
Wilbur 1 [35th] Annual

 Small Satellite Conference

SSC21-V-07

Developing a Prototype Ground Station for the Processing, Exploitation, and

Dissemination of pLEO Sensor Data

Jennifer Wilbur, David Simenc, Eric Principato, Travis Williams,

Jason Hamant, Matthew McHugh, Sander Malmquist, John Maloney

SciTec, Inc.

100 Wall Street, Princeton, NJ 08540; 609-921-3892 x355

jdavis@scitec.com

Debi Rose, Dan Rossiter, Paul Wood

Southwest Research Institute

1050 Walnut St #300 Boulder, CO 80302; 303-324-4704

debi.rose@boulder.swri.edu

ABSTRACT

The Air Force’s Space and Missile Systems Center (SMC) recently executed a quick-turnaround (16 month) effort

through the Defense Innovation Unit to develop a prototype ground architecture demonstrating low-latency

processing, exploitation, and dissemination of data collected by notional multi-phenomenology sensors hosted on

small satellites in a proliferated LEO constellation. This effort, led by the Southwest Research Institute and supported

by teammates, Amazon Web Services, SpaceX, and SciTec, Inc., involved the modeling and simulation of a variety

of different OPIR, EO/IR, and SAR data streams; transporting these data via space and ground networks; processing

the data in the AWS cloud environment; and then disseminating resulting products to tactical users. In this paper, we

present an overview of the data transport and mission data processing, performance results from the application of our

various Mission Data Processing Chains, a summary of our findings on the latencies associated with both data

transport and data processing, and lessons learned including insight into ground-based vs. on-board processing.

1. INTRODUCTION

The Southwest Research Institute (SwRI) and teammates

SciTec, Amazon Web Services (AWS), and SpaceX

recently delivered a novel, commercial processing,

exploitation, and dissemination prototype to SMC. The

objective was to demonstrate a low-latency,

horizontally-scalable, PED capability featuring cloud-

based processing for data collected by future payloads

sensing in multiple modalities hosted on commercial

spacecraft and downlinked through commercial gateway

injection points.

The intent for this prototype was to deliver processed

data in formats usable by tactical users deployed to

forward operating locations. The delivered prototype

addressed a lack of established gateways or processes to

ingest data collected from DARPA’s BLACKJACK-

capable spacecraft and distribute that data through a

commercial gateway and seamlessly deliver it to a

location in theater that needs it most to meet critical

timelines without significant human-machine interface

and latency. The SwRI PED prototype effort resulted in

the generation of a process recommendation, along with

an associated hardware and software solution using

Overhead Persistent Infrared (OPIR), Synthetic Aperture

Radar (SAR) and EO/IR image data as test cases

delivering capability to users in any Continental United

States (CONUS) or forward operating location.

In the following sections, we detail each of the three

(OPIR, SAR, and EO/IR) demonstrations.

2. OPIR PROTOTYPE DEMONSTRATION

For the OPIR demonstration, two scenarios were

considered: 1) Collection by three OPIR sensors

collecting frame data with 2,048 x 2,048 pixels at 20 Hz

on an area of interest with a simulated raid of missile

threats and 2) Collection by a single OPIR sensor with

4.096 x 4,096 pixel frames at 10 Hz. The first scenario

was intended to exercise the mission data processing

pipeline, which includes sensor specific processing – i.e.,

background suppression, detection, and 2D tracking – as

well as track correlation and fusion to generate 3D

tracks. The second scenario was intended to expose any

potential latencies in data transport and sensor-specific

processing.

The top level configuration of the primary OPIR 2k x 2k

sensor prototype scenario is shown in Figure 2-1.

Simulated sensor data is generated for the three sensors

Wilbur 2 [35th] Annual

 Small Satellite Conference

– a single aft mounted sensor on one simulated pLEO

spacecraft and a fore and aft mounted sensor set on a

second simulated pLEO spacecraft.

In this scenario, we used the Amazon Web Services

(AWS) Ground Station model for a ground antenna site

capable of receiving a downlink from a Low Earth Orbit

(LEO) satellite. This concept co-locates an AWS

Ground Station antenna with an AWS Data Center. This

model allows the data received from a satellite to use

data center resources for processing and transport

initiation.

The 2k x 2k OPIR prototype used the following

configuration:

• Data for casino1-aft sensor initiated in us-east-2

(Ohio) AWS region

• Data for casino2-aft, casino2-fore sensors initiated

in us-west-2 (Oregon) AWS region (non-

GovCloud)

• Data from all sensors flowed independently into a

Simple Storage Service (S3) bucket in the us-west-

2 (Oregon) region and transferred to the us-gov-

west-1 (Oregon) AWS GovCloud region

• Final processing of satellite data back into raw

format, transfer of data to MDP, and MDP

processing in us-gov-west-1 (Oregon) AWS

GovCloud region.

Figure 2-1. Three OPIR Sensor Demonstration Overview

This initial prototype scenario was derived to provide a

‘stress test’ on the ability of the commercial ground

resources to transport and then process all data frames

from the on-orbit OPIR sensors. In this stress scenario –

data sets representing all data collected by the OPIR

sensors are moved through the commercial network,

prepared for processing, and then processed in a secure

cloud MDP region. Adding to the ‘stress’ of the 3-sensor

scenario – data from multiple sensors will be received at

different ground stations and must be transferred to a

common secure cloud processing site within a small time

window (less than approximately 5 seconds) to ensure all

data associated with each time slot can be properly

processed and correlated.

2k x 2k OPIR Demonstration – Data Transport

The raw sensor data frames – including 2k x 2k 16 bit

data frames along with associated meta-data – were

staged in files. Each file contained a one second sensor

data collection, which resulted in 20 frames of the sensor

plus meta data frames in a single file. This approach

creates a 160 Mbyte file to represent each second of data.

For this scenario, 165 seconds of data for each sensor

was transported and processed. The 165 second time

was selected to simulate filling a potential LEO

downlink period for a spacecraft in a 1,000 km orbit.

In order to simulate the need to protect the data during

the downlink and then transport through non-classified

regions, the data files for the prototype were encrypted.

Files were also encoded in Consultative Committee for

Wilbur 3 [35th] Annual

 Small Satellite Conference

Space Data Systems (CCSDS) protocol to simulate a

common protocol used for spacecraft to ground

communications. For the prototype, a commercial

encryption method was used.

Encrypting and encoding the raw data files used in the

prototype demonstration occurred prior to initiating the

transfer of the files through the commercial network to a

secure cloud processing location. This order of events

was selected since the encryption and encoding activities

would typically occur on the spacecraft and would not

contribute to latencies associated with ground transport

and processing activities.

