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ABSTRACT 

The Air Force’s Space and Missile Systems Center (SMC) recently executed a quick-turnaround (16 month) effort 

through the Defense Innovation Unit to develop a prototype ground architecture demonstrating low-latency 

processing, exploitation, and dissemination of data collected by notional multi-phenomenology sensors hosted on 

small satellites in a proliferated LEO constellation.  This effort, led by the Southwest Research Institute and supported 

by teammates, Amazon Web Services, SpaceX, and SciTec, Inc., involved the modeling and simulation of a variety 

of different OPIR, EO/IR, and SAR data streams; transporting these data via space and ground networks; processing 

the data in the AWS cloud environment; and then disseminating resulting products to tactical users.  In this paper, we 

present an overview of the data transport and mission data processing, performance results from the application of our 

various Mission Data Processing Chains, a summary of our findings on the latencies associated with both data 

transport and data processing, and lessons learned including insight into ground-based vs. on-board processing.

1. INTRODUCTION 

The Southwest Research Institute (SwRI) and teammates 

SciTec, Amazon Web Services (AWS), and SpaceX 

recently delivered a novel, commercial processing, 

exploitation, and dissemination prototype to SMC.  The 

objective was to demonstrate a low-latency, 

horizontally-scalable, PED capability featuring cloud-

based processing for data collected by future payloads 

sensing in multiple modalities hosted on commercial 

spacecraft and downlinked through commercial gateway 

injection points.  

The intent for this prototype was to deliver processed 

data in formats usable by tactical users deployed to 

forward operating locations. The delivered prototype 

addressed a lack of established gateways or processes to 

ingest data collected from DARPA’s BLACKJACK-

capable spacecraft and distribute that data through a 

commercial gateway and seamlessly deliver it to a 

location in theater that needs it most to meet critical 

timelines without significant human-machine interface 

and latency. The SwRI PED prototype effort resulted in 

the generation of a process recommendation, along with 

an associated hardware and software solution using 

Overhead Persistent Infrared (OPIR), Synthetic Aperture 

Radar (SAR) and EO/IR image data as test cases 

delivering capability to users in any Continental United 

States (CONUS) or forward operating location. 

In the following sections, we detail each of the three 

(OPIR, SAR, and EO/IR) demonstrations. 

2. OPIR PROTOTYPE DEMONSTRATION 

For the OPIR demonstration, two scenarios were 

considered:  1) Collection by three OPIR sensors 

collecting frame data with 2,048 x 2,048 pixels at 20 Hz 

on an area of interest with a simulated raid of missile 

threats and 2) Collection by a single OPIR sensor with 

4.096 x 4,096 pixel frames at 10 Hz.  The first scenario 

was intended to exercise the mission data processing 

pipeline, which includes sensor specific processing – i.e., 

background suppression, detection, and 2D tracking – as 

well as track correlation and fusion to generate 3D 

tracks.  The second scenario was intended to expose any 

potential latencies in data transport and sensor-specific 

processing. 

The top level configuration of the primary OPIR 2k x 2k 

sensor prototype scenario is shown in Figure 2-1.  

Simulated sensor data is generated for the three sensors 
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– a single aft mounted sensor on one simulated pLEO 

spacecraft and a fore and aft mounted sensor set on a 

second simulated pLEO spacecraft.   

In this scenario, we used the Amazon Web Services 

(AWS) Ground Station model for a ground antenna site 

capable of receiving a downlink from a Low Earth Orbit 

(LEO) satellite.   This concept co-locates an AWS 

Ground Station antenna with an AWS Data Center.  This 

model allows the data received from a satellite to use 

data center resources for processing and transport 

initiation.  

The 2k x 2k OPIR prototype used the following 

configuration:  

• Data for casino1-aft sensor initiated in us-east-2 

(Ohio) AWS region 

• Data for casino2-aft, casino2-fore sensors initiated 

in us-west-2 (Oregon) AWS region (non-

GovCloud) 

• Data from all sensors flowed independently into a 

Simple Storage Service (S3) bucket in the us-west-

2 (Oregon) region and transferred to the us-gov-

west-1 (Oregon) AWS GovCloud region 

• Final processing of satellite data back into raw 

format, transfer of data to MDP, and MDP 

processing in us-gov-west-1 (Oregon) AWS 

GovCloud region. 

 

Figure 2-1.  Three OPIR Sensor Demonstration Overview

This initial prototype scenario was derived to provide a 

‘stress test’ on the ability of the commercial ground 

resources to transport and then process all data frames 

from the on-orbit OPIR sensors.  In this stress scenario – 

data sets representing all data collected by the OPIR 

sensors are moved through the commercial network, 

prepared for processing, and then processed in a secure 

cloud MDP region.  Adding to the ‘stress’ of the 3-sensor 

scenario – data from multiple sensors will be received at 

different ground stations and must be transferred to a 

common secure cloud processing site within a small time 

window (less than approximately 5 seconds) to ensure all 

data associated with each time slot can be properly 

processed and correlated.    

2k x 2k OPIR Demonstration – Data Transport 

The raw sensor data frames – including 2k x 2k 16 bit 

data frames along with associated meta-data – were 

staged in files.  Each file contained a one second sensor 

data collection, which resulted in 20 frames of the sensor 

plus meta data frames in a single file.  This approach 

creates a 160 Mbyte file to represent each second of data.  

For this scenario, 165 seconds of data for each sensor 

was transported and processed.  The 165 second time 

was selected to simulate filling a potential LEO 

downlink period for a spacecraft in a 1,000 km orbit.   

In order to simulate the need to protect the data during 

the downlink and then transport through non-classified 

regions, the data files for the prototype were encrypted.  

Files were also encoded in Consultative Committee for 
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Space Data Systems (CCSDS) protocol to simulate a 

common protocol used for spacecraft to ground 

communications.   For the prototype, a commercial 

encryption method was used. 

Encrypting and encoding the raw data files used in the 

prototype demonstration occurred prior to initiating the 

transfer of the files through the commercial network to a 

secure cloud processing location.   This order of events 

was selected since the encryption and encoding activities 

would typically occur on the spacecraft and would not 

contribute to latencies associated with ground transport 

and processing activities. 

Prototype execution and timing measurements were 

initiated as each file, containing a 1 sec data set, started 

the data transport process - which includes 

decommutating the CCSDS encoding, transporting the 

file from the origin location to a designated secure cloud 

processing location, and, once there, virus scanning, 

decrypting and passing the data on to an MDP processing 

suite of applications. 

Data files for each individual sensor were staged to 

support the 3-sensor prototype configuration.  Data flow 

for each of the three file sets was configured to be 

initiated via separate tasks staged in Docker containers 

in selected AWS regions. 

