Spire’s alerting is configured

declaratively, which makes keeping alerts up-to-date

and synchronized across deployments of the service

simple and ensures that any new features are pre-

equipped with the appropriate monitoring framework.

Alerts are passed through to Spire’s Operations Center

for viewing and analysis by a team of operators. Figure

15 shows an example Spire Operations Center

dashboard for a single satellite, providing a visual

representation of the health and operational status of the

spacecraft.

Figure 15: Example Spire Operations Center page for a single satellite.

Cappaert 10 35th Annual

 Small Satellite Conference

ENABLING CUSTOMERS WITH

STANDARDIZED USER SERVICES

Spire has created a resilient and fully integrated

satellite, ground station, and cloud-based operations

platform to enable efficient data collection from space.

Spire’s Space Services extend the capabilities of this

platform to a wide range of customers via

comprehensive user services, enabling users to easily

integrate with the constellation management systems

and tools for scheduling payload operations, interfacing

with the satellite bus, uploading and retrieving payload

data, and providing execution environments for

customer software hosted in space. These user services

include a suite of APIs, libraries, and operating systems

that enable seamless integration and operation of

customer payloads and software within the Spire

constellation.

Spire Space Services consist of three primary offerings

as outlined below. The nature of the offerings is

relevant as it dictates the scope of the user services

provided which are referenced herein.

1. Software in Space: customer-deployed

software on existing satellites, leveraging

Spire software defined radios (SDRs) and

payload systems to test and scale applications

without the need to launch a dedicated

spacecraft.

2. Payload in Space: customer payloads hosted

on the Spire Low Earth Multi-Use Receiver

(LEMUR) satellite bus, leveraging Spire’s

end-to-end launch services and operational

tools to rapidly deploy, demonstrate, and scale

systems into production.

3. Solution in Space: purpose-built end-to-end

solutions for customers looking to partner with

Spire, leveraging heritage design architecture

and in-house development and manufacturing

expertise.

Figure 16: Spire User Services

https://lucid.app/lucidchart/invitations/accept/inv_20545e94-8e8d-44e3-b65d-7a51e1d0d60c

Cappaert 11 35th Annual

 Small Satellite Conference

Scheduling API

The ‘Scheduling API’ provides access to the payload

scheduler, SPORE, in the Optimizer system. This

allows customers to generate candidate payload

windows automatically in the same way that Spire

schedules the entire constellation. The windows

generated by this service can be submitted to the

Tasking API for execution on orbit.

Tasking API

The Spire constellation is controlled via a globally

synchronized calendar of fixed-duration operational

windows. Each window has a fixed start time, a fixed

duration, a type, and additional window-specific

parameters that tune its operation. The master schedule

is stored in Spire-controlled terrestrial infrastructure.

Relevant windows are synchronized to each satellite

during regular maintenance procedures and executed by

each satellite's onboard controller.

The ‘Tasking API’ is one of several standard RESTful

API web-services Spire offers, providing customers a

set of endpoints used to task, configure, and manage

payload operations. Users interact with the Tasking API

to create ‘payload windows’ which define the start and

end times of an operation for a given window type

(payload operation type), as well as set the

configuration or parameters of the desired operation.

The API can be used directly for manual scheduling of

individual windows or, more commonly, as a service

for automated system scheduling.

A single payload window may consist of multiple steps

that are scheduled together. For example, a

standardized software defined radio payload task (e.g.,

‘PAYLOAD_SDR’) can orient the satellite, record a

data sample, and perform an analysis of the recorded

sample file in one schedulable unit. Additionally, the

Tasking API can be used to upload software or any

other arbitrary file to the user's payload.

Spire Linux Agent

The ‘Spire Linux Agent’ is a daemon that Payload in

Space customers install and run on their payload to

enable seamless integration with the Spire LEMUR

satellite bus.

The agent binaries (for supported architectures) and

source code are provided to Payload in Space customers

prior to launch to support their development. To

interface with the Spire Linux Agent, Spire provides a

C software development kit (SDK) and a Python SDK.

For other programming languages, users can make

HTTP requests directly to the agent. The daemon

provides access to the Data Pipeline API for Payload in

Space customers to manage data to and from the

payload.

Data Pipeline API

The ‘Data Pipeline API’ allows Payload in Space users

to download data from their payload to their ground-

based data storage in AWS S3. This API was designed

to abstract the complications of managing a disruption-

tolerant network from the end user and provide a

simple, always available way to access the data

pipeline.

The Data Pipeline API is made available by the Spire

Linux Agent and associated SDKs (see Spire Linux

Agent section above).

Signaling API

The ‘Signaling API’ provides payloads hosted on the

LEMUR satellite bus the ability to receive and act on

events generated by the bus, such as the start of a

payload window. The Signaling API currently supports

Linux-based payloads with an SSH daemon running.

The satellite bus will execute an executable developed

by the customer (i.e., ‘payload_exec’), with the

configuration specified for a given event.

The Signaling API defines the interface that payloads

must expose for the satellite bus to inform the payloads

of upcoming events. The API consists of:

1. A payload executable used to respond to

satellite bus events. This executable will be

called by the bus using SSH.

2. Conventions of where payload window

configuration files and uplinked packages are

placed on the payload file system by the

satellite bus.

3. Window configuration file schemas provided

by the satellite bus for payload executables to

use. These window configuration files contain

bus information about the signal as well as

relevant data passed through from the Tasking

API.

4. Argument schemas that payload executables

must accept to handle satellite bus signals.

Transmission of data from the payload to the ground is

handled via the Data Pipeline API described above. It is

the responsibility of the customer payload to implement

an executable that can be called with certain parameters

after the window configuration file is placed on the

Cappaert 12 35th Annual

 Small Satellite Conference

payload file system. This executable will interpret the

window configuration file and perform the necessary

payload actions.

CONCLUSIONS

In the months and years to come, Spire anticipates that

the constellation will continue to diversify with more

ground stations and satellites with unique payloads,

capabilities, requirements, and constraints. The

constellation modeling, monitoring, and operational

management systems outlined in this paper equip Spire

and Spire's customers with a flexible set of tools that

are adaptable and scalable for future generations of

satellites and constellation configurations. With such a

wide number of variables and limitless trade-offs, Spire

strives for continuous improvement to further optimize

the efficiency, flexibility, and production capabilities of

the network. Spire recognizes that the data collected

and the products produced varies by payload, data type,

use case, and user. Exposing these tools to customers

through standardized APIs and continuing to improve

access, adaptability, and responsiveness of these

systems will enable seamless and scalable deployment

of next-generation payloads and capabilities.

ACKNOWLEDGMENTS

Spire acknowledges that some of the tools and

technologies outlined in this paper were developed with

funding from the United Kingdom Space Agency

(UKSA) through the European Space Agency (ESA)

ARTES Pioneer program.

Spire also acknowledges all the employees that

contributed to the development and sustainment of the

tools and technologies outlined in this paper.

REFERENCES

1. Lowe, C.J. and M. Macdonald, “Resource-

Considerate Data Routing Through Satellite

Networks,” Journal of Aerospace Information

Systems, vol. 14, No. 8, August 2017.