Prototype execution and timing measurements were

initiated as each file, containing a 1 sec data set, started

the data transport process - which includes

decommutating the CCSDS encoding, transporting the

file from the origin location to a designated secure cloud

processing location, and, once there, virus scanning,

decrypting and passing the data on to an MDP processing

suite of applications.

Data files for each individual sensor were staged to

support the 3-sensor prototype configuration. Data flow

for each of the three file sets was configured to be

initiated via separate tasks staged in Docker containers

in selected AWS regions.

2kx2k OPIR Demonstration – Mission Data Processing

The Mission Data Processing (MDP) architecture

utilizes Amazon Web Services (AWS) to host mission

processing applications for Overhead Persistent

InfraRed (OPIR), Synthetic Aperture Radar (SAR), and

Electro-Optic/InfraRed (EO/IR) mission data threads.

The MDP applications form a micro-service oriented

architecture of advanced mission processing algorithms

deployed as containerized, elastic services in AWS to

provide low-latency, high accuracy data exploitation.

The applications are deployed through Infrastructure as

Code (IaC) onto AWS Elastic Compute Cloud (EC2)

instances including multiple Compute Optimized (c5)

and Accelerating Computing (g4) AWS EC2 virtual

machines. The MDP IaC – consisting of Cloud

Formation scripts and templates - encompasses all

activities required to provision, deploy, and execute the

MDP environment. Autonomous MDP orchestration

dynamically scales resources and applications based on

processing load. All MDP mission threads consist of

object storage in AWS Simple Storage Service (S3),

mission specific EC2 instances for processing, and

messaging services providing data over a defined

network port for visualization applications to view data

in near-real-time.

The 3 sensor OPIR MDP environment consists of

multiple Compute Optimized (c5) AWS EC2 virtual

machine instances. Applications are distributed to

balance network and computational requirements. By

using a micro-service-based architecture, multiple

applications are easily distributed among multiple

instances as opposed to requiring very large individual

EC2 instances sized for the highest anticipated

processing and network loads. Our architecture further

includes the MDP Application Analysis Dashboard

which provides visualization, system monitoring, and

data interrogation of the MDP applications in real-time.

A functional flow diagram of the 2k x 2k OPIR

processing chain is depicted in Figure 2-2.

Figure 2-2. Functional flow for the 2k x 2k OPIR

mission data processing chain

2k x 2k OPIR Data Simulation

The OPIR mission data simulation was developed to

allow for testing of the data transport architecture, while

also containing realistic sensor and target motion as well

as sensor noise in order to test the MDP components of

the ground architecture. The 3 sensor dataset contains

165 seconds of 20 Hz simulated OPIR frames and

metadata for two pLEO satellites; one satellite has its

fore and aft sensors simulated while the other has just the

aft. The sensors were simulated as body-fixed 2,048 by

2,048 pixel starers operating as part of the same orbital

plane and were spaced out to provide maximum stereo

coverage for downstream processing. Scenes contained

14 ballistic targets of different range classes, and two

dim, constant altitude (non-ballistic) targets.

Scenario geometry and CONOPs were simulated in

SciTec’s internally developed PACMAN tool, which

contains modules for simulating orbits, sensors, and

targets. For the OPIR scenarios, sensors with CASINO

orbits and body-fixed pointing were placed to maximize

sensor overlap, and targets were inserted into the 3D

scenario. The resulting per-frame geometry was then run

through PRA Toolkit v2. PRA Toolkit, developed by

Photon Research Associates, uses atmospheric radiative

transport models such as MODTRAN (v4.0) and

Wilbur 4 [35th] Annual

 Small Satellite Conference

MOSART (v1.60) as well as databases of cloud and

terrain material fractions, altitude maps, and spectral

responses to generate realistic composite scene images.

Once the scene images were generated in PRA Toolkit,

the original PACMAN geometry was used to add the

targets into the scenes. Finally, Python scripts were used

to add sensor noise, digitize the frames, and convert

them, along with their associated metadata to the final

binary format.

Mission Data Processing Chain

The mission data processing chain consists of

background suppression, mono-track generation,

correlation, and fusion services. Raw frame data is fed

into the system and farmed to background suppression

services on a per-sensor basis. Background suppressed

frames are then passed to the mono-track generation

service, which performs target detection, exceedance

chip extraction, and track before detect tracking on the

suppressed frames. This results in 2D tracks that are then

correlated. The resulting correlated tracks are passed to

the fusion processor to generate full state estimates. The

final state estimates are messaged to tactical users and

can be compared to the truth input tracks through an App

Analysis Dashboard, shown in Figure 2-3

Figure 2-3. Screen captures of the App Analysis Dashboard and 3D global track visualizer

The background suppression service and mono-track

generation services are derived from SciTec’s ARROW

application and are tuned for the CASINO dataset

simulations. The service consists of many tunable

parameters, which allow an operator to select and tune

the algorithms that are used for suppression, detection,

extraction, and tracking. These parameters were selected

with the constraint that they must be able to run at 20 Hz

for the 2k x 2k frames in the cloud processing

environment. Otherwise, parameters were tuned to

detect the targets as early in their trajectories as possible

and to continue following tracks for as long as possible,

ideally well into the second stage burns.

4k x 4k OPIR Demonstration

The data transport scenario for this demonstration was

similar to that of the 2k x 2k OPIR demonstration.

The 4k x 4k OPIR prototype used the following

configuration:

• Data for casino 4kx4k sensor initiated in us-east-2

(Ohio) AWS region

• Data flowed into an S3 bucket in the us-west-2

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region

• Final processing of satellite data back into raw

format, transfer of data to MDP, and MDP

processing in us-gov-west-1 (Oregon) AWS

GovCloud region

The raw sensor data frames – 4k x 4k pixel, 16 bit data

frames along with associated meta-data – were staged in

files. Each file contained a two second sensor data

collection, which results in 20 frames (10 frames each

second) of the sensor plus meta data frames in a single

file. This approach creates a 640 Mbyte file to represent

each two seconds of data.

As in the case of the 2k x 2k data, the data files for this

prototype were encrypted and encoded using the CCSDS

protocol. Data flow for the file set was configured to be

initiated via a task staged in a Docker container in a

selected AWS region.

4k x 4k OPIR Data Simulation

Frames and metadata were simulated for the 4k x 4k

demo in a manner similar to the 3 sensor 2k x 2k demo.