2kx2k OPIR Demonstration – Mission Data Processing 

The Mission Data Processing (MDP) architecture 

utilizes Amazon Web Services (AWS) to host mission 

processing applications for Overhead Persistent 

InfraRed (OPIR), Synthetic Aperture Radar (SAR), and 

Electro-Optic/InfraRed (EO/IR) mission data threads.  

The MDP applications form a micro-service oriented 

architecture of advanced mission processing algorithms 

deployed as containerized, elastic services in AWS to 

provide low-latency, high accuracy data exploitation.  

The applications are deployed through Infrastructure as 

Code (IaC) onto AWS Elastic Compute Cloud (EC2) 

instances including multiple Compute Optimized (c5) 

and Accelerating Computing (g4) AWS EC2 virtual 

machines.  The MDP IaC – consisting of Cloud 

Formation scripts and templates - encompasses all 

activities required to provision, deploy, and execute the 

MDP environment.  Autonomous MDP orchestration 

dynamically scales resources and applications based on 

processing load.  All MDP mission threads consist of 

object storage in AWS Simple Storage Service (S3), 

mission specific EC2 instances for processing, and 

messaging services providing data over a defined 

network port for visualization applications to view data 

in near-real-time.   

The 3 sensor OPIR MDP environment consists of 

multiple Compute Optimized (c5) AWS EC2 virtual 

machine instances.  Applications are distributed to 

balance network and computational requirements.  By 

using a micro-service-based architecture, multiple 

applications are easily distributed among multiple 

instances as opposed to requiring very large individual 

EC2 instances sized for the highest anticipated 

processing and network loads.  Our architecture further 

includes the MDP Application Analysis Dashboard 

which provides visualization, system monitoring, and 

data interrogation of the MDP applications in real-time.  

A functional flow diagram of the 2k x 2k OPIR 

processing chain is depicted in Figure 2-2. 

 

Figure 2-2.  Functional flow for the 2k x 2k OPIR 

mission data processing chain 

2k x 2k OPIR Data Simulation 

The OPIR mission data simulation was developed to 

allow for testing of the data transport architecture, while 

also containing realistic sensor and target motion as well 

as sensor noise in order to test the MDP components of 

the ground architecture. The 3 sensor dataset contains 

165 seconds of 20 Hz simulated OPIR frames and 

metadata for two pLEO satellites; one satellite has its 

fore and aft sensors simulated while the other has just the 

aft. The sensors were simulated as body-fixed 2,048 by 

2,048 pixel starers operating as part of the same orbital 

plane and were spaced out to provide maximum stereo 

coverage for downstream processing. Scenes contained 

14 ballistic targets of different range classes, and two 

dim, constant altitude (non-ballistic) targets. 

Scenario geometry and CONOPs were simulated in 

SciTec’s internally developed PACMAN tool, which 

contains modules for simulating orbits, sensors, and 

targets. For the OPIR scenarios, sensors with CASINO 

orbits and body-fixed pointing were placed to maximize 

sensor overlap, and targets were inserted into the 3D 

scenario. The resulting per-frame geometry was then run 

through PRA Toolkit v2. PRA Toolkit, developed by 

Photon Research Associates, uses atmospheric radiative 

transport models such as MODTRAN (v4.0) and 
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MOSART (v1.60) as well as databases of cloud and 

terrain material fractions, altitude maps, and spectral 

responses to generate realistic composite scene images. 

Once the scene images were generated in PRA Toolkit, 

the original PACMAN geometry was used to add the 

targets into the scenes. Finally, Python scripts were used 

to add sensor noise, digitize the frames, and convert 

them, along with their associated metadata to the final 

binary format. 

Mission Data Processing Chain 

The mission data processing chain consists of 

background suppression, mono-track generation, 

correlation, and fusion services. Raw frame data is fed 

into the system and farmed to background suppression 

services on a per-sensor basis.  Background suppressed 

frames are then passed to the mono-track generation 

service, which performs target detection, exceedance 

chip extraction, and track before detect tracking on the 

suppressed frames. This results in 2D tracks that are then 

correlated. The resulting correlated tracks are passed to 

the fusion processor to generate full state estimates. The 

final state estimates are messaged to tactical users and 

can be compared to the truth input tracks through an App 

Analysis Dashboard, shown in Figure 2-3 

 

Figure 2-3.  Screen captures of the App Analysis Dashboard and 3D global track visualizer

The background suppression service and mono-track 

generation services are derived from SciTec’s ARROW 

application and are tuned for the CASINO dataset 

simulations. The service consists of many tunable 

parameters, which allow an operator to select and tune 

the algorithms that are used for suppression, detection, 

extraction, and tracking. These parameters were selected 

with the constraint that they must be able to run at 20 Hz 

for the 2k x 2k frames in the cloud processing 

environment. Otherwise, parameters were tuned to 

detect the targets as early in their trajectories as possible 

and to continue following tracks for as long as possible, 

ideally well into the second stage burns. 

4k x 4k OPIR Demonstration 

The data transport scenario for this demonstration was 

similar to that of the 2k x 2k OPIR demonstration.   

The 4k x 4k OPIR prototype used the following 

configuration: 

• Data for casino 4kx4k sensor initiated in us-east-2 

(Ohio) AWS region 

• Data flowed into an S3 bucket in the us-west-2 

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region 

• Final processing of satellite data back into raw 

format, transfer of data to MDP, and MDP 

processing in us-gov-west-1 (Oregon) AWS 

GovCloud region 

The raw sensor data frames – 4k x 4k pixel, 16 bit data 

frames along with associated meta-data – were staged in 

files.  Each file contained a two second sensor data 

collection, which results in 20 frames (10 frames each 

second) of the sensor plus meta data frames in a single 

file.  This approach creates a 640 Mbyte file to represent 

each two seconds of data.   

As in the case of the 2k x 2k data, the data files for this 

prototype were encrypted and encoded using the CCSDS 

protocol.  Data flow for the file set was configured to be 

initiated via a task staged in a Docker container in a 

selected AWS region. 

4k x 4k OPIR Data Simulation 

Frames and metadata were simulated for the 4k x 4k 

demo in a manner similar to the 3 sensor 2k x 2k demo. 

SciTec’s PACMAN tool was used to create the 3D scene 

geometry including sensor and targets; that geometry 

was used to populate the PRA Toolkit input files (one is 

needed for each time point); and the PRA Toolkit output 

scene radiance frames were combined with target 
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signatures and sensor noise to create frames in the final 

binary output format. Because the PRA Toolkit 

simulations are a time intensive process that scales with 

sensor size, only 200 frames were simulated for the 4k x 

4k sensor. They were simulated at 10 Hz instead of 20 

Hz in order let the simulation cover a larger simulation 

time period. 

