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ABSTRACT 
Large constellations are quickly becoming the norm in small satellite missions. These constellations are being 
designed and developed faster than ever before through the utilization of smaller, heterogeneous spacecraft. Often, 
these constellations provide increased resiliency and capabilities over their heritage, highly tailored counterparts. 
The ability to replace on-orbit assets quickly and with lower costs is an advantageous feature of these large smallsat 
constellations. With the advent of these new architectures, though, come increased complexity in mission 
operations. The management and monitoring of potentially hundreds of heterogeneous space assets can be extremely 
challenging and negate much of the cost savings using current operational approaches. Additional complexity is 
added with the loss expectancy of some number of assets inherent to the design within these constellations. Rather 
than tasking individual assets to complete missions on behalf of the system, ideal operation would be conducted 
through tasking of the constellation as a whole. This approach requires tasking of the individual assets by the 
constellation using machine-to-machine (M2M) data sharing and on-orbit autonomous decision making. Recent 
advances in machine learning (ML) and artificial intelligence (AI) have now set the stage for the state of the possible 
in this regard.  

The authors of this paper are part of a research and development team aiming to develop solutions and tools to 
support this operational approach. The ideas presented involve a procedural and technical implementation of using 
forecasted operational effects developed by a combination of state machines and ML tools. First, the system’s state 
is gathered, time-synced, and produced into a “Dynamic Relative Telemetry Calculator.” This is presented as an 
NxN matrix documenting each node’s state relative to all other nodes in the system. Next, a desired operational 
command can be loaded into the system. Multiple possible operational scenarios and effects can be propagated. For 
each propagation, each asset must be capable of reporting the “cost” of performing a certain task within a certain 
operational scenario. By itself, this still requires a human in the loop to analyze the results and determine a 
command decision. However, the secondary and tertiary effects of these decisions are still unknown. To this front, 
the authors are developing a method of wrapping ML capability around the system's state machine and propagators 
to create a forecaster capable of autonomously determining optimal decisions within a system. The forecaster 
operates in real time, improving its predictions as more data is produced by each subsystem. Generated operational 
forecasts, and their effects, are validated with log data from a simulation. This data is being applied to proprietary 
mission scenarios, but could also be applied to historical open/mission data for validation or operational lessons 
learned. Over time, this forecasting tool could optimize large constellation management by reserving human in the 
loop for only the most severe/impactful decision thresholds. This paper will present current progress of the 
integrated solution, next steps in the research and development roadmap, and, most importantly, the current 
technical hurdles still to overcome to achieve true spaceflight autonomy.  

INTRODUCTION  
It is well documented and evident the current trajectory 
of the global spacecraft industry is investing in large 
operational constellations. These operational systems 
promise to enable game changing ideas such as Space 
Dial Tone and Internet of Things (IoT), and show real 
promise to further connect the globe and provide 
internet access to even the most remote locations on 
Earth. Historically, the market direction in satellite 
systems is driven by US Department of Defense (DoD) 
needs. However, the shift to large, robust constellations 

is now being driven by commercial entities. The 
commercial market has identified the business case for 
developing operational constellations. Most famously 
are two large commercial constellation endeavors 
intending to provide global internet access: Starlink and 
OneWeb.  

Elon Musk and his SpaceX team are in full-deployment 
mode in building out the Starlink infrastructure in 
space. At the time of this paper, there are ~1,500 
deployed Starlink satellites of a potential 12,000 
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(planned) to 42,000 (extended) satellites operating at 
once. Similarly, the OneWeb constellation (co-owned 
by OneWeb and Airbus) also promises “connection for 
people all over the globe.”1  At the writing of this paper, 
146 of 650 satellites have been launched. OneWeb’s 
constellation has already demonstrated significant 
progress in global engineering cooperation by 
transitioning the manufacturing from France to US 
locations.  

With the commercial industry leading the way, the US 
DoD has recognized the opportunity to leverage this 
private investment to upgrade and expand their own 
capabilities. The Defense Advanced Research Projects 
Agency’s (DARPA) Blackjack program “seeks to 
incorporate commercial sector advances in low Earth 
orbit (LEO), including design of LEO constellations 
intended for broadband internet service, of which the 
design and manufacturing could offer economies of 
scale previously unavailable.”2  

The Space Development Agency (SDA), only recently 
established in spring 2019, aims to develop the National 
Defense Space Architecture (NDSA). Their objective is 
to deliver minimum viable products to the warfighter 
on-time.3 The SDA is committed to leveraging 
commercial capabilities in order to build out this 
proliferated space architecture. The final product will 
be a combination of procured commercial spacecraft 
and a Hybrid Architecture approach of tying in to 
existing space infrastructure for data acquisition. To 
reduce data latency from space to warfighter, the SDA 
is expected to invest in a Transport Layer consisting of 
300-500 spacecraft from multiple commercial vendors.  