SciTec’s PACMAN tool was used to create the 3D scene

geometry including sensor and targets; that geometry

was used to populate the PRA Toolkit input files (one is

needed for each time point); and the PRA Toolkit output

scene radiance frames were combined with target

Wilbur 5 [35th] Annual

 Small Satellite Conference

signatures and sensor noise to create frames in the final

binary output format. Because the PRA Toolkit

simulations are a time intensive process that scales with

sensor size, only 200 frames were simulated for the 4k x

4k sensor. They were simulated at 10 Hz instead of 20

Hz in order let the simulation cover a larger simulation

time period.

This simulation has some differences from the 3 sensor

OPIR simulation. In terms of sensor geometry, the single

4k x 4k sensor in this dataset is staring along the body-

fixed nadir direction, with a limb-to-limb 124 degree

field of view. The other difference is that while the same

targets as the 3 sensor simulation were used in this

simulation, the targets had their timing shifted to start

earlier so that as many targets as possible were active and

boosting during the smaller 20 second window that was

simulated for the 4k x 4k scenario. An example 4k x 4k

image with target trajectories overlaid is shown in Figure

2-4

Figure 2-4. Example 4k x 4k OPIR background

frame with target trajectories overlaid

The mission data processing pipeline used the same steps

as in the 3 Sensor, 2k x 2k pixel OPIR Demonstration.

Because data were only simulated for a single sensor

instead of 3 sensors (thereby providing stereo coverage),

this demonstration was meant primarily to test data flow

and the background suppression and mono-sensor

tracking components of the processing architecture.

Figure 2-5. Overview of SAR Demonstration Scenario

3. SYNTHETIC APERTURE RADAR (SAR)

DEMONSTRATION

The top level configuration of the SAR sensor prototype

scenario is shown in Figure 2-5. In contrast to the OPIR

prototypes, the SAR prototype was demonstrated by

initiating the simulated data from a Docker container

residing on a personal computer connected to the internet

via a Starlink connection.

Wilbur 6 [35th] Annual

 Small Satellite Conference

The SAR prototype used the following configuration:

• Data for SAR sensor initiated in personal computer

Docker container connected to a Starlink internet

connection

• Data flowed into an S3 bucket in the us-west-2

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region

• Final processing of satellite data back into raw

format, transfer of data to MDP, and MDP

processing in us-gov-west-1 (Oregon) AWS

GovCloud region

In addition to testing the SAR prototype using the

Starlink configuration, tests initiating the SAR data in

the AWS us-east-2 (Ohio) region were executed to assess

the transfer speed that could be obtained through the use

of a high speed connection.

SAR Data Simulation

The standard approach for simulating synthetic aperture

radar (SAR) signals over complex scenes relies on

constructing a set of point reflectors. Point reflectors

model the radar response over a scene and received In-

phase / quadrature (I/Q) signals are computed along the

aperture. For complex or extended scenes where a radar

response is required for every resolution cell in the scene,

this technique can be prohibitively expensive. Axelson

proposes a method for simulating I/Q for stripmap

collected SAR signals circumventing a great deal of the

complexity involved in the standard approach1. In this

approach, a fully processed SAR image is directly

simulated, and passed through an inverted processor to

recover an I/Q signal. We extend Axelson's method to

the case of Spotlight collection mode.

The scene begins with a digital surface map (DSM) and

greyscale image of a two square nautical mile region in

Trento, Italy. The DSM has a true resolution of 1 m x 1

m, and the greyscale image 20 cm x 20 cm. Both are

resampled to 30 cm x 30 cm resolution. The DSM

facilitates a three dimensional geometry model.

Elevation values are leveraged to determine which

resolution cells are shadowed, and which ones exhibit

foreshortening and layover effects. In Figure 3-1, the

direction of the radar pulse is indicated by the arrows in

the top left, where the incidence angle is defined as the

angle between the radar's line of sight and the sensor's

nadir. The count of resolution cells contributing to each

pixel in slant range are indicated at the top of the figure.

Figure 3-1. SAR resolution example

A greyscale image is combined with a set of prior

distributions over terrain types to estimate the actual

radar returns for each resolution cell in the image.

Skolnik proposes a set of distributions for estimating

radar returns based on incidence angle, terrain type (lake,

city, forest, or farmland), and carrier frequency using

real data produced by Sandia Corporation2. We construct

a similar distribution visible light reflection over our

Trento scene by sampling pixels from the greyscale

image and assigning terrain types by hand. This allows

us to estimate a mapping between the visible light

distribution and the radar distribution. That mapping is

applied to every pixel in the greyscale image, yielding an

estimated radar return for each resolution cell in our

scene. These values are combined with the geometric

model above to produce an image–this image resembles

a fully processed SAR signal with perfect noise

mitigation.

The images in Figure 3-2 illustrate the SAR image

formation process. The image on top is a DSM of a small

region in Trento. The image on the bottom shows the

resulting SAR image, where shadows and layovers are

clearly visible, evidence of the slant range geometry

model. To reconstruct the SAR signal, the simulated

SAR image is passed through an inverted processor. The

inverted processor is the mathematical inverse of the

range migration algorithm (RMA) detailed in the

following section. Phase noise and jitter are incorporated

into the inverse processor to improve the authenticity of

the recovered raw I/Q.

Wilbur 7 [35th] Annual

 Small Satellite Conference

Figure 3-2. SAR image formation example

SAR Mission Data Processing

RMA is well suited to imaging large scenes at high

resolution. Carrara points out that "RMA images do not

suffer from the space-variant defocusing and geometric

distortion that wavefront curvature induces with the use

of the [polar format algorithm]"3. One drawback of RMA

is that it requires a high along-track sampling rate. The

input for RMA is a SAR signal after motion

compensation and range deskew, which are considered

to be preprocessing operations. A block diagram of the

processing sequence is shown in Figure 3-3.

The along track Fourier transform translates the SAR

signal into the spatial frequency domain, which

facilitates matched filtering. The matched filter applies a

two dimensional phase compensation, which perfectly

corrects the range curvature of all scatterers with range

equal to that of the scene center. Stolt interpolation then

compensates the range curvature of all scatterers by an

appropriate warping of the SAR signal data. Finally, a

two dimensional inverse Fourier transform compresses

the signal in both range and azimuth to recover a fully

processed image.

Figure 3-3. Block diagram of SAR processing

The Mission Data Processing pipeline was designed to

handle uptake of data from remote sensors, and

subsequent processing and visualization of the data. We

took advantage of the Infrastructure-as-Code

architecture, including containerized applications, to

create a dynamically deployable application suite that is

appropriate for any operating system with access to

gnome terminal and python3.

The Mission Data Processing data transfer application

toolkit is designed to handle data transfer between AWS

storage and compute services, processing the Mission

Data on that compute service, and finally transferring the

data to a local workstation for visualization. These three

action areas are activated by a single IaC script by the

local user, and the remote processing applications are

containerized via docker images. The processing

application could, in principle, be extended to kickoff

processing when images are detected by a secondary

application. The docker images are stored on the elastic

container registry (ECR) on AWS and protected by the

security credentials of the user group.