This simulation has some differences from the 3 sensor 

OPIR simulation. In terms of sensor geometry, the single 

4k x 4k sensor in this dataset is staring along the body-

fixed nadir direction, with a limb-to-limb 124 degree 

field of view. The other difference is that while the same 

targets as the 3 sensor simulation were used in this 

simulation, the targets had their timing shifted to start 

earlier so that as many targets as possible were active and 

boosting during the smaller 20 second window that was 

simulated for the 4k x 4k scenario.  An example 4k x 4k 

image with target trajectories overlaid is shown in Figure 

2-4 

 

Figure 2-4.  Example 4k x 4k OPIR background 

frame with target trajectories overlaid 

The mission data processing pipeline used the same steps 

as in the 3 Sensor, 2k x 2k pixel OPIR Demonstration. 

Because data were only simulated for a single sensor 

instead of 3 sensors (thereby providing stereo coverage), 

this demonstration was meant primarily to test data flow 

and the background suppression and mono-sensor 

tracking components of the processing architecture.  

 

Figure 2-5.  Overview of SAR Demonstration Scenario

3. SYNTHETIC APERTURE RADAR (SAR) 

DEMONSTRATION 

The top level configuration of the SAR sensor prototype 

scenario is shown in Figure 2-5.  In contrast to the OPIR 

prototypes, the SAR prototype was demonstrated by 

initiating the simulated data from a Docker container 

residing on a personal computer connected to the internet 

via a Starlink connection. 
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The SAR prototype used the following configuration: 

• Data for SAR sensor initiated in personal computer 

Docker container connected to a Starlink internet 

connection 

• Data flowed into an S3 bucket in the us-west-2 

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region 

• Final processing of satellite data back into raw 

format, transfer of data to MDP, and MDP 

processing in us-gov-west-1 (Oregon) AWS 

GovCloud region 

In addition to testing the SAR prototype using the 

Starlink configuration, tests initiating the SAR data in 

the AWS us-east-2 (Ohio) region were executed to assess 

the transfer speed that could be obtained through the use 

of a high speed connection. 

SAR Data Simulation 

The standard approach for simulating synthetic aperture 

radar (SAR) signals over complex scenes relies on 

constructing a set of point reflectors. Point reflectors 

model the radar response over a scene and received In-

phase / quadrature (I/Q) signals are computed along the 

aperture. For complex or extended scenes where a radar 

response is required for every resolution cell in the scene, 

this technique can be prohibitively expensive. Axelson 

proposes a method for simulating I/Q for stripmap 

collected SAR signals circumventing a great deal of the 

complexity involved in the standard approach1. In this 

approach, a fully processed SAR image is directly 

simulated, and passed through an inverted processor to 

recover an I/Q signal. We extend Axelson's method to 

the case of Spotlight collection mode. 

The scene begins with a digital surface map (DSM) and 

greyscale image of a two square nautical mile region in 

Trento, Italy. The DSM has a true resolution of 1 m x 1 

m, and the greyscale image 20 cm x 20 cm. Both are 

resampled to 30 cm x 30 cm resolution. The DSM 

facilitates a three dimensional geometry model. 

Elevation values are leveraged to determine which 

resolution cells are shadowed, and which ones exhibit 

foreshortening and layover effects. In Figure 3-1, the 

direction of the radar pulse is indicated by the arrows in 

the top left, where the incidence angle is defined as the 

angle between the radar's line of sight and the sensor's 

nadir. The count of resolution cells contributing to each 

pixel in slant range are indicated at the top of the figure. 

 

Figure 3-1.  SAR resolution example 

A greyscale image is combined with a set of prior 

distributions over terrain types to estimate the actual 

radar returns for each resolution cell in the image. 

Skolnik proposes a set of distributions for estimating 

radar returns based on incidence angle, terrain type (lake, 

city, forest, or farmland), and carrier frequency using 

real data produced by Sandia Corporation2. We construct 

a similar distribution visible light reflection over our 

Trento scene by sampling pixels from the greyscale 

image and assigning terrain types by hand. This allows 

us to estimate a mapping between the visible light 

distribution and the radar distribution. That mapping is 

applied to every pixel in the greyscale image, yielding an 

estimated radar return for each resolution cell in our 

scene. These values are combined with the geometric 

model above to produce an image–this image resembles 

a fully processed SAR signal with perfect noise 

mitigation. 

The images in Figure 3-2 illustrate the SAR image 

formation process. The image on top is a DSM of a small 

region in Trento. The image on the bottom shows the 

resulting SAR image, where shadows and layovers are 

clearly visible, evidence of the slant range geometry 

model. To reconstruct the SAR signal, the simulated 

SAR image is passed through an inverted processor. The 

inverted processor is the mathematical inverse of the 

range migration algorithm (RMA) detailed in the 

following section. Phase noise and jitter are incorporated 

into the inverse processor to improve the authenticity of 

the recovered raw I/Q. 
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Figure 3-2.  SAR image formation example 

SAR Mission Data Processing 

RMA is well suited to imaging large scenes at high 

resolution. Carrara points out that "RMA images do not 

suffer from the space-variant defocusing and geometric 

distortion that wavefront curvature induces with the use 

of the [polar format algorithm]"3. One drawback of RMA 

is that it requires a high along-track sampling rate. The 

input for RMA is a SAR signal after motion 

compensation and range deskew, which are considered 

to be preprocessing operations. A block diagram of the 

processing sequence is shown in Figure 3-3. 

The along track Fourier transform translates the SAR 

signal into the spatial frequency domain, which 

facilitates matched filtering. The matched filter applies a 

two dimensional phase compensation, which perfectly 

corrects the range curvature of all scatterers with range 

equal to that of the scene center. Stolt interpolation then 

compensates the range curvature of all scatterers by an 

appropriate warping of the SAR signal data. Finally, a 

two dimensional inverse Fourier transform compresses 

the signal in both range and azimuth to recover a fully 

processed image. 

 

Figure 3-3.  Block diagram of SAR processing 

The Mission Data Processing pipeline was designed to 

handle uptake of data from remote sensors, and 

subsequent processing and visualization of the data. We 

took advantage of the Infrastructure-as-Code 

architecture, including containerized applications, to 

create a dynamically deployable application suite that is 

appropriate for any operating system with access to 

gnome terminal and python3. 

The Mission Data Processing data transfer application 

toolkit is designed to handle data transfer between AWS 

storage and compute services, processing the Mission 

Data on that compute service, and finally transferring the 

data to a local workstation for visualization. These three 

action areas are activated by a single IaC script by the 

local user, and the remote processing applications are 

containerized via docker images. The processing 

application could, in principle, be extended to kickoff 

processing when images are detected by a secondary 

application. The docker images are stored on the elastic 

container registry (ECR) on AWS and protected by the 

security credentials of the user group. 