By all accounts, competing commercial entities, such as 
SpaceX and OneWeb, will drive innovation for our 
industry. The addition of the US DoD’s promise of 
support as anchor tenants will certainly accelerate 
innovation timelines, especially in manufacturing, 
interoperability, and efficient operations.  

The team of authors here have previously presented 
their thoughts, expertise, and opinions on technical 
enablers for manufacturing and interoperability. This 
paper intends to focus on the third enabler: efficient 
operations. It is appropriate the theme of the 2021 
SmallSat Conference is Autonomy and Mission 
Operations, as all evidence suggests efficient operations 
of large constellations must include some level of 
autonomy. For this paper and the conference at large, 
the authors intend to investigate the achievability of 
autonomous operations in large constellations from a 
number of vectors. The authors will first describe and 
define the problem statement regarding efficient 
operations and why autonomous operations are 

necessary. They will discuss the positives and 
negatives, the current limiting factors, and the current 
state of autonomous operations. Finally, the authors 
will discuss some of the technical roadmaps for 
autonomy of interest to their research.  

PROBLEM STATEMENT 

It is not difficult to perceive issues and limitations in 
mission operations as constellations begin to scale to 
the extremes as described in the previous section. With 
potentially thousands of nodes in any given system, 
traditional human in the loop operations must give way 
to more efficient autonomous operations. A number of 
factors in these large systems will drive the need for 
autonomy on orbit. The most commonly discussed need 
for autonomy is time related. Autonomous operations 
will be needed for most time-critical scenarios. This is 
evident in both the commercial world, such as data 
streaming for commercial products, but also highly 
emphasized in military applications. Reducing data 
latency is a key objective for multiple DoD 
organizations when supporting the warfighter. Hybrid 
Architectures and Mesh Networks promise to do this 
through proliferation of nodal access points for the 
warfighter, but autonomy will also be needed to further 
optimize the critical data path.  

The next key argument for autonomous systems is 
massive reduction in operational costs. Autonomy can 
reduce costs through a number of ways, including by 
the obvious of eliminating the need for large teams of 
ground operators and support staff. Cost is also reduced 
through increased mission performance and 
efficiencies. Improved efficiency offered by 
autonomous systems means the cost per data product 
ratio can be minimized. For large constellations, the 
scale of data products created means massive profit and 
returns are achievable via autonomous operations.  

The commercial industry has already recognized 
autonomous operations as a necessity for achieving 
both operational efficiency and profitability. In May of 
2021, SpaceX announced the Starlink spacecraft will 
avoid collisions with other objects in space through 
autonomous operations.4 The satellites will use their on-
board propulsion systems to autonomously conduct 
avoidance-maneuvers for perceived collision threats 
based on objects tracked by the US military. The 
referenced article outlines, at a high level, the procedure 
for issuing avoidance maneuvers. Based on a ground 
based measured collision probability, the US Air Force 
will issue a conjunction alert. However, these alerts are 
then manually reviewed and assessed before a 
corrective action is deemed necessary. SpaceX’s 
strategy is to remove the manual assessment and send 
the conjunction alert and necessary information directly 
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to the affected spacecraft for an autonomous maneuver. 
This strategy will certainly save time and cost regarding 
the collision assessment, but may end up costing the 
spacecraft unnecessary propellant expulsion to satisfy a 
non-optimized threshold. Collision probabilities and 
resulting conjunction alerts will only increase as large 
constellations continue to populate LEO, meaning these 
maneuvers will cost the spacecraft significant margins 
in propellant, resulting in substantial cost increases for 
servicing and/or replacement. Optimizing the thresholds 
and rules driving autonomous operations is a critical 
element for future autonomy in space. 

The US DoD also recognizes the need for autonomy, 
funding large space programs to address potential 
solutions. The first key program objective for 
DARPA’s Blackjack program is to “develop payload 
and mission-level autonomy software and demonstrate 
autonomous orbital operations including on-orbit 
distributed decision processors.”2 These autonomous 
functions are strategically implemented to ultimately 
reduce the time between data collection to delivery to 
the warfighter. The autonomy operations in Blackjack 
and other similar DoD programs are attempting to 
process collected data, determine the authenticity and 
relative importance of data, build a useable data product 
in a communicable format, and deliver to a warfighter 
without human in the loop.  

In the Civil Space sector, NASA has identified the need 
for autonomous capabilities in space. Specifically, 
NASA’s upcoming deep space missions drive the 
urgency and reliability of autonomous operations. 
There is a significant time delay in spacecraft to ground 
communications when flying in deep space. For 
traditional spacecraft operations, which require ground 
controllers to send tasking based on spacecraft 
telemetry and status checks, these time delays can 
quickly exceed reliability thresholds. Further risk is 
added to these missions if a time delay significantly 
reduces the validity in spacecraft telemetry and state of 
health.  

