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ABSTRACT 

Classical control methods require deep analytical understanding of the system to be successfully controlled. This can 

be particularly difficult to accomplish in space systems where it is difficult, if not impossible, to truly replicate the 

operational environment in a laboratory. As a result, many missions, especially in the CubeSat form factor, fly with 

control systems that regularly fail to meet their operational requirements. Failure of a control system might result in 

diminished science collection or even a total loss of mission in severe circumstances. Additionally, future SmallSat 

use cases (such as for orbital debris collection, repair missions, or deep space prospecting) shall place autonomous 

spacecraft in situations where mission operations cannot be fully simulated prior to deployment and a more dynamic 

control scheme is required. This paper explores the use of a student / teacher machine learning model for the 

purpose of training an Artificial Intelligence to fly a spacecraft in much the same way a human pilot may be taught 

to fly a spacecraft. With dedicated Artificial Intelligence & Machine Learning hardware onboard the satellite, it is 

also hypothesized that deploying an active learning algorithm in space may allow it to rapidly adapt to unforeseen 

circumstances without direct human intervention. Full development of a magnetorquer only control scheme was 

conducted with testing ranging from a software-in-the-loop 3D physics engine to a hemispherical air bearing, and 

finally a planned on-orbit demonstration. Further work is planned to expand this research to translational operations 

in future missions. 

INTRODUCTION 

In recent years small satellites, and particularly 

CubeSats, have exponentially increased in launch 

cadence. What a few years ago was only a niche 

industry is now quickly set to outpace the capabilities 

of traditional heavy launch missions in Low Earth Orbit 

(LEO). One aspect of space missions that continues to 

regularly challenge mission success in both small and 

large form factors is in the effective development of 

Attitude Determination & Control Systems (ADCS). In 

addition to the technical challenge of ADCS systems, a 

failure of an ADCS system can often result in seriously 

diminished performance or even loss of mission.  

In order to ease the immense challenge of implementing 

ADCS and improve small sat reliability this team has 

proposed the use of novel artificial intelligence (AI) and 

Machine Learning techniques. A novel approach, based 

on a 2020 robotics paper by Lee, Joonho, et al. [1] was 

implemented to train an algorithm capable of robustly 

controlling a spacecraft.  

Despite the rapid growth of the Cube Satellite industry 

failure remains abundant, especially in the university 

space. Langer and Bouwmeester presented a paper at 

the 30th Annual AIAA/USU Conference on Small 

Satellites in 2016 that examined CubeSat missions[2]. 

The paper, titled “Reliability of CubeSats – Statistical 

Data, Developers’ Beliefs and the Way Forward” 

evaluated data from the CubeSat Failure Database 

which detailed 178 CubeSat missions at the time of 

their investigation. From examining these missions, 

they estimated that ADCS failure could be directly 

attributed for 3% of CubeSat failures after deployment.  

It should be noted that failure for unknown reasons also 

accounted for a sizeable number of CubeSats and could 

be unattributed failures of ADCS. A failure of a satellite 

to detumble (or an accidentally induced uncontrolled 

tumble such as with the MOVE-II CubeSat [15]) may 

also result in a loss of mission due to a loss of 

communication.  

An example of a CubeSat that suffered ADCS failure is 

PicSat, which was intended for exoplanet observation. 

M Nowak, et al [3] detail how PicSat’s onboard ADCS 

successfully de-tumbled the satellite post launch but 

was unable to orientate itself to point in the direction of 

the exoplanet. They suggest that the failure may have 
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been due to a high-level software issue with the system. 

As CubeSat mission continue to grow in number and 

complexity it is essential for more robust ADCS 

systems to become available for mission critical uses.  

Existing Methods 

The traditional methodologies employed in the design 

and tuning of an ADCS hinge on the feedback 

characteristics of the closed loop architecture. A 

system’s dynamic response is impingent on the proper 

calibration of the various feedback gains and on the 

completeness and accuracy of the mathematical model 

used to derive such parameters [4]. As mentioned by de 

Ruiter, optimizing the control scheme for a space 

mission’s actuators thus requires extremely precise 

knowledge of the spacecraft’s physical properties, 

operating conditions, and control authority [5]. The 

nature of this process necessitates testing conditions 

that closely resemble the space environment. This is a 

significant bottleneck in the design and system 

integration process of a robust controls system, as 

achieving sufficient testing reliability relies on 

expensive equipment and thorough procedures. This 

level of rigor is especially unattainable for many 

university class CubeSat missions, leading to poor 

implementation or exclusion of ACDS altogether.  