Upon the execution of the IaC script, an AWS EC2 

instance is initialized. This instance is pre-loaded with 

the libraries necessary to load the Docker images that 

contain the app and is tied to an elastic block storage 

(EBS) resource for data storage infrastructure. The EBS 

resource used for our demonstrations had 200 GB, but is 

generally configurable to the amount desired. The SAR 

processing application and the required Python libraries 

constituted a docker container that was less than 1.5 GB 

in size, leaving a large block of storage available for the 

data to be processed. 

When the EC2 instance is initialized, the Docker image 

is pulled from ECR and containerized, and the remote 

Mission Data Processing application is executed. This 

application looks for SAR data in a specified address in 

the AWS storage service S3 and moves the data from S3 

to the EC2 Docker container, where it is processed and 

the results are published to a user-specified network 

socket. Data streaming is possible, but would be limited 

by transport time and processing time.  
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The IaC local service determines if the remote compute 

resources are initialized by attempting to SSH into them 

(the EC2 instance). Once the IP is accessible, the other 

local application terminals are initialized. There are two 

applications that run locally, in conjunction with the 

remote containerized application: These are a logging 

output window and the Mission Data Receiver-

Visualizer. The logging .output is fetched from the 

containerized app on AWS, and is the user's gateway to 

seeing the output from the remote app. Information is 

published to this logging terminal that reports when any 

of the following things happen:  1) new SAR data is 

found in a target AWS S3 storage bucket, 2) data is 

moved from S3 to EC2, 3) data is being processed by the 

SAR decoding application, and 4) data is being sent 

down to the local machine. 

The second window is the data receiver and visualization 

application. This application listens to the network 

socket that the remote application publishes to and 

creates a visualization of the processed SAR image for 

the local user. The visualizer displays the raw test image, 

an image of the landscape, and the processed SAR 

image. 

4. EO-IR AUTOMATED TARGET 

RECOGNITION DEMONSTRATION 

Similar to the OPIR prototypes, the EO/IR prototype was 

demonstrated by initiating the simulated data from a 

Docker container residing in a selected AWS region.    

The EO/IR prototype used the following configuration: 

• Data for EO/IR sensor initiated in the me-south-1 

(Bahrain) region 

• Data flowed into an S3 bucket in the us-west-2 

(Oregon) region and transferred to the us-gov-west-

1 (Oregon) AWS GovCloud region 

• Final processing of satellite data back into raw 

format, transfer of data to MDP, and MDP 

processing in us-gov-west-1 (Oregon) AWS 

GovCloud region 

In addition to testing the EO/IR prototype using the 

Starlink configuration, tests initiating the EO/IR data in 

the AWS us-east-2 (Ohio) region were executed to assess 

the transfer speed that could be obtained through the use 

of Continental United States (CONUS) connection. 

EO-IR Data and Mission Data Processing 

An algorithm for automatic target recognition (ATR) in 

EOIR images was developed.  This algorithm uses a 

combination of RetinaNet4 and U-NET5 machine 

learning architectures to automatically identify targets in 

input images.  The RetinaNet algorithm was trained on 

the xView6 dataset and tested on both xView and SkySat7 

datasets.  The U-NET algorithm was trained initially 

with Landsat data, and then applied to the xView dataset 

using transfer learning.   

RetinaNet is the machine learning algorithm primarily 

responsible for ATR. The detections by RetinaNet are 

comprised of a bounding box (x,y coordinates describing 

a rectangle around the object), a class label, and a 

confidence score denoting how confident the algorithm 

is in correctly identifying the target.  RetinaNet was 

found to have exceptional performance in identifying 

targets, but there were significant false positive 

detections in clouds.  Therefore, U-NET was added to 

supplement RetinaNet. U-NET is a classification 

algorithm that generates a class label for every individual 

pixel in an image and was used to detect clouds and 

create a penalty function for detections in clouds.  The 

combination of RetinaNet and U-NET led to accurate 

detections while minimizing false positives. 

A depiction of the mission data processing architecture 

developed for the EO/IR demonstration is provided in 

Figure 4-1. 

 

Figure 4-1.  EO/IR Mission Data Processing 

architecture 

The Mission Data Processing data transfer application 

toolkit for EOIR is the same as for what that outlined for 

SAR processing above.  On the kickoff of the IaC script, 

an AWS EC2 instance is initialized. This instance is pre-

loaded with the libraries necessary to load the Docker 

images that contain the app and is tied to an EBS 

resource for data storage infrastructure. The EBS 
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resource used for our demonstrations had 200 GB, but is 

generally configurable. The EOIR processing 

application and the required Python libraries constitute a 

docker container of approximately 15 GB in size. The 

EOIR container is so much larger than that used for the 

SAR demonstration due to the machine-learning 

backbone of the application that requires large libraries 

for GPU processing. 

When the EC2 instance is initialized, the Docker image 

is pulled from ECR and containerized and the application 

is executed. This application looks for EOIR data in a 

specified address in the AWS storage service S3 and 

moves the data from S3 to the EC2 Docker container, 

where it is processed and results are published to a user 

specified network socket. 

Once the IP of the EC2 instance is accessible, the other 

local application terminals are initialized. Two 

applications run locally in conjunction with the remote 

containerized application. These are a logging output 

window and the Mission Data Receiver-Visualizer. The 

logging output is the user's gateway to seeing the output 

from the remote app and is fetched from the 

containerized app on AWS. Information is published to 

this logging terminal, such as reports when:  1) new 

EOIR data is found in a target AWS S3 storage bucket, 

2) data is moved from S3 to EC2, 3) data is being 

processed by the EOIR decoding application, and 4) data 

is being sent down to the local machine. 

The data receiver and visualization application listen to 

the network socket that the remote application publishes 

to and creates a visualization of the processed EOIR 

image for the local user. That image contains four 

subpanels – one of the original image, one of the original 

image plus object identification, one of a cloud mask, 

and the fourth containing a combination of the cloud 

mask and target objects with an associated identification 

confidence score. 

A screen capture from the EO/IR demonstration is shown 

in Figure 4-2 

 

Figure 4-2.  Visualization of the output of the EO/IR ATR application

Training the RetinaNet ATR algorithm 

The RetinaNet model was trained using the xView 

dataset to detect aircraft and boats.  The original xView 

dataset includes 846 labelled images; however, only a 

subset of this dataset was used to train the model.  The 

subset was determined by removing any images that did 

not contain at least one aircraft or boat annotation, 

leaving a total of 300 labelled images.  These images 

were further divided into a training set (237 images) and 

a validation set (63 images) via random selection.  The 

training set was used to train the weights of the 

RetinaNet model, while the validation set allowed for 

performance evaluation after each training step.  Models 

were trained between 200 and 500 steps, and the model 

with the highest validation performance was selected for 

use in the prediction model.  In addition to the 300 

labeled images, 281 unlabeled images were utilized as a 

test set to further validate the model performance.  Since 

the dataset was unlabeled, accuracy of the model using 

the validation set was determined through visual 

inspection.  Finally, 13 unlabeled images from the 

SkySat dataset were used to further probe the accuracy 

of the model and determine its performance across 

datasets. 

