
Wilder-Smith 1 35th Annual

 Small Satellite Conference

SSC21-V-09

A Novel Approach to an Autonomous and Dynamic Satellite Control System Using

On-Orbit Machine Learning

Maximum Wilder-Smith, Michael Pham, Matteo Gironda, Kevin Kwik, Michael Gee, Ryan Toomer,

Samuel Bennett, Nicholas Shewchuk, Ashley McBean, Tarek Elsharhawy

Bronco Space | California State Polytechnic University Pomona

3801 W Temple Avenue, Pomona CA 95136 USA; (323) 377-9601

maxwildersmith@gmail.com

ABSTRACT

Classical control methods require deep analytical understanding of the system to be successfully controlled. This can

be particularly difficult to accomplish in space systems where it is difficult, if not impossible, to truly replicate the

operational environment in a laboratory. As a result, many missions, especially in the CubeSat form factor, fly with

control systems that regularly fail to meet their operational requirements. Failure of a control system might result in

diminished science collection or even a total loss of mission in severe circumstances. Additionally, future SmallSat

use cases (such as for orbital debris collection, repair missions, or deep space prospecting) shall place autonomous

spacecraft in situations where mission operations cannot be fully simulated prior to deployment and a more dynamic

control scheme is required. This paper explores the use of a student / teacher machine learning model for the

purpose of training an Artificial Intelligence to fly a spacecraft in much the same way a human pilot may be taught

to fly a spacecraft. With dedicated Artificial Intelligence & Machine Learning hardware onboard the satellite, it is

also hypothesized that deploying an active learning algorithm in space may allow it to rapidly adapt to unforeseen

circumstances without direct human intervention. Full development of a magnetorquer only control scheme was

conducted with testing ranging from a software-in-the-loop 3D physics engine to a hemispherical air bearing, and

finally a planned on-orbit demonstration. Further work is planned to expand this research to translational operations

in future missions.

INTRODUCTION

In recent years small satellites, and particularly

CubeSats, have exponentially increased in launch

cadence. What a few years ago was only a niche

industry is now quickly set to outpace the capabilities

of traditional heavy launch missions in Low Earth Orbit

(LEO). One aspect of space missions that continues to

regularly challenge mission success in both small and

large form factors is in the effective development of

Attitude Determination & Control Systems (ADCS). In

addition to the technical challenge of ADCS systems, a

failure of an ADCS system can often result in seriously

diminished performance or even loss of mission.

In order to ease the immense challenge of implementing

ADCS and improve small sat reliability this team has

proposed the use of novel artificial intelligence (AI) and

Machine Learning techniques. A novel approach, based

on a 2020 robotics paper by Lee, Joonho, et al. [1] was

implemented to train an algorithm capable of robustly

controlling a spacecraft.

Despite the rapid growth of the Cube Satellite industry

failure remains abundant, especially in the university

space. Langer and Bouwmeester presented a paper at

the 30th Annual AIAA/USU Conference on Small

Satellites in 2016 that examined CubeSat missions[2].

The paper, titled “Reliability of CubeSats – Statistical

Data, Developers’ Beliefs and the Way Forward”

evaluated data from the CubeSat Failure Database

which detailed 178 CubeSat missions at the time of

their investigation. From examining these missions,

they estimated that ADCS failure could be directly

attributed for 3% of CubeSat failures after deployment.

It should be noted that failure for unknown reasons also

accounted for a sizeable number of CubeSats and could

be unattributed failures of ADCS. A failure of a satellite

to detumble (or an accidentally induced uncontrolled

tumble such as with the MOVE-II CubeSat [15]) may

also result in a loss of mission due to a loss of

communication.

An example of a CubeSat that suffered ADCS failure is

PicSat, which was intended for exoplanet observation.

M Nowak, et al [3] detail how PicSat’s onboard ADCS

successfully de-tumbled the satellite post launch but

was unable to orientate itself to point in the direction of

the exoplanet. They suggest that the failure may have

Wilder-Smith 2 35th Annual

 Small Satellite Conference

been due to a high-level software issue with the system.

As CubeSat mission continue to grow in number and

complexity it is essential for more robust ADCS

systems to become available for mission critical uses.