Upon the execution of the IaC script, an AWS EC2

instance is initialized. This instance is pre-loaded with

the libraries necessary to load the Docker images that

contain the app and is tied to an elastic block storage

(EBS) resource for data storage infrastructure. The EBS

resource used for our demonstrations had 200 GB, but is

generally configurable to the amount desired. The SAR

processing application and the required Python libraries

constituted a docker container that was less than 1.5 GB

in size, leaving a large block of storage available for the

data to be processed.

When the EC2 instance is initialized, the Docker image

is pulled from ECR and containerized, and the remote

Mission Data Processing application is executed. This

application looks for SAR data in a specified address in

the AWS storage service S3 and moves the data from S3

to the EC2 Docker container, where it is processed and

the results are published to a user-specified network

socket. Data streaming is possible, but would be limited

by transport time and processing time.

Wilbur 8 [35th] Annual

 Small Satellite Conference

The IaC local service determines if the remote compute

resources are initialized by attempting to SSH into them

(the EC2 instance). Once the IP is accessible, the other

local application terminals are initialized. There are two

applications that run locally, in conjunction with the

remote containerized application: These are a logging

output window and the Mission Data Receiver-

Visualizer. The logging .output is fetched from the

containerized app on AWS, and is the user's gateway to

seeing the output from the remote app. Information is

published to this logging terminal that reports when any

of the following things happen: 1) new SAR data is

found in a target AWS S3 storage bucket, 2) data is

moved from S3 to EC2, 3) data is being processed by the

SAR decoding application, and 4) data is being sent

down to the local machine.

The second window is the data receiver and visualization

application. This application listens to the network

socket that the remote application publishes to and

creates a visualization of the processed SAR image for

the local user. The visualizer displays the raw test image,

an image of the landscape, and the processed SAR

image.

4. EO-IR AUTOMATED TARGET

RECOGNITION DEMONSTRATION

Similar to the OPIR prototypes, the EO/IR prototype was

demonstrated by initiating the simulated data from a

Docker container residing in a selected AWS region.

The EO/IR prototype used the following configuration:

• Data for EO/IR sensor initiated in the me-south-1

(Bahrain) region

• Data flowed into an S3 bucket in the us-west-2

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region

• Final processing of satellite data back into raw

format, transfer of data to MDP, and MDP

processing in us-gov-west-1 (Oregon) AWS

GovCloud region

In addition to testing the EO/IR prototype using the

Starlink configuration, tests initiating the EO/IR data in

the AWS us-east-2 (Ohio) region were executed to assess

the transfer speed that could be obtained through the use

of Continental United States (CONUS) connection.

EO-IR Data and Mission Data Processing

An algorithm for automatic target recognition (ATR) in

EOIR images was developed. This algorithm uses a

combination of RetinaNet4 and U-NET5 machine

learning architectures to automatically identify targets in

input images. The RetinaNet algorithm was trained on

the xView6 dataset and tested on both xView and SkySat7

datasets. The U-NET algorithm was trained initially

with Landsat data, and then applied to the xView dataset

using transfer learning.

RetinaNet is the machine learning algorithm primarily

responsible for ATR. The detections by RetinaNet are

comprised of a bounding box (x,y coordinates describing

a rectangle around the object), a class label, and a

confidence score denoting how confident the algorithm

is in correctly identifying the target. RetinaNet was

found to have exceptional performance in identifying

targets, but there were significant false positive

detections in clouds. Therefore, U-NET was added to

supplement RetinaNet. U-NET is a classification

algorithm that generates a class label for every individual

pixel in an image and was used to detect clouds and

create a penalty function for detections in clouds. The

combination of RetinaNet and U-NET led to accurate

detections while minimizing false positives.

A depiction of the mission data processing architecture

developed for the EO/IR demonstration is provided in

Figure 4-1.

Figure 4-1. EO/IR Mission Data Processing

architecture

The Mission Data Processing data transfer application

toolkit for EOIR is the same as for what that outlined for

SAR processing above. On the kickoff of the IaC script,

an AWS EC2 instance is initialized. This instance is pre-

loaded with the libraries necessary to load the Docker

images that contain the app and is tied to an EBS

resource for data storage infrastructure. The EBS

Wilbur 9 [35th] Annual

 Small Satellite Conference

resource used for our demonstrations had 200 GB, but is

generally configurable. The EOIR processing

application and the required Python libraries constitute a

docker container of approximately 15 GB in size. The

EOIR container is so much larger than that used for the

SAR demonstration due to the machine-learning

backbone of the application that requires large libraries

for GPU processing.

When the EC2 instance is initialized, the Docker image

is pulled from ECR and containerized and the application

is executed. This application looks for EOIR data in a

specified address in the AWS storage service S3 and

moves the data from S3 to the EC2 Docker container,

where it is processed and results are published to a user

specified network socket.

Once the IP of the EC2 instance is accessible, the other

local application terminals are initialized. Two

applications run locally in conjunction with the remote

containerized application. These are a logging output

window and the Mission Data Receiver-Visualizer. The

logging output is the user's gateway to seeing the output

from the remote app and is fetched from the

containerized app on AWS. Information is published to

this logging terminal, such as reports when: 1) new

EOIR data is found in a target AWS S3 storage bucket,

2) data is moved from S3 to EC2, 3) data is being

processed by the EOIR decoding application, and 4) data

is being sent down to the local machine.

The data receiver and visualization application listen to

the network socket that the remote application publishes

to and creates a visualization of the processed EOIR

image for the local user. That image contains four

subpanels – one of the original image, one of the original

image plus object identification, one of a cloud mask,

and the fourth containing a combination of the cloud

mask and target objects with an associated identification

confidence score.

A screen capture from the EO/IR demonstration is shown

in Figure 4-2

Figure 4-2. Visualization of the output of the EO/IR ATR application

Training the RetinaNet ATR algorithm

The RetinaNet model was trained using the xView

dataset to detect aircraft and boats. The original xView

dataset includes 846 labelled images; however, only a

subset of this dataset was used to train the model. The

subset was determined by removing any images that did

not contain at least one aircraft or boat annotation,

leaving a total of 300 labelled images. These images

were further divided into a training set (237 images) and

a validation set (63 images) via random selection. The

training set was used to train the weights of the

RetinaNet model, while the validation set allowed for

performance evaluation after each training step. Models

were trained between 200 and 500 steps, and the model

with the highest validation performance was selected for

use in the prediction model. In addition to the 300

labeled images, 281 unlabeled images were utilized as a

test set to further validate the model performance. Since

the dataset was unlabeled, accuracy of the model using

the validation set was determined through visual

inspection. Finally, 13 unlabeled images from the

SkySat dataset were used to further probe the accuracy

of the model and determine its performance across

datasets.