A subset of labelled targets provided with the xView 

dataset were selected in an effort to reduce the number 

of classes included in the initial training sequence, 

thereby reducing the amount of training required.  

Initially, only aircraft targets were selected, comprising 

4 total target classes (Cargo Plane, Small Aircraft, Fixed-

Wing Aircraft, and Helicopter).  Later, boat targets were 

added to ensure that RetinaNet was capable of learning 

new targets.  The addition of boats increased the total 

target class count to 14. 

Due to computational constraints, an image pre-

processing algorithm was designed to segment images 

into smaller subimages prior to training and evaluation 

in RetinaNet.  The xView dataset images were typically 

large, with sizes around 3,000 x 3,000 pixels.  An image 

of this size, after convolution operations within 

RetinaNet, exceeds the memory capacity of most 
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available GPUs.  By segmenting the image into multiple 

subimages, the computational requirements for 

processing images through RetinaNet are reduced.  The 

subimage size is a tunable parameter, allowing the user 

to control the tradeoff between computation requirement 

and training time. 

Model training was performed in such a way that every 

subimage was processed by the model during each 

training epoch.  A subimage size of 512x512 pixels was 

used, resulting in 16,680 total subimages for the training 

dataset.  Using a 10 GB GPU, subimages were able to be 

processed in batches of 4, leading to 4,170 steps per 

training epoch.  Each step required an average of 400 ms 

to process, leading to a total time requirement of 28 

minutes per epoch.  Models were typically trained for 

between 200 and 500 epochs; therefore, training time for 

a model required a total of 4-10 days. 

A non-maximum suppression (NMS) algorithm was 

added at the end of the RetinaNet algorithm to handle 

multiple detections of the same object.  Multiple 

detections became very prolific due to the subimage 

strategy described above, since some targets appeared in 

multiple images and were detected multiple times.  NMS 

is a technique which keeps the detection with the highest 

confidence score while removing all other detections.  

An example of the effects of implementing the NMS 

may be seen in Figure 4-3, where the number of 

detections is significantly reduced. 

 

Figure 4-3.  Comparison of raw RetinaNet detection 

and NMS 

One of the largest drawbacks discovered with RetinaNet 

was significant false positive detections in images 

containing clouds.  Examples of these false positive 

detections may be seen in Figure 4-4.  In order to combat 

these false positives in RetinaNet, a second algorithm 

was implemented into the EO/IR framework: U-NET.  

U-NET is a classification algorithm that identifies a class 

category for every pixel in an image, which makes it well 

suited for cloud detection within EO/IR data. 

 

Figure 4-4.  False positive detections (shown in red) 

within clouds with no targets present 

In order to accurately train U-NET for cloud detection 

on the xView dataset, transfer learning was employed 

from a different, cloud-labelled dataset.  A series of 

Landsat8 datafiles8 archived at SciTec was used to 

initially train U-NET for cloud detection.  Upon 

completion of training this model on Landsat8, the 

trained model was then used to detect clouds in the 

xView dataset.  Initial detections on the xView dataset 

were poor, however.  Clouds were detected well, but 

many non-clouds, such as buildings and roads, were also 

being detected as clouds.  From visual observation, it 

appeared that U-NET was detecting the brightest object 

in xView images and classifying it as clouds.   

To mitigate the errors in transferring U-NET between 

Landsat8 and xView, a ground truth for the xView 

dataset was developed.  Initially, 8 images containing 

clouds were selected and a cloud mask was drawn for the 

image, by hand, in Microsoft Paint.  These manually 

constructed cloud masks were provided to U-NET with 

the weights from the Landsat8 dataset, with the hope that 

additional data on xView would help level out the 

erroneous cloud detections.  Using the newly trained U-

NET model, 10 additional xView images were predicted.  

These had significantly better cloud detections, but still 

had some errors.  The errors were corrected by hand, 

provided back to the U-NET model as training data, and 

the process was repeated.  After generating and 

correcting 100 images from xView, the model results 

were deemed sufficiently accurate for detecting clouds.  

An example from the fully trained model is shown in 

Figure 4-5 
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Figure 4-5. Clouds in the left image are detected using 

the fully trained U-NET model (right) 

 

5. RESULTS – DATA TRANSPORT 

In the following sub-sections, we describe PED 

performance for each of the demonstrations. 

Data transport testing was accomplished using a variety 

of different data types / file sizes as summarized in Table 

5-1 

Table 5-1.  Data types / file sizes for PED 

demonstrations 

Type # Files File Size 

(MB) 

Notes 

OPIR 

2k x 

2k 

495 160 3 sources, 20 frames 

per file, 165 files per 

source 

OPIR 

4k x 

4k 

10 640 20 frames per file, 

10 files (20 sec) 

SAR 1 666 1 frame 

EO/IR 4 21.947-

30.032 

 

 

Data transport (DT) was tested with three primary 

configurations: AWS, AWS + StarLink, and AWS + 

Internet. Each test included a Transmitter, Receiver, and 

Data Forwarder DT component.  Latency measurements 

were recorded separately for each of these DT 

components.  The DT processing functions are depicted 

in Figure 5-1.  In summary, these functions are described 

as follows: 

1. Decomm Time:  time to extract the data from the 

CCSDS formatting 

2. Xfer Time (Source to Cloud):  time to transfer file 

from source to receiver in the Commercial cloud 

3. OH:  Processing time in Transmitter not included in 

steps 1 & 2 

4. Lambda Processing:  processing time in lambda 

function before Data Forwarder is signaled 

5. Lambda OH:  processing time in lambda function 

not related to signaling 

6. Xfer time (Comm to GovCloud):  time to transfer 

file from commercial to GovCloud 

7. Decrypt:  time to decrypt file at Forwarder 

8. Virus Scan:  time to virus scan file at Forwarder 

9. Xfer to S3:  time to transfer file to final S3 bucket in 

GovCloud after virus scan is complete 

10. Forwarder OH:  Processor time in Forwarder not 

included in steps 6-9 and is negative due to overlap 

with Receiver 

 

CCSDS decoding (or decommutation) occurs in the 

ground segment. Although originally, we had had the 

decommutation step following transport into GovCloud, 

we found that it was more efficient to do it as part of the 

pre-processing by the Transmitter function at the ground 

station. Since for our architecture, ground station 

processing was required to forward or bundle incoming 

data into files or other data groupings, it made sense for 

the decommutation to occur as part of this processing.  