NASA established the Distributed Spacecraft 
Autonomy (DSA) project with the objective of 
advancing autonomous operations capabilities for 
NASA Missions. DSA efforts “will advance command 
and control methodologies for controlling a swarm of 
spacecraft as a single entity, demonstrate autonomous 
coordination between multiple spacecraft in the swarm, 
and demonstrate approaches for adaptive 
reconfiguration of the swarm’s plan.”5 DSA is planning 
a small on-orbit demonstration of four CubeSats in 
2021 and a ground test scaling up to 100 spacecraft. 
This approach shows NASA’s perception of scalability 
as a critical requirement for autonomy to be successful 

in deep space missions, both from a cost and efficiency 
for operations. 

CURRENT MISSION OPERATIONS PRACTICES 
Mission operations encompasses both pre-launch and 
on-orbit functions necessary for mission success. 
Whether for single vehicle missions or large 
constellations, mission operations can be very complex 
with a broad range of requirements for success. Within 
the space industry, there are no standard approaches for 
mission operations. NASA and the DoD derive 
different requirements based on objectives for their 
diverse portfolio of missions resulting in very different 
approaches to mission operations. Similarly, within the 
commercial market, most entities develop custom 
mission operation approaches. Not only is the 
commercial industry limited by diverse mission 
requirements, but proprietary and intellectual property 
protection surrounding mission operation concepts and 
tools also contribute to a lack of publicly available 
information. However, when discussing these 
limitations with colleagues within the industry, whether 
or not isolated mission operation capabilities would be 
sustainable in support of Hybrid Architectures and 
interoperable constellations is often a point of 
discussion. While there will always be a need for and 
business case to maintain some mission operation 
concepts privately, for autonomous operations and 
autonomous constellations to integrate into Hybrid 
Architectures, the industry will undoubtedly be required 
to re-imagine how mission operations are conducted 
and the procedures potentially shared.  

Though it can be reasonably predicted that future 
mission operations for autonomous constellations may 
be unrecognizable by today’s implementations, it is still 
important to recognize the current state of constellation 
mission operations. As stated previously, there are 
many functions performed as part of mission 
operations. Figure 1, from Space Mission Analysis and 
Design (SMAD), identifies 13 standard functions in 
mission operations.†6  

                                                           

† SMAD is a useful and standard resource for 
Aerospace Engineers (both students and professionals). 
It follows the mission design of a single vehicle mission 
known as FireSat. Often, SMAD is used as a first 
reference when conducting research into a space 
system.  
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In this example, nine functions rely on the mission 
database and data sharing for appropriate actions to be 
considered. Further, Table 1 shows, in a traditional 
mission operations plan, whether these functions occur 
within the spacecraft avionics (autonomous) or within 
the ground operations (human in the loop).6  

It is evident from the figure and table that humans in 
the loop are often required and relied upon in standard 
operations. Requiring human in the loop in this capacity 
has obvious negative effects on time-derived decision 
making by ultimately adding latency in delivering data 
to an end user. For time critical missions, this is not 
reliable. Similarly, the cost of maintaining humans in 
the loop for these operations is significant. When 
considering the scaling needs of large constellations, 
this is simply not sustainable. 

Many of the mission operations functions rely on the 
host spacecraft avionics for the data, and all require 
some sort data processing. As is evident, some data 
management as well as guidance, navigation and 
control functions may well be automated in many 
systems today, but a vast majority of the mission 
operations functions in this table still rely on ground 
operators and humans in the loop. These functions 
make up a vast majority of the mission operations while 
in flight and are most often the functions looked at for 
automation. If these functions can be conducted on-

board a spacecraft, significant time costs in 
communications windows and ground decisions can be 
eliminated.  

Table 1. Identifying Where to Carry Out Functions6 

MOS 
Function 

Where Accomplished 
Spacecraft Avionics Ground 

Mission 
Planning - 

Operator augmented 
with automated tools is 
primary 

Activity 
Planning and 
Development 

- 
Operator augmented 
with automated tools is 
primary 

Mission 
Control - Operator is primary 

Data 
Transport and 
Delivery 

Many LEO 
telecommunications 
spacecraft implement 
much of this function 
onboard 