Appropriate testing and tuning however does not 

guarantee performance. Should an actuator or sensor on 

the satellite fail there is often little recourse that a small 

satellite can take to remedy it. Component and software 

redundancies are the only safeguards against 

unexpected events and conditions during mission 

operations. This is problematic in the limited design 

space for SmallSats (especially CubeSats) where adding 

redundant systems is often not possible due to size 

weight and power constrains. The ADCS then must be 

an incredibly high reliability sub-system for missions 

that require it. As a result, ADCS within small satellites 

that can afford this often take up a very large 

percentage of the overall cost of the satellite bus. This 

paper aims to address the design and testing overhead 

associated with the development of CubeSats’ ADCS, 

as well as the lack of real-time adaptability of 

conventional approaches. 

APPROACH  

To overcome these issues of modern control systems 

we propose a novel control system that takes advantage 

of recent developments in artificial intelligence for 

robotic systems. In doing so, we hope to present a 

control system that is robust to changes in the satellite’s 

properties via a machine learning through a derived 

abstract representation of the satellite. One that is 

versatile in the face of sensor or actuator failures, 

through action-command feedback loops. And finally, 

one that is quick to deploy through shared networks for 

satellites of similar actuation and sensor types.  

The end result of this novel control architecture is a 

software product that is able to learn and actively adapt 

to its environment the same way a human pilot might. 

To accomplish this, a teacher-student policy is at the 

core of the control system architecture. This pair of 

neural networks involves first training a teacher model 

for longer periods of time on a rigorous simulation 

environment, before using the trained teacher to 

supervise the accelerated learning of a student model. 

The student model is fine-tuned with real world data 

from laboratory testing of a specific satellite’s control 

mechanisms, while the teacher model is designed to be 

more generalized to any satellite of a similar type (same 

sensors and actuators). This would reduce the needed 

laboratory time for training, and the reuse of a 

pretrained complex teacher model would allow for 

reduced development time of control systems. 

SIMULATION ENVIROMENT 

One of the most crucial components of the proposed 

system is a robust simulation environment capable of 

directly interfacing with the machine learning 

framework during training. For this simulator, our team 

is building off the Blender 3D animation platform[6] as 

it allows for direct pythonic access, has a simple yet 

powerful UI and visualization framework, as well as a 

pre-existing physics engine. In the past Blender has 

demonstrated the compute capability to utilize complex 

machine learning algorithms for the purpose of quick 

and accurate simulations such as the Mantaflow 

project[7] an extensible framework for complex fluid 

simulation and research. Additionally, the animation 

engine’s frame-by-frame seeking and property updates 

allow us a unique method for storing and computing 

properties and their histories throughout the simulation. 

Physics Simulation  

The angular velocity of the satellite describes the rate at 

which it rotates about its center of mass per unit time in 

the simulation. This vector quantity serves as one of the 

primary inputs for the control system and directly 

affects the satellite’s ability to effectively send 

communications. While there are multiple ways to 

represent rotations in three dimensions, we decided to 

utilize quaternion notation for all functions involving 

angular velocity. Out of Blender’s supported notations, 

quaternions are the most practical for expressing the 

satellite’s behavior within the simulation, as they can 

describe three dimensional rotations without any degree 

of freedom issues 
[8]

. Provided that the angular velocity 

calculation influences the orientation of the satellite, 
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and consequently the light sensor and magnetorquer 

calculations, avoiding this potential issue allows the 

simulation to provide consistently accurate 

measurements for the satellite. 

In order to produce the angular velocity vector quantity, 

the difference in the satellite’s orientation is calculated 

with respect to a specified time interval. For purposes 

of this simulation environment, the time interval is 

defined by a single frame step. Therefore, the 

quaternion describing the rotational transformation 

between the initial and final orientations for the time 

interval is calculated by multiplying the final 

orientation unit quaternion by the conjugate of the 

initial orientation unit quaternion. These operations are 

performed in the pyquaternion library [9]. Quaternion 

multiplication is noncommutative so the order in which 

these quantities are multiplied together is compulsory in 

producing the proper result [10]. The resultant of this 

operation will produce the angular velocity quaternion 

for the given time step. The interval of time to pass 

between frames is a variable that can be edited during 

preview, simulation and training.  