A summary of CCSDS decommutation times and rates is 

shown in Table 5-3 for the various data types. Note that 

as the file size increases, performance improves, most 

likely due to fixed overhead in file processing that is 

diluted as the file size increases. Generally, larger files 

show a roughly equivalent rate while smaller files suffer 

a lower rate most likely due to overhead associated with 

performing processing of a file regardless of size. 

Decryption and virus scanning cannot occur until the 

data reaches the AWS GovCloud; thus, these are 

activities performed by the Data Forwarder.  For each of 

the data types tested, we were able to achieve a rate of 

approximately 2,800 Mb/sec.  A 160 MB 2k x 2k OPIR 

data file, then, took approximately 0.5 sec to decrypt.  In 

contrast, the virus scanning rate appeared to be linear 

with file size – which meant that the time required to scan 

a 27.4 MB EO/IR file was 1.39 sec whereas it took 1.59 

sec for a 160 MB OPIR 2k x 2k file. 
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Figure 5-1.  DT Processing Steps 

 

Table 5-2.  DT Timing Results for Two Typical OPIR Cases 

Table 5-3.  CCSDS Decommutation Performance 

Data 

Type 

File Size 

(MB) 

Decomm 

Time (s) 

Decomm 

Rate (Mb/s) 

EO/IR 

967 
21.9 0.12176 

180 

EO/IR 

2132 
26.9 0.15119 

183 

EO/IR 

2404 
30.0 0.15567 

196 

EO/IR 

2428 
30.0 0.20009 

170 

OPIR 

2kx2k 

160.0 1.61 833 

OPIR 

4kx4k 

640.0 6.9 736 

SAR 666.0 6.1 888 

End-to-End Timing for OPIR Data Transport 

For the 3-sensor 2k x 2k OPIR demonstration, data for 

one source was transmitted from one AWS region (Ohio) 

and forwarded to a second region (Oregon). From the 

Oregon region, data from two additional sources along 

with the Ohio data were transferred to the Oregon 

GovCloud, where it was decrypted, virus scanned and 

made available to the MDP process.  

Example End to end DT timing results for OPIR (2k x 

2k) are shown in Figure 5-2.   
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Figure 5-2.  End-to-End Timing Results for OPIR Data Transport 

 

End-to-End Timing for SAR Data Transport 

The SpaceX StarLink communications channel was used 

to transfer the single 666 MB SAR test data file from the 

source (“ground station”) to AWS for mission data 

processing. This testing proved to be important because 

it uncovered the fact that the original DT design was not 

robust against unreliable links. In addition to fixing the 

DT response to dropouts, the resulting design change 

dramatically improved performance.  

The SAR data transport tests were run sourcing the file 

from a SpaceX laptop connected to a StarLink data 

terminal in the Los Angeles area. Tests were scheduled 

during periods when satellite contacts were frequent, but 

communications dropouts did occur during many, if not 

all, of these runs. The dropouts were a major source of 

variation within the tests, but all file transfers were 

successful in spite of the dropouts. 

On average, the times for SAR file transport were:   

• Decomm Time:  5.8 sec 

• StarLink Xfer:  484.8 sec 

• Xfer AWS Commercial to GovCloud:  3.7 sec 

• Decrypt Time:  1.9 sec 

• Virus Scan Time:  0.8 sec 

• Xfer to Forwarder S3:  4.9 sec 

 

EO/IR End-to-End Data Transport 

For the EO/IR demonstration, the data were sourced 

from an AWS ground station in Bahrain.  Figure 5-3 

shows that the transfer from the transmitter in Bahrain to 

Mission Data Processing in AWS Oregon is the largest 

contributor to the total DT processing time. In addition, 

it has the largest variation. 

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

3 Jan 2021

8 Jan 2021

Xfer time (s) – CLI to Comm Cloud

Xfer time (s) – Comm Cloud to Gov Cloud

Xfer time (s) – Forwarder S3 (s)

Total Xfer (s)
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Pareto analysis for the demo results indicates that 

improving the Transmitter - Xfr time would result in the 

greatest improvement in reducing the end to end 

processing time as it accounts for approximately fifty 

percent of the time consumed by the DT process for 

EO/IR files. The virus scan time is second, but has a 

bimodal feature that suggests the possibility of 

improving the time taken the majority of the time. Next, 

a speedup of the lambda function would yield the most 

improvement.

 

Figure 5-3.  Timing and variance for each of the DT functions for the EO/IR demonstration 

 

6. RESULTS – MISSION DATA 

PROCESSING 

The full Mission Data Processing (MDP) architecture for 

all demonstrations is shown in Figure 6-1 

 

Figure 6-1.  Overview of MDP Architecture 

 

MDP Results – 2k x 2k OPIR Demonstration 

Six different services were run in the 3 OPIR sensor 

demonstration – each on an AWS instance that was 

“spun up” using an Infrastructure as Code (IaC) script.  

The Data Ingest/Playback application reads and plays 

back data frames - A c5.large EC2 instance is used for 

each sensor data stream.  The BKG Processor ingests 

raw, calibrated full-frame images, performs clutter 

suppression, and outputs clutter-suppressed full-frame 

images.  A c5n.4xlarge EC2 instance is provisioned for 

each sensor data stream.  The TDE Processor ingests the 

clutter-suppressed frames, performs track-before-detect 

processing (including full-frame detection – or track 

initiation, track filtering – or track extension, and signal 

extraction) and outputs 2D tracklets.  TDE runs on a 

c5.4xlarge instance for each sensor datastream.  The 

CORR Processor ingests 2D tracklets from multiple 

sensors, performs multi-sensor measurement correlation, 

and outputs associated measurements.  One c5.9clarge 

EC2 instance is used for all CORR processing.  The FUS 

Processor ingests associated measurements, performs 

state vector estimation, and outputs 3D tracks.  It runs on 

a c5.2xlarge EC2 instance.  Finally, the Data 

Analysis/App Dashboard applications serve as the user 

interface for executing and running the MDP in AWS.  

Each of these applications is run on a c5.large EC2 

(Elastic Search) instance.   

The 3 sensor OPIR applications are deployed using AWS 

c5 EC2 instances to take advantage of the higher 

frequency CPUs available in Compute Optimized 

instances.  The c5 instances contain Intel Scalable 

Platinum processors with extremely high core counts and 

base frequencies at or above 3.0 GHz.  Additionally, 

instances with an ‘n’ (ex. ‘c5n.4xlarge’) denote higher 

network bandwidth and are used as background 

suppression application hosts due to large message sizes 

of raw sensor frames.  The EC2 instance specifications 

are summarized in Table 6-1. 
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Table 6-1.  Summary of AWS EC2 Instances 

 

The MDP architecture was designed for low-latency, 

real-time, data intensive processing.  The EC2 Instance 

type and micro-service based architecture ensures the 

application processing scales to handle increased load 

from sensor data, while maintaining system 

performance.  The 3 Sensor OPIR Demonstration 

highlighted horizontal application scaling for data 

intensive processes.  Below, the speed breakdown of 

each process per 2k x 2k dataframe is summarized in 

Table 6-2. 