A subset of labelled targets provided with the xView

dataset were selected in an effort to reduce the number

of classes included in the initial training sequence,

thereby reducing the amount of training required.

Initially, only aircraft targets were selected, comprising

4 total target classes (Cargo Plane, Small Aircraft, Fixed-

Wing Aircraft, and Helicopter). Later, boat targets were

added to ensure that RetinaNet was capable of learning

new targets. The addition of boats increased the total

target class count to 14.

Due to computational constraints, an image pre-

processing algorithm was designed to segment images

into smaller subimages prior to training and evaluation

in RetinaNet. The xView dataset images were typically

large, with sizes around 3,000 x 3,000 pixels. An image

of this size, after convolution operations within

RetinaNet, exceeds the memory capacity of most

Wilbur 10 [35th] Annual

 Small Satellite Conference

available GPUs. By segmenting the image into multiple

subimages, the computational requirements for

processing images through RetinaNet are reduced. The

subimage size is a tunable parameter, allowing the user

to control the tradeoff between computation requirement

and training time.

Model training was performed in such a way that every

subimage was processed by the model during each

training epoch. A subimage size of 512x512 pixels was

used, resulting in 16,680 total subimages for the training

dataset. Using a 10 GB GPU, subimages were able to be

processed in batches of 4, leading to 4,170 steps per

training epoch. Each step required an average of 400 ms

to process, leading to a total time requirement of 28

minutes per epoch. Models were typically trained for

between 200 and 500 epochs; therefore, training time for

a model required a total of 4-10 days.

A non-maximum suppression (NMS) algorithm was

added at the end of the RetinaNet algorithm to handle

multiple detections of the same object. Multiple

detections became very prolific due to the subimage

strategy described above, since some targets appeared in

multiple images and were detected multiple times. NMS

is a technique which keeps the detection with the highest

confidence score while removing all other detections.

An example of the effects of implementing the NMS

may be seen in Figure 4-3, where the number of

detections is significantly reduced.

Figure 4-3. Comparison of raw RetinaNet detection

and NMS

One of the largest drawbacks discovered with RetinaNet

was significant false positive detections in images

containing clouds. Examples of these false positive

detections may be seen in Figure 4-4. In order to combat

these false positives in RetinaNet, a second algorithm

was implemented into the EO/IR framework: U-NET.

U-NET is a classification algorithm that identifies a class

category for every pixel in an image, which makes it well

suited for cloud detection within EO/IR data.

Figure 4-4. False positive detections (shown in red)

within clouds with no targets present

In order to accurately train U-NET for cloud detection

on the xView dataset, transfer learning was employed

from a different, cloud-labelled dataset. A series of

Landsat8 datafiles8 archived at SciTec was used to

initially train U-NET for cloud detection. Upon

completion of training this model on Landsat8, the

trained model was then used to detect clouds in the

xView dataset. Initial detections on the xView dataset

were poor, however. Clouds were detected well, but

many non-clouds, such as buildings and roads, were also

being detected as clouds. From visual observation, it

appeared that U-NET was detecting the brightest object

in xView images and classifying it as clouds.

To mitigate the errors in transferring U-NET between

Landsat8 and xView, a ground truth for the xView

dataset was developed. Initially, 8 images containing

clouds were selected and a cloud mask was drawn for the

image, by hand, in Microsoft Paint. These manually

constructed cloud masks were provided to U-NET with

the weights from the Landsat8 dataset, with the hope that

additional data on xView would help level out the

erroneous cloud detections. Using the newly trained U-

NET model, 10 additional xView images were predicted.

These had significantly better cloud detections, but still

had some errors. The errors were corrected by hand,

provided back to the U-NET model as training data, and

the process was repeated. After generating and

correcting 100 images from xView, the model results

were deemed sufficiently accurate for detecting clouds.

An example from the fully trained model is shown in

Figure 4-5

Wilbur 11 [35th] Annual

 Small Satellite Conference

Figure 4-5. Clouds in the left image are detected using

the fully trained U-NET model (right)

5. RESULTS – DATA TRANSPORT

In the following sub-sections, we describe PED

performance for each of the demonstrations.

Data transport testing was accomplished using a variety

of different data types / file sizes as summarized in Table

5-1

Table 5-1. Data types / file sizes for PED

demonstrations

Type # Files File Size

(MB)

Notes

OPIR

2k x

2k

495 160 3 sources, 20 frames

per file, 165 files per

source

OPIR

4k x

4k

10 640 20 frames per file,

10 files (20 sec)

SAR 1 666 1 frame

EO/IR 4 21.947-

30.032

Data transport (DT) was tested with three primary

configurations: AWS, AWS + StarLink, and AWS +

Internet. Each test included a Transmitter, Receiver, and

Data Forwarder DT component. Latency measurements

were recorded separately for each of these DT

components. The DT processing functions are depicted

in Figure 5-1. In summary, these functions are described

as follows:

1. Decomm Time: time to extract the data from the

CCSDS formatting

2. Xfer Time (Source to Cloud): time to transfer file

from source to receiver in the Commercial cloud

3. OH: Processing time in Transmitter not included in

steps 1 & 2

4. Lambda Processing: processing time in lambda

function before Data Forwarder is signaled

5. Lambda OH: processing time in lambda function

not related to signaling

6. Xfer time (Comm to GovCloud): time to transfer

file from commercial to GovCloud

7. Decrypt: time to decrypt file at Forwarder

8. Virus Scan: time to virus scan file at Forwarder

9. Xfer to S3: time to transfer file to final S3 bucket in

GovCloud after virus scan is complete

10. Forwarder OH: Processor time in Forwarder not

included in steps 6-9 and is negative due to overlap

with Receiver

CCSDS decoding (or decommutation) occurs in the

ground segment. Although originally, we had had the

decommutation step following transport into GovCloud,

we found that it was more efficient to do it as part of the

pre-processing by the Transmitter function at the ground

station. Since for our architecture, ground station

processing was required to forward or bundle incoming

data into files or other data groupings, it made sense for

the decommutation to occur as part of this processing.

A summary of CCSDS decommutation times and rates is

shown in Table 5-3 for the various data types. Note that

as the file size increases, performance improves, most

likely due to fixed overhead in file processing that is

diluted as the file size increases. Generally, larger files

show a roughly equivalent rate while smaller files suffer

a lower rate most likely due to overhead associated with

performing processing of a file regardless of size.