The satellite's orientation is calculated progressively by 

utilizing the preceding frame’s angular velocity and 

orientation data. The angular velocity quaternion itself 

is the product of three unit quaternions, each of which 

describes the specified change in orientation about the 

x, y, and z axes. By combining these quantities in the 

specified order, a single quaternion can be used to 

describe the multiple rotations necessary to emulate the 

satellite’s behavior between each step of the simulation. 

Multiplying the quaternion describing the angular 

velocity with the unit quaternion describing the 

satellite’s orientation at that instant [10]. 

To simulate the magnetic forces that interact with the 

CubeSat we use the pip pyIGRF package. This package 

allows us to find the magnetic field intensity at the 

location of the CubeSat by providing latitude, 

longitude, altitude, and time. This package utilizes the 

13th and current iteration of the International 

Geomagnetic Reference Field which is a model for 

calculating the Earth’s magnetic field produced by the 

International Association of Geomagnetism and 

Aeronomy [11]. Using the data calculated by pyIGRF we 

can simulate the interactions of the Earth’s magnetic 

field and the CubeSat’s onboard magnetorquers. 

Spacecraft Simulation  

For purposes of simulating the functionality of a 

satellite, it was necessary to provide approximations of 

the necessary input signals from the various sensors 

present. For the purpose of this initial simulation the 

virtual spacecraft was based on the 1.5U CubeSat: 

BroncoSat-1, which featured only a 9-Axis Inertial 

Measurement Unit (IMU with accelerometer, 

magnetometer, and gyroscope) and 6 photoresistors 

(one on each face) as sun sensors.  

To produce a rudimentary approximation of the data 

received from the sun sensors, a trigonometric approach 

was utilized. Reference unit vectors are created 

originating from the satellites center of mass, each 

orthogonal to each other, to represent the default 

orientation of each face of the satellite. Each of these 

unit vectors are then rotated by the quaternion 

describing the orientation of the satellite at a given 

instance. A vector is then created, originating from the 

satellite’s center of mass, to describe the direction 

between it and the simulated sun. The angle between 

the direction vector and the position vectors describing 

each face of the satellite is then measured and recorded. 

Subsequently, a corresponding voltage level for the 

simulated sun sensor is generated based on equation 

(1), which interpolates the voltages between the 

minimum and maximum values measured from 

extensive photoresistor testing trials.    

               (1)  

If the angle between any given face unit vector and the 

direction vector is greater than 90 degrees, the 

generated value is 0.04 volts, as per the reference data 

collected through testing. To convert this voltage to the 

lux value received by the satellite, this value was 

multiplied by 0.5, as per the documentation provided 

for the sun sensor used in testing [12]. Additionally, if 

the satellite is positioned anywhere behind the sun, the 

generated voltage value will be recorded as 0.04 volts, 

as it is assumed that trace amounts of light will reach 

the photoresistors. 

The gravitational acceleration experienced by the 

satellite at its altitude must be calculated to replicate the 

accelerometer data measured by an IMU in the 

simulation environment. This gravitational acceleration 

vector is calculated by utilizing the gravitational 

acceleration equation (2), where G is the gravitational 

constant, r̂ is a unit vector whose direction is from the 

center of the earth to the satellite’s center of mass, and 

me is the mass of the earth, [4].  

     (2)  
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For ease of development and integration with an actual 

satellite, interfaces between these simulated sensor 

readings and the actual method calls for sensor polling 

were developed. A similar interface is implemented for 

the actuator controls in the simulator and on the 

satellite. This allows a conventional python control 

system to be run directly in the simulator where it can 

get access to data analogous to what would occur on 

mission. Additionally, it allows for the evaluation of the 

control systems in failure conditions, where pins are 

disabled or the intrinsic properties of the sensors and 

actuators are manipulated mid operation. This allows 

for a means of testing and verifying robustness in the 

face of various failure conditions. 

Blender Integration 

The open-source nature of Blender has contributed to 

an easily modifiable user interface with established 

examples and documentation.  

For this simulator we grouped all our custom interface 

elements onto one custom UI panel, shown in Figure 1, 

viewable in the 3D viewport. Here we include both 

controls for interacting with the simulation and data 

readouts. Text readouts are simple text put in the UI 

panel. This text is either readily available object data in 

Blender or generated from standalone python functions 

that access properties of the CubeSat within the 

simulation environment. Examples of calculated data 

includes gravitational and magnetic forces experienced 

by the CubeSat at any given point in time or space. 

Variables, such as CubeSat position or center of mass, 

allow both presentation of data and control of that 

aspect and are implemented by adding the objects 

properties to the panel. Blender automatically formats 

these by the number and type of data provided by that 

property.  