Existing Methods

The traditional methodologies employed in the design

and tuning of an ADCS hinge on the feedback

characteristics of the closed loop architecture. A

system’s dynamic response is impingent on the proper

calibration of the various feedback gains and on the

completeness and accuracy of the mathematical model

used to derive such parameters [4]. As mentioned by de

Ruiter, optimizing the control scheme for a space

mission’s actuators thus requires extremely precise

knowledge of the spacecraft’s physical properties,

operating conditions, and control authority [5]. The

nature of this process necessitates testing conditions

that closely resemble the space environment. This is a

significant bottleneck in the design and system

integration process of a robust controls system, as

achieving sufficient testing reliability relies on

expensive equipment and thorough procedures. This

level of rigor is especially unattainable for many

university class CubeSat missions, leading to poor

implementation or exclusion of ACDS altogether.

Appropriate testing and tuning however does not

guarantee performance. Should an actuator or sensor on

the satellite fail there is often little recourse that a small

satellite can take to remedy it. Component and software

redundancies are the only safeguards against

unexpected events and conditions during mission

operations. This is problematic in the limited design

space for SmallSats (especially CubeSats) where adding

redundant systems is often not possible due to size

weight and power constrains. The ADCS then must be

an incredibly high reliability sub-system for missions

that require it. As a result, ADCS within small satellites

that can afford this often take up a very large

percentage of the overall cost of the satellite bus. This

paper aims to address the design and testing overhead

associated with the development of CubeSats’ ADCS,

as well as the lack of real-time adaptability of

conventional approaches.

APPROACH

To overcome these issues of modern control systems

we propose a novel control system that takes advantage

of recent developments in artificial intelligence for

robotic systems. In doing so, we hope to present a

control system that is robust to changes in the satellite’s

properties via a machine learning through a derived

abstract representation of the satellite. One that is

versatile in the face of sensor or actuator failures,

through action-command feedback loops. And finally,

one that is quick to deploy through shared networks for

satellites of similar actuation and sensor types.

The end result of this novel control architecture is a

software product that is able to learn and actively adapt

to its environment the same way a human pilot might.

To accomplish this, a teacher-student policy is at the

core of the control system architecture. This pair of

neural networks involves first training a teacher model

for longer periods of time on a rigorous simulation

environment, before using the trained teacher to

supervise the accelerated learning of a student model.

The student model is fine-tuned with real world data

from laboratory testing of a specific satellite’s control

mechanisms, while the teacher model is designed to be

more generalized to any satellite of a similar type (same

sensors and actuators). This would reduce the needed

laboratory time for training, and the reuse of a

pretrained complex teacher model would allow for

reduced development time of control systems.

SIMULATION ENVIROMENT

One of the most crucial components of the proposed

system is a robust simulation environment capable of

directly interfacing with the machine learning

framework during training. For this simulator, our team

is building off the Blender 3D animation platform[6] as

it allows for direct pythonic access, has a simple yet

powerful UI and visualization framework, as well as a

pre-existing physics engine. In the past Blender has

demonstrated the compute capability to utilize complex

machine learning algorithms for the purpose of quick

and accurate simulations such as the Mantaflow

project[7] an extensible framework for complex fluid

simulation and research. Additionally, the animation

engine’s frame-by-frame seeking and property updates

allow us a unique method for storing and computing

properties and their histories throughout the simulation.

Physics Simulation

The angular velocity of the satellite describes the rate at

which it rotates about its center of mass per unit time in

the simulation. This vector quantity serves as one of the

primary inputs for the control system and directly

affects the satellite’s ability to effectively send

communications. While there are multiple ways to

represent rotations in three dimensions, we decided to

utilize quaternion notation for all functions involving

angular velocity. Out of Blender’s supported notations,

quaternions are the most practical for expressing the

satellite’s behavior within the simulation, as they can

describe three dimensional rotations without any degree

of freedom issues
[8]

. Provided that the angular velocity

calculation influences the orientation of the satellite,

Wilder-Smith 3 35th Annual

 Small Satellite Conference

and consequently the light sensor and magnetorquer

calculations, avoiding this potential issue allows the

simulation to provide consistently accurate

measurements for the satellite.

In order to produce the angular velocity vector quantity,

the difference in the satellite’s orientation is calculated

with respect to a specified time interval. For purposes

of this simulation environment, the time interval is

defined by a single frame step. Therefore, the

quaternion describing the rotational transformation

between the initial and final orientations for the time

interval is calculated by multiplying the final

orientation unit quaternion by the conjugate of the

initial orientation unit quaternion. These operations are

performed in the pyquaternion library [9]. Quaternion

multiplication is noncommutative so the order in which

these quantities are multiplied together is compulsory in

producing the proper result [10]. The resultant of this

operation will produce the angular velocity quaternion

for the given time step. The interval of time to pass

between frames is a variable that can be edited during

preview, simulation and training.