Software and hardware 
provide primary 
capabilities 

Navigation 
and Orbit 
Control 

Software and hardware 
on spacecraft is an 
option 

Software and hardware 
is primary 

Spacecraft 
Operations - 

Short- and long-term 
planning by operators, 
augmented with 
automated tools 

Payload 
Operations - 

Short- and long-term 
planning by operators, 
augmented with 
automated tools 

Figure 1. The 13 Functions of Mission Operations System (MOS) and How They Interact6 
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When shifting from single vehicle missions, such as the 
FireSat mission in SMAD, to much larger systems as 
discussed earlier, human in the loop operations 
represent drastic increases in costs both financially and 
temporally. Unsurprisingly, complexity and cost are 
exponentially coupled for space systems as documented 
by IEEE Aerospace Conference Paper “Cost and Risk 
Analysis of Small Satellite Constellations for Earth 
Observation.”7 Considering this, it should be explicitly 
evident that a method for decoupling mission cost from 
mission complexity is needed for the success of future 
Hybrid Architectures and Mesh Networks. Further 
analysis of cost estimating methodologies helped to 
determine a significant way of reducing mission costs 
would be achieved by operating the constellation as a 
single unit (which is not always practical in Hybrid 
Architectures) or increasing the use of automated 
operations on orbit.8 Autonomous operations will 
reduce the number of personnel and ground support 
equipment needed to maintain traditional operations. 
Advances in autonomous operations are critical to 
future systems, and will drastically reduce mission cost 
by shifting many of the tasks in the “Ground” column 
of Table 1 into the “Spacecraft Avionics” column.  

AUTONOMY LIMITATIONS  
Autonomy has been a desired trait of satellite missions 
for many years, with multiple scientific discovery 
missions flying “autonomous operations” as payloads. 
However, it must be noted the significant difference 
between automation and autonomy. Automation is not 
“self-directed,” but instead requires command and 
control.9 Autonomy, in comparison, is the ability of a 
system to achieve goals while operating independently 
of external control.10 

In many space applications, the term “autonomy” is 
used to reference a rules-based state machine either on 
board the spacecraft or at the mission operations center. 
The state machine is able to perform actions that have 
been encoded into the state machine so long as the 
transition criteria for those actions have been met. 
While this does represent a useful level of automation, a 
significant limit to these state machines is that only 
rules and outcomes that have been encoded can be 
acted upon. True autonomy, then, could only be 
accomplished by encoding every possible rule and 
outcome that the system could encounter. 
Preprogrammed state machines are obviously limited in 
fault mitigation use cases; preprogramming specific 
faults and mitigation actions for a constellation of 
spacecraft would quickly become too cumbersome. 

A good example of this is NASA’s Space Technology 5 
(ST5) mission. A 3-ball constellation launched in 2006, 
ST5 was an early scientific mission seeking to test the 

ability of “smart” satellites by validating software tools 
developed for “autonomous ground operations,” among 
other mission objectives.11,12 Within its 100-day 
mission, ST5 operated with a “lights out” period during 
which the constellation executed pre-programmed 
commands without ground input. Though the mission 
validated the automated operations, which was certainly 
a major technological achievement, the ST5 mission 
encountered a number of unforeseen anomalies and 
ultimately required the activation of an “Anomaly 
Team” four hours after launch to mitigate anomalous 
sun sensor data. In NASA’s ST5 mission, the 
limitations of automated operations using a rules based 
state machine method were immediately apparent. The 
mission was not able to adjust to unforeseen and un-
programmed anomalies once on orbit. True autonomy 
will not be fully realized until the methods, procedures, 
and infrastructure for mission operations progress and 
evolve to a critical point necessary to recognize, 
identify, and react to anomalies without human in the 
loop. While this mission presented significant advances 
in automation, the goal of a truly autonomous system 
would be to recover from anomalous data without 
human intervention.  

A major challenge in transitioning from automation to 
autonomous systems is the ability to enable the system 
to be self-aware and understand its current state and the 
state of its surroundings. The true state and awareness 
of a satellite’s mission has most always been defined by 
a ground operator based on telemetry and satellite 
health data received while on mission. This status 
drives the next line of actions or tasking for the 
spacecraft. Self-awareness is also important for a 
spacecraft to adjust to unforeseen anomalies. The 
ability to identify and learn from new anomalies 
introduced into the environment will be necessary. For 
a satellite to accurately observe and define its current 
state, a few things must occur. Advance sensor 
technology, providing  highly detailed, highly accurate, 
and highly discernible data, must be available to the 
satellite’s on-board computer (OBC). Fortunately, 
significant advances in technology are now enabling 
highly accurate data products to be delivered directly to 
the OBC. Similarly, this raw data must also be 
processed and reduced into useable data products. This 
requires powerful on-board computing.  

Scalability is also a major challenge in autonomous 
operations. To date, most on-orbit autonomous 
operations consist of a relatively low number of nodes 
within the system (see ST5 and DSA examples above). 
While verification and validation on smaller systems is 
necessary, the ability to scale to support the large 
systems must also be verified and validated. Data 
sharing and data routing between nodes, especially 
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autonomously, is a very difficult challenge to solve. To 
solve this, significant ground testing and virtualization 
should be utilized.  