For instance, location is populated to three inputs, one 

for each axis in Euclidean space. However, Blender is 

primarily an animation and 3D modelling suite, and as 

such does not have some of our needed functionality. 

For this reason, to track certain information such as 

center of mass of the CubeSat, we employ empties. 

Empties are objects within Blender that represent a 

single point in space, though as objects they also 

possess a sense of rotation and scale. We use empties as 

proxies that either possess the trait we want to track 

ourselves, such as the rotation of the empty, or are used 

to calculate the trait we want to track, such as through 

its position relative to the CubeSat. We then retrieve 

this trait and display the properties on the UI panel. 

 
Figure 1: UI Panel 

Blender implements its own internal workspace for 

writing and running python scripts that are stored 

within the blend file. This space is great for testing 

scripts, but for our purposes the ability to maintain and 

modify python scripts outside of the main blend file 

was preferential, one among the reasons being better 

integration with version control. To that end we created 

a script within the blend file that simply looks for a file 

named scripts.txt and executes the python scripts listed 

inside. This script is set to execute on opening the blend 

file so that Pythons scripts such as the UI panel are 

automatically run and presented to the user on startup. 
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MACHINE LEARNING MODEL 

The machine learning model is based on the 

architecture presented in “Learning Quadrupedal 

Locomotion over Challenging Terrain.” [1] with a 

different control scheme and simulation environment. It 

utilizes the TensorFlow library for python[13] which can 

be run directly within the Blender simulation 

environment. As this use case is designed for a CubeSat 

with three magnetorquers as the actuators, the output 

action generated by the model only consists of three 

duty cycles. The proprioceptive data then consists of 

the IMU data, power readings from six sun sensors, the 

current magnetorquer duty cycles, and time since last 

execution. In addition to the current sensor data, the 

robot state vector includes the previous error between 

the desired rotation and the actual rotation, as well as 

the previous duty cycle output. At the end of this robot 

state data, shown in Table 1, is the command for the 

desired angular velocity in Euler angles. 

Table 1: Robot State Properties 

Name Dimension Symbol 

IMU Accelerometer 3 qa 

IMU Gyroscope 4 qg 

IMU Magnetometer 3 qm 

Solar Sensors 6 s 

Magnetorquer Power  3 Mp 

RTC Time Since Execution 1 Δt 

Rotation Error 3 ωerr 

Magnetorquer Power History 3 Mh 

Desired Rotation 3 ω 

This makes up the robot state data and is one of two 

inputs fed into action-generating network in both the 

teacher and student. The second input is an encoded 

latent state generated by each policies respective 

encoder. Both this generated latent state and the action 

output of final network in each policy are intended to be 

the same. In training, the teacher is first trained in the 

simulator using reinforcement learning as there is not a 

target actuator output for the model optimize for. Once 

the teacher performs adequately, the student is trained 

to mimic the teacher during knowledge distillation[14]. 

As the teacher generates actions and a latent state we 

want the student to mimic, the student can be trained 

through traditional supervised methods. Following the 

knowledge transfer between the two policies, the 

student model will be tested and fine-tuned in a 

laboratory environment before it is isolated from the 

rest of the system for use in an actual CubeSat. 

Teacher Model 

The first phase of the machine learning system is to 

create a robust teacher model trained off the simulator. 

This model is more complex than the one intended to 

run on the actual satellite and has access to information 

that the satellite would not normally have. This 

privileged information includes a global reference 

position, exact altitude, the center of mass and the 

actual direction of the sun. The data is then encoded to 

produce the latent state vector which serves as an 

abstraction of the environment. This latent state is then 

fed into the action-generating network along with the 

robot state data to produce some action. The action 

consists of three duty cycle, one for each magnetorquer, 

to interact with the simulator’s magnetic fields. 

For training of the teacher model, a reinforcement 

learning system is used where the reward is based on 

the new angular velocity that results from the output 

action of the model. Each action and rotational error is 

calculated on a frame-by-frame basis. Where the time 

step property serves as Δt in the robot state. In practice 

this would represent delays between running and 

updating the output of the control system due to power 

or computational constraints. This time step value is to 

be varied throughout training for a more robust solution 

for various hardware configurations. Once the 

generated actions produce the desired reaction of the 

CubeSat, the action-generating network is saved and its 

weights and biases are copied over to the student 

model. 