The satellite's orientation is calculated progressively by

utilizing the preceding frame’s angular velocity and

orientation data. The angular velocity quaternion itself

is the product of three unit quaternions, each of which

describes the specified change in orientation about the

x, y, and z axes. By combining these quantities in the

specified order, a single quaternion can be used to

describe the multiple rotations necessary to emulate the

satellite’s behavior between each step of the simulation.

Multiplying the quaternion describing the angular

velocity with the unit quaternion describing the

satellite’s orientation at that instant [10].

To simulate the magnetic forces that interact with the

CubeSat we use the pip pyIGRF package. This package

allows us to find the magnetic field intensity at the

location of the CubeSat by providing latitude,

longitude, altitude, and time. This package utilizes the

13th and current iteration of the International

Geomagnetic Reference Field which is a model for

calculating the Earth’s magnetic field produced by the

International Association of Geomagnetism and

Aeronomy [11]. Using the data calculated by pyIGRF we

can simulate the interactions of the Earth’s magnetic

field and the CubeSat’s onboard magnetorquers.

Spacecraft Simulation

For purposes of simulating the functionality of a

satellite, it was necessary to provide approximations of

the necessary input signals from the various sensors

present. For the purpose of this initial simulation the

virtual spacecraft was based on the 1.5U CubeSat:

BroncoSat-1, which featured only a 9-Axis Inertial

Measurement Unit (IMU with accelerometer,

magnetometer, and gyroscope) and 6 photoresistors

(one on each face) as sun sensors.

To produce a rudimentary approximation of the data

received from the sun sensors, a trigonometric approach

was utilized. Reference unit vectors are created

originating from the satellites center of mass, each

orthogonal to each other, to represent the default

orientation of each face of the satellite. Each of these

unit vectors are then rotated by the quaternion

describing the orientation of the satellite at a given

instance. A vector is then created, originating from the

satellite’s center of mass, to describe the direction

between it and the simulated sun. The angle between

the direction vector and the position vectors describing

each face of the satellite is then measured and recorded.

Subsequently, a corresponding voltage level for the

simulated sun sensor is generated based on equation

(1), which interpolates the voltages between the

minimum and maximum values measured from

extensive photoresistor testing trials.

 (1)

If the angle between any given face unit vector and the

direction vector is greater than 90 degrees, the

generated value is 0.04 volts, as per the reference data

collected through testing. To convert this voltage to the

lux value received by the satellite, this value was

multiplied by 0.5, as per the documentation provided

for the sun sensor used in testing [12]. Additionally, if

the satellite is positioned anywhere behind the sun, the

generated voltage value will be recorded as 0.04 volts,

as it is assumed that trace amounts of light will reach

the photoresistors.

The gravitational acceleration experienced by the

satellite at its altitude must be calculated to replicate the

accelerometer data measured by an IMU in the

simulation environment. This gravitational acceleration

vector is calculated by utilizing the gravitational

acceleration equation (2), where G is the gravitational

constant, r̂ is a unit vector whose direction is from the

center of the earth to the satellite’s center of mass, and

me is the mass of the earth, [4].

 (2)

Wilder-Smith 4 35th Annual

 Small Satellite Conference

For ease of development and integration with an actual

satellite, interfaces between these simulated sensor

readings and the actual method calls for sensor polling

were developed. A similar interface is implemented for

the actuator controls in the simulator and on the

satellite. This allows a conventional python control

system to be run directly in the simulator where it can

get access to data analogous to what would occur on

mission. Additionally, it allows for the evaluation of the

control systems in failure conditions, where pins are

disabled or the intrinsic properties of the sensors and

actuators are manipulated mid operation. This allows

for a means of testing and verifying robustness in the

face of various failure conditions.

Blender Integration

The open-source nature of Blender has contributed to

an easily modifiable user interface with established

examples and documentation.

For this simulator we grouped all our custom interface

elements onto one custom UI panel, shown in Figure 1,

viewable in the 3D viewport. Here we include both

controls for interacting with the simulation and data

readouts. Text readouts are simple text put in the UI

panel. This text is either readily available object data in

Blender or generated from standalone python functions

that access properties of the CubeSat within the

simulation environment. Examples of calculated data

includes gravitational and magnetic forces experienced

by the CubeSat at any given point in time or space.