AUTONOMY ENABLERS  

Fortunately, interest in small spacecraft technology has 
been surging for years. This rapid growth has enabled 
countless advancements in space technology and space 
autonomy. Autonomy at the individual spacecraft level 
has become a popular research topic. Autonomous 
trajectory planning algorithms typically reserved for 
terrestrial robotics applications are finding their way to 
space. Spacecraft motion planning algorithms are being 
developed for optimal slews and even rendezvous and 
docking maneuvers.13,14 Trajectory planning algorithms 
often operate in a similar manner; they attempt to 
connect the current state to the goal state. They 
typically do this by constructing a graph of states by 
sampling inputs and propagating the state forward. 
They then find the optimal path that connects the initial 
state to the goal state according to some criteria. 

Though these algorithms are focused on solving 
autonomy challenges for individual spacecraft, their 
framework will be a key enabler for solving autonomy 
challenges for constellations. The major challenges to 
utilizing these methods will be defining cost functions 
for constellations and developing computationally 
efficient propagation algorithms to construct and search 
the graph. 

Implementation of these techniques will undoubtedly be 
computationally intensive. Luckily, spacecraft on-board 
computing capabilities are advancing rapidly. Already, 
the industry is seeing small spacecraft carry more data-
heavy payloads.15 The industry will continue advancing 
the computational capabilities as more and more use 
cases are found for them. Effective integration of 
artificial intelligence (AI) with space data is key to 
realizing value within vast datasets collected. 
Furthermore, combining AI with cutting-edge machine 
learning (ML) capabilities will facilitate the 
advancement of on-orbit data processing, increasing the 
efficiency of smallsat constellations. Many in the 
industry are already championing AI/ML as the future 
driver for autonomous operations. In fact, it is widely 
accepted that AI/ML tools will play a major factor in 
future autonomy. However, there are still some limiting 
factors involved with AI/ML, many of which are being 
addressed and perhaps discussed at this year’s SmallSat 
conference.  

AUTONOMY RISKS  
Autonomy is not a miracle technology. The 
mathematics and computer science supporting 
autonomous systems are often not novel, however 
decision-making architectures do present fault types 
that can be unfamiliar to software and computational 
systems. David Atkinson of the Institute for Human and 
Machine Cognition presents five processes from which 
fault modes may arise in autonomous systems:16 

1. Goals and Goal Generation 
2. Inference and Reasoning 
3. Planning and Execution Control 
4. Knowledge and Belief 
5. Learning 

Utilizing the configurable methods presented in this 
paper, the authors also believe that a sixth process 
exists that may lead to fault modes: Problem Definition. 

Optimal trajectory planning algorithms are not aware of 
the application in which they are being applied. They 
are only successful when their models are implemented 
with a sufficient level of detail and their cost functions 
properly represent the goal that is actually trying to be 
achieved. 

Defining a cost function for a given objective may be 
extremely difficult. If not defined properly, the task 
plan that successfully optimizes the cost function may 
not result in the desired behavior of the constellation. In 
this case, the task plan would still be “optimal.” 
Engineering expertise is still required to configure the 
autonomous system to produce the desired outcomes.  

The balance between over and under constraining the 
system is delicate. Over defining cost functions or 
adding unnecessary variables to the cost function 
imposes unnecessary constraints on the system’s ability 
to identify tasks. Alternatively, if necessary state 
variables are left out of the cost function definition, the 
resulting task plan would likely negatively impact these 
parts of the state. Variables need to be intelligently 
considered when designing cost functions for each 
specific objective.  

Therein lies the risk of autonomous systems. It is easy 
to place too much trust in autonomous systems. If their 
application and operational environment is not properly 
considered, mission operators may find that their 
constellation management system is performing outside 
the bounds of its expected behavior. 
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AUTONOMY ROADMAP 
Current internal research and development (IR&D) 
efforts at Redwire Space are focused heavily on 
developing tools to enable the design and test of 
autonomous constellation operation systems, 
specifically in the realm of optimal orbital trajectories 
and attitude control. The goal of such a system would 
be to design tasks that meet mission objectives while 
maximizing the performance metrics related to these 
objectives. These metrics could be constellation health, 
data quality, information gain, etc. 

To utilize the approach of modern trajectory planning 
algorithms, two key areas must be developed. First, a 
formal definition of cost functions must be defined. 
Both a qualitative and quantitative definition of cost is 
fundamental to optimizing a task plan for a 
constellation. Second, a method of state propagation 
must be developed that can utilize this definition of cost 
function. The propagator servers a major function in 
trajectory planning algorithms that is responsible for 
determining the state that would result from a given 
task. 