Decryption and virus scanning cannot occur until the

data reaches the AWS GovCloud; thus, these are

activities performed by the Data Forwarder. For each of

the data types tested, we were able to achieve a rate of

approximately 2,800 Mb/sec. A 160 MB 2k x 2k OPIR

data file, then, took approximately 0.5 sec to decrypt. In

contrast, the virus scanning rate appeared to be linear

with file size – which meant that the time required to scan

a 27.4 MB EO/IR file was 1.39 sec whereas it took 1.59

sec for a 160 MB OPIR 2k x 2k file.

Wilbur 12 [35th] Annual

 Small Satellite Conference

Figure 5-1. DT Processing Steps

Table 5-2. DT Timing Results for Two Typical OPIR Cases

Table 5-3. CCSDS Decommutation Performance

Data

Type

File Size

(MB)

Decomm

Time (s)

Decomm

Rate (Mb/s)

EO/IR

967
21.9 0.12176

180

EO/IR

2132
26.9 0.15119

183

EO/IR

2404
30.0 0.15567

196

EO/IR

2428
30.0 0.20009

170

OPIR

2kx2k

160.0 1.61 833

OPIR

4kx4k

640.0 6.9 736

SAR 666.0 6.1 888

End-to-End Timing for OPIR Data Transport

For the 3-sensor 2k x 2k OPIR demonstration, data for

one source was transmitted from one AWS region (Ohio)

and forwarded to a second region (Oregon). From the

Oregon region, data from two additional sources along

with the Ohio data were transferred to the Oregon

GovCloud, where it was decrypted, virus scanned and

made available to the MDP process.

Example End to end DT timing results for OPIR (2k x

2k) are shown in Figure 5-2.

Wilbur 13 [35th] Annual

 Small Satellite Conference

Figure 5-2. End-to-End Timing Results for OPIR Data Transport

End-to-End Timing for SAR Data Transport

The SpaceX StarLink communications channel was used

to transfer the single 666 MB SAR test data file from the

source (“ground station”) to AWS for mission data

processing. This testing proved to be important because

it uncovered the fact that the original DT design was not

robust against unreliable links. In addition to fixing the

DT response to dropouts, the resulting design change

dramatically improved performance.

The SAR data transport tests were run sourcing the file

from a SpaceX laptop connected to a StarLink data

terminal in the Los Angeles area. Tests were scheduled

during periods when satellite contacts were frequent, but

communications dropouts did occur during many, if not

all, of these runs. The dropouts were a major source of

variation within the tests, but all file transfers were

successful in spite of the dropouts.

On average, the times for SAR file transport were:

• Decomm Time: 5.8 sec

• StarLink Xfer: 484.8 sec

• Xfer AWS Commercial to GovCloud: 3.7 sec

• Decrypt Time: 1.9 sec

• Virus Scan Time: 0.8 sec

• Xfer to Forwarder S3: 4.9 sec

EO/IR End-to-End Data Transport

For the EO/IR demonstration, the data were sourced

from an AWS ground station in Bahrain. Figure 5-3

shows that the transfer from the transmitter in Bahrain to

Mission Data Processing in AWS Oregon is the largest

contributor to the total DT processing time. In addition,

it has the largest variation.

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

Xfer time (s) – CLI to Comm Cloud

Xfer time (s) – Comm Cloud to Gov Cloud

Xfer time (s) – Forwarder S3 (s)

Total Xfer (s)

Wilbur 14 [35th] Annual

 Small Satellite Conference

Pareto analysis for the demo results indicates that

improving the Transmitter - Xfr time would result in the

greatest improvement in reducing the end to end

processing time as it accounts for approximately fifty

percent of the time consumed by the DT process for

EO/IR files. The virus scan time is second, but has a

bimodal feature that suggests the possibility of

improving the time taken the majority of the time. Next,

a speedup of the lambda function would yield the most

improvement.

Figure 5-3. Timing and variance for each of the DT functions for the EO/IR demonstration

6. RESULTS – MISSION DATA

PROCESSING

The full Mission Data Processing (MDP) architecture for

all demonstrations is shown in Figure 6-1

Figure 6-1. Overview of MDP Architecture

MDP Results – 2k x 2k OPIR Demonstration

Six different services were run in the 3 OPIR sensor

demonstration – each on an AWS instance that was

“spun up” using an Infrastructure as Code (IaC) script.

The Data Ingest/Playback application reads and plays

back data frames - A c5.large EC2 instance is used for

each sensor data stream. The BKG Processor ingests

raw, calibrated full-frame images, performs clutter

suppression, and outputs clutter-suppressed full-frame

images. A c5n.4xlarge EC2 instance is provisioned for

each sensor data stream. The TDE Processor ingests the

clutter-suppressed frames, performs track-before-detect

processing (including full-frame detection – or track

initiation, track filtering – or track extension, and signal

extraction) and outputs 2D tracklets. TDE runs on a

c5.4xlarge instance for each sensor datastream. The

CORR Processor ingests 2D tracklets from multiple

sensors, performs multi-sensor measurement correlation,

and outputs associated measurements. One c5.9clarge

EC2 instance is used for all CORR processing. The FUS

Processor ingests associated measurements, performs

state vector estimation, and outputs 3D tracks. It runs on

a c5.2xlarge EC2 instance. Finally, the Data

Analysis/App Dashboard applications serve as the user

interface for executing and running the MDP in AWS.

Each of these applications is run on a c5.large EC2

(Elastic Search) instance.

The 3 sensor OPIR applications are deployed using AWS

c5 EC2 instances to take advantage of the higher

frequency CPUs available in Compute Optimized

instances. The c5 instances contain Intel Scalable

Platinum processors with extremely high core counts and

base frequencies at or above 3.0 GHz. Additionally,

instances with an ‘n’ (ex. ‘c5n.4xlarge’) denote higher

network bandwidth and are used as background

suppression application hosts due to large message sizes

of raw sensor frames. The EC2 instance specifications

are summarized in Table 6-1.

Wilbur 15 [35th] Annual

 Small Satellite Conference

Table 6-1. Summary of AWS EC2 Instances

The MDP architecture was designed for low-latency,

real-time, data intensive processing. The EC2 Instance

type and micro-service based architecture ensures the

application processing scales to handle increased load

from sensor data, while maintaining system

performance. The 3 Sensor OPIR Demonstration

highlighted horizontal application scaling for data

intensive processes. Below, the speed breakdown of

each process per 2k x 2k dataframe is summarized in

Table 6-2.