Variables, such as CubeSat position or center of mass,

allow both presentation of data and control of that

aspect and are implemented by adding the objects

properties to the panel. Blender automatically formats

these by the number and type of data provided by that

property.

For instance, location is populated to three inputs, one

for each axis in Euclidean space. However, Blender is

primarily an animation and 3D modelling suite, and as

such does not have some of our needed functionality.

For this reason, to track certain information such as

center of mass of the CubeSat, we employ empties.

Empties are objects within Blender that represent a

single point in space, though as objects they also

possess a sense of rotation and scale. We use empties as

proxies that either possess the trait we want to track

ourselves, such as the rotation of the empty, or are used

to calculate the trait we want to track, such as through

its position relative to the CubeSat. We then retrieve

this trait and display the properties on the UI panel.

Figure 1: UI Panel

Blender implements its own internal workspace for

writing and running python scripts that are stored

within the blend file. This space is great for testing

scripts, but for our purposes the ability to maintain and

modify python scripts outside of the main blend file

was preferential, one among the reasons being better

integration with version control. To that end we created

a script within the blend file that simply looks for a file

named scripts.txt and executes the python scripts listed

inside. This script is set to execute on opening the blend

file so that Pythons scripts such as the UI panel are

automatically run and presented to the user on startup.

Wilder-Smith 5 35th Annual

 Small Satellite Conference

MACHINE LEARNING MODEL

The machine learning model is based on the

architecture presented in “Learning Quadrupedal

Locomotion over Challenging Terrain.” [1] with a

different control scheme and simulation environment. It

utilizes the TensorFlow library for python[13] which can

be run directly within the Blender simulation

environment. As this use case is designed for a CubeSat

with three magnetorquers as the actuators, the output

action generated by the model only consists of three

duty cycles. The proprioceptive data then consists of

the IMU data, power readings from six sun sensors, the

current magnetorquer duty cycles, and time since last

execution. In addition to the current sensor data, the

robot state vector includes the previous error between

the desired rotation and the actual rotation, as well as

the previous duty cycle output. At the end of this robot

state data, shown in Table 1, is the command for the

desired angular velocity in Euler angles.

Table 1: Robot State Properties

Name Dimension Symbol

IMU Accelerometer 3 qa

IMU Gyroscope 4 qg

IMU Magnetometer 3 qm

Solar Sensors 6 s

Magnetorquer Power 3 Mp

RTC Time Since Execution 1 Δt

Rotation Error 3 ωerr

Magnetorquer Power History 3 Mh

Desired Rotation 3 ω

This makes up the robot state data and is one of two

inputs fed into action-generating network in both the

teacher and student. The second input is an encoded

latent state generated by each policies respective

encoder. Both this generated latent state and the action

output of final network in each policy are intended to be

the same. In training, the teacher is first trained in the

simulator using reinforcement learning as there is not a

target actuator output for the model optimize for. Once

the teacher performs adequately, the student is trained

to mimic the teacher during knowledge distillation[14].

As the teacher generates actions and a latent state we

want the student to mimic, the student can be trained

through traditional supervised methods. Following the

knowledge transfer between the two policies, the

student model will be tested and fine-tuned in a

laboratory environment before it is isolated from the

rest of the system for use in an actual CubeSat.

Teacher Model

The first phase of the machine learning system is to

create a robust teacher model trained off the simulator.

This model is more complex than the one intended to

run on the actual satellite and has access to information

that the satellite would not normally have. This

privileged information includes a global reference

position, exact altitude, the center of mass and the

actual direction of the sun. The data is then encoded to

produce the latent state vector which serves as an

abstraction of the environment. This latent state is then

fed into the action-generating network along with the

robot state data to produce some action. The action

consists of three duty cycle, one for each magnetorquer,

to interact with the simulator’s magnetic fields.

For training of the teacher model, a reinforcement

learning system is used where the reward is based on

the new angular velocity that results from the output

action of the model. Each action and rotational error is

calculated on a frame-by-frame basis. Where the time

step property serves as Δt in the robot state. In practice

this would represent delays between running and

updating the output of the control system due to power

or computational constraints. This time step value is to

be varied throughout training for a more robust solution

for various hardware configurations. Once the

generated actions produce the desired reaction of the

CubeSat, the action-generating network is saved and its

weights and biases are copied over to the student

model.