Constellation Cost Functions 

Describing the health of any complex system is 
complicated and often context dependent. Generally, 
health of a system can be defined as a qualitative 
measure of how well that system is meeting its 
objective. For example, a spacecraft may be capable of 
tracking a desired target on the surface of Earth but 
unable to power a sensor to collect images of that 
location. In the context of health, its attitude control 
system is qualitatively “healthy” but its electrical power 
system is “unhealthy.” Moreover, because the 
spacecraft is incapable of meeting a specific mission 
objective (to image that target on the surface of Earth), 
the spacecraft is “unhealthy.” This is one example of 
determining vehicle health; however, most examples 
are not this straight forward, and require knowledge of 
many independent variables across subsystems in order 
to estimate the vehicle health. To add, there may be 
several ways to meet a certain objective, and some 
objectives that are related to one another. It is possible 
that the constellation can meet an objective (or set of 
objectives) but requires a significant amount of 
resources to do so. 

Redwire defines the health of a system as the weighted 
deviation of the system’s state from the “goal” state 
of a given objective while meeting conditions for that 

objective. In the context of optimization, the term 
health is used interchangeably with cost. Cost functions 
can be defined to represent a quantitative status of a 
component, a complex subsystem on board the 
spacecraft, a cluster of spacecraft, or a constellation as a 
whole. To add, these cost functions must be defined in 
the context of each mission objective. Different 
objectives likely require different resources from the 
constellation. The systems engineering process can be 
leveraged to define mission objectives and connect 
them to cost functions. Metrics like Measures of Merit 
(MOMs), Measures of Performance (MOPs), and 
Measures of Effectiveness (MOEs) can quantify “goal” 
states for a given objective as well as the conditions that 
must be met for this objective to be relevant. That is, if 
a mission objective conditional is met, then its cost 
function can be evaluated. Formally, cost functions are 
defined as: 

 

 

:  

 

Where  

 

 

 

 
And  is a data structure containing the conditionals 
of the nth objective. The cost is not evaluated if these 
conditionals are not met. 

Example Cost Function and Conditional 
An example cost function of a single spacecraft is now 
considered. Two simplified objectives are defined to 
illustrate the creation of conditionals and goal states. 
The first is to maintain its current orbit and power 
levels. The second is to image a certain area of the 

Earth. The conditional for objective 1 (  ) is always 

true. The conditional for objective 2 ( ) is true if the 



Dunn 8 35th Annual 
  Small Satellite Conference 

spacecraft is in a “surface imaging” mode. The 
variables and weights for each objective are defined as: 

Table 2. Goal State for Objective 1 

Variable Name Goal Value,  Weight 

Angular velocity (0,0,0) rad/sec (1,1,1) 
Incoming Charge 100 W 0.01 
Total Power Load 20 W 0.01 

State of Charge 100 % 0.001 
 

Table 3. Goal State for Objective 2 

Variable Name Goal Value,  Weight 

Target Acquired 1 boolean 5 
Attitude Error (0,0,0) rad (10,10,10) 

Angle To Target 0 rad 2 
State of Charge 100 % 0.5 

 

First the cost is calculated assuming that the conditions 
for objective 1 are true but the conditions for objective 
2 are false. To calculate the instantaneous cost at a 
given time, a state vector is obtained as: 

 

 

 

The instantaneous cost is then determined to be: 

 

 

 

Once the conditional for objective 2 is met at a later 
time, the cost function for objective 2 can be 
considered. To do this, the goal state of objective 2 
(denoted with subscript “coll”) and its corresponding 
weights are simply augmented with the goal state and 
weights of objective 1 (denoted with subscript “nom”) 
to form a new goal state and weight matrix.  

 

To evaluate the instantaneous total cost, a new state is 
obtained for objective 1 as: 

 

 And objective 2 as: 

 

The complete cost is then calculated as: 

 

Knowing the largest element of W, the cost can be 
contextualized. The closer the cost is to 0, the smaller 
the deviation between the goal and the current states. 
Similarly, the closer the cost is to the largest element of 
W, the unhealthier the spacecraft is. Lower cost (𝐽𝐽) 
implies a healthier space vehicle. In the previous 
example, given how close the cost is to 0 (and how far 
the cost is from the maximum value of 10), the 
spacecraft is fairly healthy. This assessment agrees with 
intuition given how close the spacecraft’s state is to the 
goal state. 

Redwire’s Advanced Configurable Open-system 
Research Network (ACORN) is being leveraged as a 
high fidelity spacecraft simulation to support the 
development of this cost function tool. Cost functions 
will be implemented within ACORN’s flight software 
as a module that ingests telemetry and uses it to 
evaluate user-defined conditionals and cost functions in 
real time. Monte Carlo simulations will be executed to 
evaluate the behavior of the cost function under 
different circumstances and in response to different 
commands.  

The definition of cost functions is not trivial and is 
further complicated when considering an entire 
constellation. Telemetry from individual components or 
subsystems can vary wildly in values and ranges and 
have very different meanings. To add, individual 
telemetry points may not carry enough information 
alone to evaluate the health of anything. Telemetry 
points might need to be combined in order to establish 
meaningful evaluations of health. An additional 
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dimension of telemetry is added at the constellation 
level as relative telemetry between spacecraft.  