Table 6-2. 2k x 2k OPIR Demonstration Processing

Latency Summary

The application processing rate for each individual

processing application exceeded the processing rate of

the provided data stream (20 Hz/sensor). As can be seen

in Table 6-2, BKG, TDE, and FUS performed better than

the desired .05 seconds/update needed to stay within the

latency rate of the input data stream. Due to some

network latencies between playback applications and the

Mono-Track applications, the Frame processing total

was slightly below the measurement rate. The

Correlation application, as designed, includes a 5 second

buffer to ensure out of sequence measurements from the

multi-sensor platforms can be properly sequenced before

fusion processing – this introduces latency, but not a

processing bottleneck. Overall, the cloud architecture

demonstrated the ability for processing applications to

scale to the necessary load of the input data streams and

maintain low-latency execution and performance.

MDP Results – 4k x 4k OPIR Sensor Demonstration

The mission data processing pipeline used the same steps

as in the 3 Sensor 2k x 2k OPIR Demonstration. Because

the data being processed is only from a single sensor

instead of 3 sensors providing stereo coverage, this

demonstration was meant primarily to test data flow and

the background suppression and mono-sensor tracking

components of the processing architecture.

The MDP AWS processing for the 4k x 4k

Demonstration showed promising performance for

application processing and highlighted opportunities of

investigation and improvement to ensure low-latency

performance in future efforts. The processing

applications were able to maintain, on average, the rate

of the 10 Hz input 4k data frame. In Figure 6-2, the

application processing times of the applications run

during the 4k x 4k MDP demonstration are shown (top),

including breaking out BKG into component services:

Background suppression, Variance Calculation, and

Autonomous Multiple Model (AMM). This last AMM

service is designed to optimally choose between multiple

background suppression algorithms and also includes the

elements of BKG that package and transmit the

suppressed frame downstream. For this demonstration,

we used a single background suppression algorithm, so

the AMM service within BKG is simply a message

formatter and transmitter.

The application processing speed for the 4k x 4k frame

data was sufficient to support the input data requirement

of the 10 Hz 4k x 4k pixel data stream (~2.68 Gbps, 16

bit data). Minor improvements in application processing

I/O would be desirable to ensure that the data transport

within the MDP chain maintains low-latency for the

required bitrate. The AMM service within BKG was

further analyzed (Figure 6-2, bottom) to break out the

specific application processing times of the internal

services. The plot shows that the latency within the

AMM service was mostly due to the message

serialization, which is part of the communication

processing within the overall service. The AMM

message serialization meant processing speed was

slightly higher than the desired 0.1 second per message,

and thus drives the overall processing latency of the

entire application. Therefore, if we were to reduce the

communication latency, the overall processing of the

application would comfortably keep up with the desired

bitrate of the frame data. In all, the MDP AWS

architecture and applications demonstrate the ability to

support an increased data load, while maintaining low-

latency performance.

Wilbur 16 [35th] Annual

 Small Satellite Conference

Figure 6-2. 4k x 4k OPIR Application and

Communications Processing Times

MDP Results – 30 Sensor 2k x 2k OPIR Demonstration

In order to meet the needs of the objective CASINO

constellation and Blackjack demonstration, ground

processing must be able to scale as nodes are brought

online in the constellation. The 3 Sensor 2k x 2k OPIR

Demonstration proved out the data transport and

processing architecture that originates with simulated

frames and ends with fused 3D tracks; the 30 Sensor

OPIR Demonstration showed the dynamic scalability of

the processing architecture for a much larger scenario.

The 30 sensor demonstration consisted of 10

contemporaneous copies of the 3 sensor demo, for a total

of 30 sensors streaming to the cloud. Because many of

the input streams are copies of each other, they result in

the same processing and 2D track outputs downstream.

This is not as realistic as if a much larger raid were

simulated with multiple satellite orbital planes observing

the scenario, but this simulation clearly shows how the

system performs on a larger scale.

The AWS instances were the same Compute Optimized

EC2 instances used in the 3 Sensor OPIR Demonstration,

elastically scaled to meet the data load of the 30 sensor

demonstration. The Correlation application is not

currently horizontally scalable due to limitations

associated with the algorithms being used, but is a target

of future development at SciTec. The Fusion Processor,

on the other hand, is horizontally scalable, but was not

for this demonstration due to the efficiency of the

algorithms employed which obviated the need to scale.

A summary of the timing latencies recorded for the 30

sensor demonstration is shown in Table 6-3.

Table 6-3. 30-Sensor OPIR MDP Timing Summary

The MDP ability to elastically scale and orchestrate

applications was crucial for the 30 Sensor OPIR

Demonstration. Increasing the number of instances of

background suppression and mono-tracking applications

within the AWS framework provided the necessary

processing power for the large data influx.

The application processing times for the 30 Sensor OPIR

Demonstration were very similar to those of the 3 Sensor

OPIR Demonstration. The BKG and TDE applications

were scaled horizontally to maintain the processing

speeds beyond the required .05 seconds/dataframe. The

highly efficient processing in the track Fusion service did

not require horizontal scaling and still maintained the

processing speeds required for the input data stream.

The single CORR processor used to process incoming

data from all 30 sensors showed increased processing

latency over that observed in the 3 sensor demo due to

the 10x data being received. As mentioned in the above

sections, we are currently working on an enhancement

that will allow CORR to scale horizontally in order to

improve full system throughput. The 30 Sensor OPIR

Demonstration highlighted the MDP elasticity and

orchestration capabilities by maintaining processing

speeds even when taxed by increased data loads.

MDP Results – SAR Demonstration

For the SAR demonstration, a c5.9xlarge EC2 instance

with 72 GB of memory was used. The timing results for

different stages of the SAR processing pipeline are given

in Figure 6-3. The results show the timing for (a) the EC2

to local file transfer, (b) the transfer a 670 MB file from

S3 to EC2, (c) application initialization, and (d) the time

taken to construct a SAR image from raw IQ data. It

Wilbur 17 [35th] Annual

 Small Satellite Conference

should be noted that operationally, the application could

be initialized once and kept running to avoid lengthy

start up times. The raw data file corresponds to high-

precision complex data (complex128) with size 8,760 x

8,760 pixels. The final data product that is transported

to the local user is a 1.7 MB float32 array of RGB values,

hugely reduced from the complex SAR data file. The

time required to process the 1x1 meter resolution image

shown in Figure 6-3 can be decreased with optimized

Fourier transforms.