Student Model

The second phase of this machine learning system is

training the student model. By leveraging the

knowledge distillation aspects of the teacher-student

system[14], we create a smaller network capable of

training and inferring from a smaller dataset than the

teacher. In practice this means generating a simpler

network capable of running on the limited hardware of

the CubeSat, and one that requires less training time in

physical testing facilities. This reduces both the

development time and costs for future deployments of

the control system.

Unlike the teacher model, the student only has access to

the proprioceptive history and must infer the same

latent state representation of its environment that the

teacher generated. As there is now a known output

value for each input, a standard supervised learning

system is used for training the student’s encoder. As the

action-generating network ideally has the same input as

the network in the teacher, robot state and

Wilder-Smith 6 35th Annual

 Small Satellite Conference

environmental latent state, the actions of the both the

teacher and student should be the same for a given

frame.

The supervised training results in a system where the

simulation evaluates the teacher policy for a given

configuration. The student uses the same action-

generating network as the teacher, and updates its

encoder to achieve the same latent state as the teacher

and the same action. Following initial training in the

simulation to ensure parity between the teacher and

student policies’ latent state, a final round of laboratory

training will be used to verify and fine-tune the action-

generating network. Like before, the training will be

motivated by the reinforcement learning loop.

The training environment is shown in Figure 2 where a

Helmholtz cage encloses a low-friction air bearing and

is monitored by motion tracking cameras. Through the

cage various magnetic fields can be generated for the

CubeSat’s magnetometers to interact with. The air

bearing serves to reduce the impact of friction on the

effects of the actuators. Finally, the motion tracking

cameras allow for external monitoring and data

collection for analysis.

The final trained student policy is then saved as a stand-

alone model, taking the robot state and proprioceptive

history as input, and generating an action for the

magnetorquers as output. This smaller isolated model is

then to be deployed on the CubeSat. As the model can

be exported with standard graph formats, it need not be

run on a python flight computer and can be executed on

system capable of performing inference on a

TensorFlow network, and that possess a sufficient

computing capability to run within a reasonable time.

Additionally, as the latent state output of the two

policies are similar and the action-generating networks

are the exact same, changes to the outputs or additional

training within the simulation environment can easily

be ported computer through the exported model.

CURRENT STATUS & FUTURE WORK

Currently, the AI system has been created in Python,

but awaits completion of the simulation environment

and an improved training dataset before full

implementation on a flight system. One of the most

serious issues encountered by the team in the course of

its implementation of the AI system is a lack of useable

training & reference data for magnetorquer only control

systems. In the literature review there does not seem to

exist any on-orbit data that is both publicly accessible

and continuous that would act as a reference for real

world magnetorquer only control.

Additionally, while a combined 3-Axis Helmholtz coil

and hemi-spherical air bearing system has been created

for ground testing of the BroncoSat-1 magnetorquers

control scheme, it has proven incredibly difficult to

separate the effect of the magnetorquers from ambient

disturbances. Issues such as ambient air currents, an

unrepresentative moment of inertia, and standard

CubeSat flight hardware complications have stalled a

laboratory validation of the AI control system.

Figure 2: Laboratory Testing Facility

Improvement of the simulator and testing facility is

ongoing, and it is believed that within a few months

significant progress shall be made towards laboratory

validation of the AI control system. Work is under way

to incorporate more complex actuators into the

simulator, such that the control system can generate

outputs to reaction wheels and similar systems. With a

more powerful actuator it is also believed that

laboratory test and training of the control system shall

be greatly simplified. The ability to model translational

motion within the simulation environment is also

planned.

With regards to the testing facility, software and

procedures are being developed to measure and control

the CubeSat and environment more accurately. This

will allow for analysis of the performance of the

proposed control system as well as comparisons to a

traditional system in real-world environments. A

planned overhaul of the hardware interface system in

the simulator is intended to allow the execution of

Wilder-Smith 7 35th Annual

 Small Satellite Conference

complete flight software with communication, error

creation and reporting, as well as payload interaction.

This will then allow for verification of system

robustness, and an evaluation of the proposed system in

traditional failure conditions.

Finally, once testing and validation are complete, the

trained model would be deployed on a CubeSat with an

appropriate AI-accelerated computer. This would allow

for the collection of mission data that can be used to

make revisions to the system and potentially open up

the use of the proposed system as an alternative to

traditional control systems for other missions.