Redwire’s Dynamic Relative Telemetry Calculator 
(DRTC) (Figure 2) tool is a constellation monitoring 
application that ingests raw telemetry from a 
constellation and aggregates the data to show how the 
spacecraft are behaving relative to one another. The 
tool calculates telemetry like range, range rate, and 
pointing angles. Redwire is actively developing this 
tool to add additional telemetry that can be used to 
describe the state of the constellation as a single entity. 
This relative telemetry data serves as additional 
dimensions in the constellation’s state space. This 
allows cost functions to be described as combinations 
of individual spacecraft states and constellation states. 
Being able to describe the state of the constellation as 
single unit (rather than a collection of individual 
spacecraft states) is vital to constellation management. 
Task planning of a constellation requires definition of 
the constellations state and cost functions. If properly 
defined, trajectory planning algorithms can be used to 
identify tasks for the constellation as a function of tasks 
for individual spacecraft. The primary objective of the 
DRTC is to provide the mission operator with as much 
insight into the constellation’s state as possible. An 
ability to use this information in the task planning loop 
ensures that the mission operator is unconstrained when 
configuring their autonomous constellation operation 

system. 

Constellation State Prediction 
The second major effort of development in support of 
designing autonomous constellation operation systems 
is developing an effective propagation method. Such a 
method needs to be both accurate to ensure the results 
are useful and computationally efficient to ensure it can 
operate in highly complex dynamic environments. 

A key challenge in developing an efficient propagation 
method is in the size of the state space of a 
constellation. A cost function that utilizes 20 different 
elements of relative telemetry from a constellation 
requires the propagation of at least 20 dimensional 
states (some variables may require propagation of 
additional states to be determined). Sampling-based 
trajectory planning algorithms often utilize numerical 
integration methods such as Runge-Kutta to propagate 
states forward. This method works well for lower 
dimensional systems and can be used in online 
planning.17 In designing a tool for constellation 
planning where an indefinite number of variables can 
be used to define a cost function, the dimensionality of 
the state space is essentially unbounded. Therefore, the 
propagation method must be efficient in potentially 
large problem areas. Traditional numerical integration 
methods will not be efficient enough to support this 
kind of complexity. 

Figure 2. Dynamic Relative Telemetry Calculator (DRTC) 
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Redwire, in collaboration industry partners, is working 
to develop a prototype propagator that is capable of 
using current spacecraft subsystem states to predict 
future subsystem states with a high level of accuracy. 
The forecaster operates in real time, improving its 
prediction as more data is produced by each subsystem. 
The goal of this effort is multifaceted: 

1. To understand what features are necessary to 
predict a desired forecast metric 

2. Develop a machine learning model that can be 
used to predict a desired forecast metric 

3. Develop a method for generating training data 
for a machine learning model 

In this case, the metric of interest was “time until 
sunpoint.” This metric was defined only for a single 
spacecraft as the time required to find the sun during a 
power generation maneuver.  
ACORN was again used as the high fidelity spacecraft 
simulator. A Monte Carlo simulation loop was used to 
configure and execute the ACORN simulation 500 
times. Log data from these simulations served as the 
input to the ML model. Each simulation varied the 
spacecraft’s initial orbit conditions while keeping the 
physical configuration identical between runs. By 
changing the initial orbit conditions, each simulation 
resulted in a different amount of time required to find 
the sun. The physical configuration of the spacecraft 
was kept constant under the assumption that the 
resulting ML model would be spacecraft-specific. The 
goal of the model was to predict future states of a 
specific spacecraft using that spacecraft’s telemetry.  

Interestingly, some simulations produced results with 
infinite time until sunpoint. This meant that the 
simulation ended before the spacecraft actually found 
the sun. These data sets were not removed from the 
training set. 

The model ingested the log data one element at a time 
(essentially mimicking what it would do if it were 
ingesting real time telemetry data on board the 
spacecraft) and produced an updated prediction after 
every ingestion. The complete list of spacecraft 
telemetry used to train the model is proprietary; 
however, it is representative of common telemetry sets. 
The results of the model’s prediction for one of the 
simulations are shown in Figure 3. 

 

Figure 3. Example Result of Machine Learning 
Model to Predict Time Until Sunpoint 

At t=0s for this simulation, the actual time until 
sunpoint was 2,320 seconds. The exact performance 
metrics of the model are proprietary but clearly the 
model’s performance increased with time. 
Unsurprisingly, as simulation time converges to the 
time that sunpoint is achieved, the predicted value of 
time until sunpoint approaches the correct time. 
However, the value in a model like this is not in its 
accuracy at the end of the task but instead in its 
accuracy far from the point of interest. At t=1000s, the 
model predicted that time until sunpoint was 1,108 
seconds; a difference of 212 seconds. A task planner 
could use this model to identify a task in the future 
under the assumption that the spacecraft is 1,108 
seconds away from finding the sun. The task planner 
could then modify the plan using updated predictions 
until the task is actually executed. In this example, the 
planner might identify how long to operate a payload 
knowing how long the spacecraft’s batteries must last 
before they can be recharged. 