(a)

(b)

(c)

(d)

Figure 6-3. SAR Timing Results. (a) EC2 to local

visualizer file transfer, (b) transfer from S3 to EC2,

(c) initialization time for the EC2 application, (d)

time required by the SAR application algorithm to

process one 670 MB IQ image

MDP Results – EO/IR Demonstration

For the EO/IR demonstration, we employed a GPU-

enabled g4dn.xlarge instance, which has 16 GB of

memory. Based on a series of data processing trials, the

maximum usage of this instance peaked at ~11%. For

the file sizes tested in the demo (23 to 31.5 MB), the file

transfer times were not sensitive to file size and averaged

~1 sec for transfer between the S3 bucket and EC2 and

~7.8 sec for transfer between EC2 and a local

workstation.

Although the original images were slightly different

sizes, the output product that is transferred over zmq is

the same for each input image, and is displayed as a

7,200 x 1,800 4-panel picture, each with target

Wilbur 18 [35th] Annual

 Small Satellite Conference

recognition or cloud masking results clearly and

separately identified. In Figure 6-4, timing is plotted for

10 trials of the EO/IR processing demonstration.

(a)

(b)

(c)

Figure 6-4. EO/IR Processing Initialization Times

The times shown in Figure 6-4 (a) include EC2 instance

creation, docker initialization, and launching docker.

The times shown in (b) include loading the CUDA

libraries and processing the first image. Figure 6-4 (c)

shows the processing times for the images processed

after library initialization. From the image processing

statistics, it was shown that, if linear, the processing time

scales with slope greater than one with increasing image

area.

7. CONCLUSIONS AND OPERATIONAL

IMPLICATIONS

Over the course of the DT prototype development, the

DT transport and processing components were

optimized to provide a streamlined, low-latency

pipeline. The initial focus of the prototype was to assess

the feasibility of pushing high-rate full-frame OPIR data

sets from a ground station location to a secure cloud

processing location. A high end goal for the prototype

was to determine if data could be streamed in real-time

from multiple receipt locations into a secure cloud

processing center and then processed into actionable

messages disseminated to field assets in a timely manner.

Operational Implications – Data Transport

For the prototype effort the DT was set up to emulate a

transfer process that could be used to transfer data across

the AWS cross-domain diode into a classified processing

region. This emulation necessitated the use of an S3 file-

based transfer between the commercial and ‘secure’

processing regions. Moving data in files and storing the

files into an S3 storage unit introduces latency that could

likely be reduced through the use of streaming

mechanisms. Streaming is a potential future option on

the AWS road-map for cross-domain transfers.

To reduce latency, DT components can be scaled to

perform parallel processing. However, maintaining

order and synchronization of files flowing into the MDP

engines is also required. During development of the

prototype, it was apparent that adding parallel operations

results in increasing the chances of having files show up

out of order, which results in introducing additional

latency to re-order the files prior to pushing the data into

the MDP engines. Introducing a level of ‘store and

forward’ to buffer, and re-order data prior to transferring

the data into the MDP elements is necessary to support

maintaining time ordering.

DT prototype development successfully showed the

ability to push data across the commercial networks and

into a secure processing area. Transfer of full frame data

is likely to occur for operations associated with

validation and/or calibration of on-orbit processing. For

non-real time transport of full-frame data, the ‘store and

forward’ buffering approach can be used effectively.

In an operational version, on-orbit assets are likely to

process the raw sensor frames into intermediate

products. Transferring the intermediate products from

multiple satellites to a secure cloud processing region

Wilbur 19 [35th] Annual

 Small Satellite Conference

where the data can be correlated and fused into tactical

data and disseminated to field assets is well within the

DT capabilities. DT is built and has been demonstrated

to support many different types of data files.

Operational Implications – Mission Data Processing

We demonstrated the ability of three of the four mission

processing services in our OPIR MDP – background

suppression, mono-tracking, and fusion – to horizontally

scale to maintain real-time OPIR performance

processing of data from up to 30 sensors simultaneously.

To operationalize the elastic processing architecture, we

will need to implement horizontal scalability for the one

remaining service - correlation. The re-factoring

required to do this is actively being worked.

One of the most striking findings of this effort, perhaps,

is the very high latency associated with “spinning up”

instances for processing, as well as for transferring data

(either raw data or processed results) from an AWS

instance to a local machine for visualization, analysis, or

further downstream processing. For example,

initializing the SAR and EO/IR EC2 instances and

applications took > 6 minutes. For an operational

system, it is likely that the savings associated with only

turning on instances when needed cannot be realized due

to the latency associated with initialization – i.e., these

instances would have to be always on, or we would need

to establish alternate approaches to dynamically

initializing services in AWS. This is an area for further

research and prototyping.

In each of the CASINO PED mission data processing

demonstrations, we executed IaC scripts that spin up the

required compute services, handle data transfer between

AWS storage and compute services, process the Mission

Data on that compute service, and finally transfer the

data to a local workstation for visualization. Currently,

these IaC scripts are launched by a user each time

processing is desired. For an operational PED system,

processing would be orchestrated automatically, using

metadata attached to the mission data to determine what

processing chain to use, its configurations, and the

resources required to execute the processing.

Currently, the PED Prototype supports full-frame

processing and multi-sensor correlation and fusion to

output 3D tracks from input OPIR sensor data, as well as

SAR data pre-processing and visualization and EO/IR

automatic target recognition and cloud masking.

Although our prototype demonstrates versatility and

multi-mission utility, there is still work to be done in

terms of making the PED prototype compatible with

current operational OPIR systems as well as potential

future CASINO assets. For example, the OPIR

microservices currently expect full frame data and output

mono-sensor 2D tracklets, which are then correlated and

fused to generate 3D tracks. However, in bandwidth

constrained environments, OPIR systems frequently do

not disseminate full frame data and instead produce

exceedances / rep returns, which are then provided to

downstream processes for correlation and fusion.

Although fundamentally, our correlation and fusion

engines can support processing rep returns vs. mono 2D

tracklets, some changes would be needed in the PED

prototype to support this type of processing if required

for targeted systems.

References

1. Sune R.J. Axelsson, “Fast simulation of SAR raw

data from complex scenes,” Proc. SPIE 4543, SAR

Image Analysis, Modeling, and Techniques IV,

2002.

2. Skolnik, Merrill I. Radar Handbook. McGraw-Hill

2008.

3. Carrara, Walter G., et al. Spotlight Synthetic

Aperture Radar: Signal Processing Algorithms.

Artech House Inc, 1995.

4. Lin, T-Y., et al., “Focal Loss for Dense Object

Detection,” arXiv:1708.02002v2, 7 Feb 2018

5. Ronneberger, O., et al., “U-Net: Convolutional

Networks for Biomedical Image Segmentation,”

arXiv:1505.04597v1, 18 May 2015

6. Lam, D., et al., “xView: Objects in context in

Overhead Imagery,” arXiv:1802.07856v1, 22 Feb

2018.

7. https://www.planet.com/products/hi-res-

monitoring/