Especially within the university space, this is expected

to have huge benefits for mission reliability and

simplifying the implementation of ADCS in CubeSats.

ACKNOWLEDGEMENTS

This work, over the course of the last year during the

COVID-19 pandemic, would not have been possible

without the incredible efforts of the Bronco Space

Student Research Group, the Colleges of Engineering

and Science at Cal Poly Pomona, and the support of our

advisors and industry partners.

References

1. Lee, Joonho, et al. “Learning Quadrupedal

Locomotion over Challenging Terrain.” Science

Robotics, vol. 5, no. 47, 2020,

doi:10.1126/scirobotics.abc5986.

2. Langer, M., Bouwmeester J. "Reliability of

CubeSats – Statistical Data, Developers’ Beliefs

and the Way Forward." 30th Annual AIAA/USU

Conference on Small Satellites.

https://digitalcommons.usu.edu/cgi/viewcontent.c

gi?article=3397&context=smallsat

3. M. Nowak, S. Lacour, A. Crouzier, L. David, V.

Lapeyrère, and G. Schworer "Short life and

abrupt death of PicSat, a small 3U CubeSat

dreaming of exoplanet detection", Proc. SPIE

10698, Space Telescopes and Instrumentation

2018: Optical, Infrared, and Millimeter Wave,

1069821 (24 July 2018);

https://doi.org/10.1117/12.2313242

4. J., D. R. A. H., Damaren, C., & Forbes, J. R.

(2013). Spacecraft dynamics and control an

introduction. Wiley.

5. Carletta S, Teofilatto P, Farissi MS. A

Magnetometer-Only Attitude Determination

Strategy for Small Satellites: Design of the

Algorithm and Hardware-in-the-Loop

Testing. Aerospace. 2020; 7(1):3.

https://doi.org/10.3390/aerospace7010003

6. Community, B. O. (2018). Blender - a 3D

modelling and rendering package. Stichting

Blender Foundation, Amsterdam. Retrieved from

http://www.blender.org

7. Xie, Y., Franz, E., Chu, M., & Thuerey, N.

(2018). tempoGAN. ACM Transactions on

Graphics, 37(4), 1–15.

https://doi.org/10.1145/3197517.3201304

8. “Kinematics of Moving Frames.” Ocw.mit.edu,

Massachusetts Institute of Technology, 2004,

ocw.mit.edu/courses/mechanical-engineering/2-

154-maneuvering-and-control-of-surface-and-

underwater-vehicles-13-49-fall-2004/lecture-

notes/lec1.pdf.

9. Wynn, Kieran. Pyquaternion,

kieranwynn.github.io/pyquaternion/.

10. Graf, Basile. “Quaternions and Dynamics.”

ArXiv.org, Cornell University, 18 Nov. 2008,

arxiv.org/abs/0811.2889.

11. Alken, Patrick. IAGA V-MOD Geomagnetic

Field Modeling: International Geomagnetic

Reference Field IGRF-13, 19 Dec. 2019,

www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

12. Ambient Light SensorSurface - Mount ALS-PT19-

315C/L177/TR8. Everlight, 24 Dec. 2013, cdn-

shop.adafruit.com/product-

files/2748/2748+datasheet.pdf.

13. Martín Abadi, Ashish Agarwal, Paul Barham,

Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg

S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow,

Andrew Harp, Geoffrey Irving, Michael Isard,

Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dan Mané,

Mike Schuster, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete

Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous

systems, 2015. Software available from

tensorflow.org.

14. Abbasi, S., Hajabdollahi, M., Karimi, N., &

Samavi, S. (2020). Modeling Teacher-Student

Techniques in Deep Neural Networks for

Knowledge Distillation. 2020 International

Conference on Machine Vision and Image

Processing (MVIP).

https://doi.org/10.1109/mvip49855.2020.911692

3

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3397&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3397&context=smallsat
https://doi.org/10.1117/12.2313242

Wilder-Smith 8 35th Annual

 Small Satellite Conference

15. Ruckerl, Sebastian, et. al. 2019. “First Flight

Results of the MOVE-II Satellite” Proceedings of

the 33rd Annual Small Satellite Conference, A

Look Back : Lessons Learned, SSC19-WKI-07.

https://digitalcommons.usu.edu/smallsat/2019/all

2019/49/