Table 6-2.  2k x 2k OPIR Demonstration Processing 

Latency Summary 

 

The application processing rate for each individual 

processing application exceeded the processing rate of 

the provided data stream (20 Hz/sensor).  As can be seen 

in Table 6-2, BKG, TDE, and FUS performed better than 

the desired .05 seconds/update needed to stay within the 

latency rate of the input data stream.  Due to some 

network latencies between playback applications and the 

Mono-Track applications, the Frame processing total 

was slightly below the measurement rate.  The 

Correlation application, as designed, includes a 5 second 

buffer to ensure out of sequence measurements from the 

multi-sensor platforms can be properly sequenced before 

fusion processing – this introduces latency, but not a 

processing bottleneck. Overall, the cloud architecture 

demonstrated the ability for processing applications to 

scale to the necessary load of the input data streams and 

maintain low-latency execution and performance. 

MDP Results – 4k x 4k OPIR Sensor Demonstration 

The mission data processing pipeline used the same steps 

as in the 3 Sensor 2k x 2k OPIR Demonstration. Because 

the data being processed is only from a single sensor 

instead of 3 sensors providing stereo coverage, this 

demonstration was meant primarily to test data flow and 

the background suppression and mono-sensor tracking 

components of the processing architecture. 

The MDP AWS processing for the 4k x 4k 

Demonstration showed promising performance for 

application processing and highlighted opportunities of 

investigation and improvement to ensure low-latency 

performance in future efforts.  The processing 

applications were able to maintain, on average, the rate 

of the 10 Hz input 4k data frame.  In Figure 6-2, the 

application processing times of the applications run 

during the 4k x 4k MDP demonstration are shown (top), 

including breaking out BKG into component services: 

Background suppression, Variance Calculation, and 

Autonomous Multiple Model (AMM). This last AMM 

service is designed to optimally choose between multiple 

background suppression algorithms and also includes the 

elements of BKG that package and transmit the 

suppressed frame downstream. For this demonstration, 

we used a single background suppression algorithm, so 

the AMM service within BKG is simply a message 

formatter and transmitter.   

The application processing speed for the 4k x 4k frame 

data was sufficient to support the input data requirement 

of the 10 Hz 4k x 4k pixel data stream (~2.68 Gbps, 16 

bit data).  Minor improvements in application processing 

I/O would be desirable to ensure that the data transport 

within the MDP chain maintains low-latency for the 

required bitrate.  The AMM service within BKG was 

further analyzed (Figure 6-2, bottom) to break out the 

specific application processing times of the internal 

services.  The plot shows that the latency within the 

AMM service was mostly due to the message 

serialization, which is part of the communication 

processing within the overall service.  The AMM 

message serialization meant processing speed was 

slightly higher than the desired 0.1 second per message, 

and thus drives the overall processing latency of the 

entire application.  Therefore, if we were to reduce the 

communication latency, the overall processing of the 

application would comfortably keep up with the desired 

bitrate of the frame data.  In all, the MDP AWS 

architecture and applications demonstrate the ability to 

support an increased data load, while maintaining low-

latency performance. 



Wilbur 16 [35th] Annual 

  Small Satellite Conference 

 

 

Figure 6-2. 4k x 4k OPIR Application and 

Communications Processing Times 

MDP Results – 30 Sensor 2k x 2k OPIR Demonstration 

In order to meet the needs of the objective CASINO 

constellation and Blackjack demonstration, ground 

processing must be able to scale as nodes are brought 

online in the constellation. The 3 Sensor 2k x 2k OPIR 

Demonstration proved out the data transport and 

processing architecture that originates with simulated 

frames and ends with fused 3D tracks; the 30 Sensor 

OPIR Demonstration showed the dynamic scalability of 

the processing architecture for a much larger scenario. 

The 30 sensor demonstration consisted of 10 

contemporaneous copies of the 3 sensor demo, for a total 

of 30 sensors streaming to the cloud. Because many of 

the input streams are copies of each other, they result in 

the same processing and 2D track outputs downstream. 

This is not as realistic as if a much larger raid were 

simulated with multiple satellite orbital planes observing 

the scenario, but this simulation clearly shows how the 

system performs on a larger scale. 

The AWS instances were the same Compute Optimized 

EC2 instances used in the 3 Sensor OPIR Demonstration, 

elastically scaled to meet the data load of the 30 sensor 

demonstration.  The Correlation application is not 

currently horizontally scalable due to limitations 

associated with the algorithms being used, but is a target 

of future development at SciTec.  The Fusion Processor, 

on the other hand, is horizontally scalable, but was not 

for this demonstration due to the efficiency of the 

algorithms employed which obviated the need to scale.  

A summary of the timing latencies recorded for the 30 

sensor demonstration is shown in Table 6-3. 

Table 6-3.  30-Sensor OPIR MDP Timing Summary 

 

The MDP ability to elastically scale and orchestrate 

applications was crucial for the 30 Sensor OPIR 

Demonstration.  Increasing the number of instances of 

background suppression and mono-tracking applications 

within the AWS framework provided the necessary 

processing power for the large data influx.   

The application processing times for the 30 Sensor OPIR 

Demonstration were very similar to those of the 3 Sensor 

OPIR Demonstration.  The BKG and TDE applications 

were scaled horizontally to maintain the processing 

speeds beyond the required .05 seconds/dataframe.  The 

highly efficient processing in the track Fusion service did 

not require horizontal scaling and still maintained the 

processing speeds required for the input data stream.  

The single CORR processor used to process incoming 

data from all 30 sensors showed increased processing 

latency over that observed in the 3 sensor demo due to 

the 10x data being received.  As mentioned in the above 

sections, we are currently working on an enhancement 

that will allow CORR to scale horizontally in order to 

improve full system throughput.  The 30 Sensor OPIR 

Demonstration highlighted the MDP elasticity and 

orchestration capabilities by maintaining processing 

speeds even when taxed by increased data loads. 