Spacecraft configuration data was intentionally NOT 
used to train the ML model. Doing so may have 
improved its prediction but would have made the model 
too dependent on the physical configuration of the 
spacecraft to be useful in a heterogeneous constellation. 
It is believed that the prediction results are 
representative the model’s performance regardless of 
spacecraft configuration, however, more testing is 
planned to verify this. This effort successfully 
accomplished its three initial goals. A preliminary 
machine learning model and training pipeline was 
created that can predict a desired metric with an 
acceptable level of accuracy. Features needed to train 
this model were also identified, though more work is 
required to identify how models will be trained to 
predict other metrics.  
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Mission Scaling and Virtualization 

Another critical component to achieving autonomy is 
the ability to thoroughly test and validate autonomous 
systems via ground testing platforms. Redwire has a 
strong heritage of building ground support test and 
modeling and simulation systems for space 
applications. However, the large scaling required to 
support mega constellations pushed the Redwire team 
to identify new solutions.   

Redwire still relies on its ACORN platform as its base 
for representing space nodes in customizable levels of 
fidelity. ACORN can be implemented in many 
variations, each designed to enable scaling from 
mission concept design to full flatsat integration. These 
variations include an ACORN-S (Simulation), 
ACORN-R (Rack), ACORN-MT (Modular Testbed). 
For large constellation analysis, ACORN-VMs and 
ACORN-Cloud are offered in a virtual machine 
environment to quickly instantiate large quantities of 
simulated satellites. 

Additionally, ACORNs are intended to be 
interconnected in a network to create a 
Distributed/Collaborative Architecture. This enables 
distributed engineering teams, whether geographically 
separated, organizationally separated, or both. ACORN 
has demonstrated this ability on multiple Redwire 
programs where the program team consists of engineers 
located throughout the United States at various 
Government Labs, Federally Funded Research and 
Development Centers (FFRDCs), or Government 
organizations. The networked ACORNs provide a 
secure and distributive environment for the program 
teams to actively collaborate on common Design 
Reference Missions (DRMs). This capability will be 
important for ground testing autonomous operations for 
Hybrid Architecture systems, such as SDA’s NDSA or 
DARPA’s Blackjack program.  

Virtual machines on an ACORN network can be easily 
configured to create many spacecraft nodes within a 
constellation mission. This includes both homogenous 
and heterogeneous constellations. Establishing an 
ACORN network allows users to model and simulate 
multiple spacecraft buses within a single scenario. In 
this scenario, users can assess a potential autonomous 
flight software solutions on multiple satellites of 
varying classes in a single constellation.  

However, the infrastructure required to host these VMs 
quickly became overwhelming. Through internal trade 
studies, Redwire has identified a commercially 
available server technology as the leading candidate for 
addressing this problem. The identified solution was 

required to facilitate a virtualization platform and has 
been architected utilizing native Kubernetes for 
application modernization. This innovative approach 
helps to decouple runtime (performance) and 
infrastructure (flexibility) services as key trading 
metrics in traditional server technology. Utilizing this 
service, Redwire has demonstrated the ability to 
virtualize complex laboratories, such as those modeling 
Hybrid Architectures, while optimizing both system 
agility and system efficiency.  

CONCLUSIONS 
The intent of this paper was to systematically assess 
and research the state and projections of the industry in 
terms of the future need and probability of autonomous 
operations. The large constellations and Hybrid 
Architectures will ultimately require some levels of 
autonomous operations in order to reduce data latency 
and improve operational efficiency to support the 
economies of scale desired. The commercial industry is 
driving this innovation, though the DoD and NASA are  
actively participating and supporting the development 
through various programs.  

Undoubtedly, future autonomous mission operations 
will most likely be unrecognizable as compared to 
traditional mission operations. A more open sharing of 
operational procedures is predicted in order for Hybrid 
Architectures to operate autonomously. To achieve this, 
many novel tools and procedures must be developed.  

For future work, the authors will seek to continue their 
research by combining their propagation tools with cost 
function development. This will predict a single 
telemetry value as well as cost for a collection of states. 
From there, the authors will seek to develop an 
optimizer to continuously produce a task list that 
minimizes the predicted collection of states.   

Finally, the authors hope to open conversations with 
other industry partners seeking to establish autonomous 
operations. More can be achieved through open 
collaboration as opposed to historical closed door 
development. For Hybrid Architectures and Mesh 
Networks to truly work utilizing autonomous 
operations, engineers across the industry will need to 
communicate and share ideas and research to ensure the 
systems are interoperable.  
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