Student Model 

The second phase of this machine learning system is 

training the student model. By leveraging the 

knowledge distillation aspects of the teacher-student 

system[14], we create a smaller network capable of 

training and inferring from a smaller dataset than the 

teacher. In practice this means generating a simpler 

network capable of running on the limited hardware of 

the CubeSat, and one that requires less training time in 

physical testing facilities. This reduces both the 

development time and costs for future deployments of 

the control system.  

Unlike the teacher model, the student only has access to 

the proprioceptive history and must infer the same 

latent state representation of its environment that the 

teacher generated. As there is now a known output 

value for each input, a standard supervised learning 

system is used for training the student’s encoder. As the 

action-generating network ideally has the same input as 

the network in the teacher, robot state and 
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environmental latent state, the actions of the both the 

teacher and student should be the same for a given 

frame. 

The supervised training results in a system where the 

simulation evaluates the teacher policy for a given 

configuration. The student uses the same action-

generating network as the teacher, and updates its 

encoder to achieve the same latent state as the teacher 

and the same action. Following initial training in the 

simulation to ensure parity between the teacher and 

student policies’ latent state, a final round of laboratory 

training will be used to verify and fine-tune the action-

generating network. Like before, the training will be 

motivated by the reinforcement learning loop. 

The training environment is shown in Figure 2 where a 

Helmholtz cage encloses a low-friction air bearing and 

is monitored by motion tracking cameras. Through the 

cage various magnetic fields can be generated for the 

CubeSat’s magnetometers to interact with. The air 

bearing serves to reduce the impact of friction on the 

effects of the actuators. Finally, the motion tracking 

cameras allow for external monitoring and data 

collection for analysis.  

The final trained student policy is then saved as a stand-

alone model, taking the robot state and proprioceptive 

history as input, and generating an action for the 

magnetorquers as output. This smaller isolated model is 

then to be deployed on the CubeSat. As the model can 

be exported with standard graph formats, it need not be 

run on a python flight computer and can be executed on 

system capable of performing inference on a 

TensorFlow network, and that possess a sufficient 

computing capability to run within a reasonable time. 

Additionally, as the latent state output of the two 

policies are similar and the action-generating networks 

are the exact same, changes to the outputs or additional 

training within the simulation environment can easily 

be ported computer through the exported model. 

CURRENT STATUS & FUTURE WORK 

Currently, the AI system has been created in Python, 

but awaits completion of the simulation environment 

and an improved training dataset before full 

implementation on a flight system. One of the most 

serious issues encountered by the team in the course of 

its implementation of the AI system is a lack of useable 

training & reference data for magnetorquer only control 

systems. In the literature review there does not seem to 

exist any on-orbit data that is both publicly accessible 

and continuous that would act as a reference for real 

world magnetorquer only control.  

Additionally, while a combined 3-Axis Helmholtz coil 

and hemi-spherical air bearing system has been created 

for ground testing of the BroncoSat-1 magnetorquers 

control scheme, it has proven incredibly difficult to 

separate the effect of the magnetorquers from ambient 

disturbances. Issues such as ambient air currents, an 

unrepresentative moment of inertia, and standard 

CubeSat flight hardware complications have stalled a 

laboratory validation of the AI control system.  

 

Figure 2: Laboratory Testing Facility 

Improvement of the simulator and testing facility is 

ongoing, and it is believed that within a few months 

significant progress shall be made towards laboratory 

validation of the AI control system. Work is under way 

to incorporate more complex actuators into the 

simulator, such that the control system can generate 

outputs to reaction wheels and similar systems. With a 

more powerful actuator it is also believed that 

laboratory test and training of the control system shall 

be greatly simplified. The ability to model translational 

motion within the simulation environment is also 

planned.  

With regards to the testing facility, software and 

procedures are being developed to measure and control 

the CubeSat and environment more accurately. This 

will allow for analysis of the performance of the 

proposed control system as well as comparisons to a 

traditional system in real-world environments. A 

planned overhaul of the hardware interface system in 

the simulator is intended to allow the execution of 
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complete flight software with communication, error 

creation and reporting, as well as payload interaction. 

This will then allow for verification of system 

robustness, and an evaluation of the proposed system in 

traditional failure conditions. 

Finally, once testing and validation are complete, the 

trained model would be deployed on a CubeSat with an 

appropriate AI-accelerated computer. This would allow 

for the collection of mission data that can be used to 

make revisions to the system and potentially open up 

the use of the proposed system as an alternative to 

traditional control systems for other missions. 

Especially within the university space, this is expected 

to have huge benefits for mission reliability and 

simplifying the implementation of ADCS in CubeSats.  
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