MDP Results – SAR Demonstration 

For the SAR demonstration, a c5.9xlarge EC2 instance 

with 72 GB of memory was used.  The timing results for 

different stages of the SAR processing pipeline are given 

in Figure 6-3. The results show the timing for (a) the EC2 

to local file transfer, (b) the transfer a 670 MB file from 

S3 to EC2, (c)  application initialization, and (d) the time 

taken to construct a SAR image from raw IQ data. It 



Wilbur 17 [35th] Annual 

  Small Satellite Conference 

should  be noted that operationally, the application could 

be initialized once and kept running to avoid lengthy 

start up times. The raw data file corresponds to high-

precision complex data (complex128) with size 8,760 x 

8,760 pixels.  The final data product that is transported 

to the local user is a 1.7 MB float32 array of RGB values, 

hugely reduced from the complex SAR data file. The 

time required to process the 1x1 meter resolution image 

shown in Figure 6-3 can be decreased with optimized 

Fourier transforms. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-3.  SAR Timing Results. (a) EC2 to local 

visualizer file transfer, (b) transfer from S3 to EC2, 

(c) initialization time for the EC2 application, (d) 

time required by the SAR application algorithm to 

process one 670 MB IQ image 

MDP Results – EO/IR Demonstration 

For the EO/IR demonstration, we employed a GPU-

enabled g4dn.xlarge instance, which has 16 GB of 

memory.  Based on a series of data processing trials, the 

maximum usage of this instance peaked at ~11%.  For 

the file sizes tested in the demo (23 to 31.5 MB), the file 

transfer times were not sensitive to file size and averaged 

~1 sec for transfer between the S3 bucket and EC2 and 

~7.8 sec for transfer between EC2 and a local 

workstation.   

Although the original images were slightly different 

sizes, the output product that is transferred over zmq is 

the same for each input image, and is displayed as a 

7,200 x 1,800 4-panel picture, each with target 
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recognition or cloud masking results clearly and 

separately identified.  In Figure 6-4, timing is plotted for 

10 trials of the EO/IR processing demonstration. 

 

(a) 

 

(b) 

 

(c) 

Figure 6-4.  EO/IR Processing Initialization Times 

The times shown in Figure 6-4 (a) include EC2 instance 

creation, docker initialization, and launching docker.  

The times shown in (b) include loading the CUDA 

libraries and processing the first image. Figure 6-4 (c) 

shows the processing times for the images processed 

after library initialization. From the image processing 

statistics, it was shown that, if linear, the processing time 

scales with slope greater than one with increasing image 

area. 

7. CONCLUSIONS AND OPERATIONAL 

IMPLICATIONS 

Over the course of the DT prototype development, the 

DT transport and processing components were 

optimized to provide a streamlined, low-latency 

pipeline.  The initial focus of the prototype was to assess 

the feasibility of pushing high-rate full-frame OPIR data 

sets from a ground station location to a secure cloud 

processing location.  A high end goal for the prototype 

was to determine if data could be streamed in real-time 

from multiple receipt locations into a secure cloud 

processing center and then processed into actionable 

messages disseminated to field assets in a timely manner. 

Operational Implications – Data Transport 

For the prototype effort the DT was set up to emulate a 

transfer process that could be used to transfer data across 

the AWS cross-domain diode into a classified processing 

region.  This emulation necessitated the use of an S3 file-

based transfer between the commercial and ‘secure’ 

processing regions.  Moving data in files and storing the 

files into an S3 storage unit introduces latency that could 

likely be reduced through the use of streaming 

mechanisms.  Streaming is a potential future option on 

the AWS road-map for cross-domain transfers. 

To reduce latency, DT components can be scaled to 

perform parallel processing.  However, maintaining 

order and synchronization of files flowing into the MDP 

engines is also required.  During development of the 

prototype, it was apparent that adding parallel operations 

results in increasing the chances of having files show up 

out of order, which results in introducing additional 

latency to re-order the files prior to pushing the data into 

the MDP engines.  Introducing a level of ‘store and 

forward’ to buffer, and re-order data prior to transferring 

the data into the MDP elements is necessary to support 

maintaining time ordering. 

DT prototype development successfully showed the 

ability to push data across the commercial networks and 

into a secure processing area.   Transfer of full frame data 

is likely to occur for operations associated with 

validation and/or calibration of on-orbit processing.   For 

non-real time transport of full-frame data, the ‘store and 

forward’ buffering approach can be used effectively. 

In an operational version, on-orbit assets are likely to 

process the raw sensor frames into intermediate 

products.   Transferring the intermediate products from 

multiple satellites to a secure cloud processing region 
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where the data can be correlated and fused into tactical 

data and disseminated to field assets is well within the 

DT capabilities.  DT is built and has been demonstrated 

to support many different types of data files. 

Operational Implications – Mission Data Processing 

We demonstrated the ability of three of the four mission 

processing services in our OPIR MDP – background 

suppression, mono-tracking, and fusion – to horizontally 

scale to maintain real-time OPIR performance 

processing of data from up to 30 sensors simultaneously. 

To operationalize the elastic processing architecture, we 

will need to implement horizontal scalability for the one 

remaining service - correlation. The re-factoring 

required to do this is actively being worked.   

One of the most striking findings of this effort, perhaps, 

is the very high latency associated with “spinning up” 

instances for processing, as well as for transferring data 

(either raw data or processed results) from an AWS 

instance to a local machine for visualization, analysis, or 

further downstream processing.  For example, 

initializing the SAR and EO/IR EC2 instances and 

applications took > 6 minutes.  For an operational 

system, it is likely that the savings associated with only 

turning on instances when needed cannot be realized due 

to the latency associated with initialization – i.e., these 

instances would have to be always on, or we would need 

to establish alternate approaches to dynamically 

initializing services in AWS. This is an area for further 

research and prototyping. 

In each of the CASINO PED mission data processing 

demonstrations, we executed IaC scripts that spin up the 

required compute services, handle data transfer between 

AWS storage and compute services, process the Mission 

Data on that compute service, and finally transfer the 

data to a local workstation for visualization.  Currently, 

these IaC scripts are launched by a user each time 

processing is desired.  For an operational PED system, 

processing would be orchestrated automatically, using 

metadata attached to the mission data to determine what 

processing chain to use, its configurations, and the 

resources required to execute the processing. 

Currently, the PED Prototype supports full-frame 

processing and multi-sensor correlation and fusion to 

output 3D tracks from input OPIR sensor data, as well as 

SAR data pre-processing and visualization and EO/IR 

automatic target recognition and cloud masking.  

Although our prototype demonstrates versatility and 

multi-mission utility, there is still work to be done in 

terms of making the PED prototype compatible with 

current operational OPIR systems as well as potential 

future CASINO assets.  For example, the OPIR 

microservices currently expect full frame data and output 

mono-sensor 2D tracklets, which are then correlated and 

fused to generate 3D tracks.  However, in bandwidth 

constrained environments, OPIR systems frequently do 

not disseminate full frame data and instead produce 

exceedances / rep returns, which are then provided to 

downstream processes for correlation and fusion.  

Although fundamentally, our correlation and fusion 

engines can support processing rep returns vs. mono 2D 

tracklets, some changes would be needed in the PED 

prototype to support this type of processing if required 

for targeted systems. 
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