SSC21-X11-09

Design and Validation of an Autonomous Mission Manager towards
Coordinated Multi-Spacecraft Missions

Antony Gillette, Alan George
NSF Center for Space, High-performance, and Resilient Computing (SHREC) - University of Pittsburgh
4420 Bayard Street, Suite 560, Pittsburgh, PA; 352-389-1536
agillette@pitt.edu

J. Patrick Castle
NASA Ames Research Center
M/S N269-1, Moffett Field, CA 94035; 650-604-0435
joseph.p.castle@nasa.gov

ABSTRACT

For ambitious upcoming aerospace missions, autonomy will play a crucial role in achieving complex
mission goals and reducing the burden for ground operations. Standalone spacecraft can leverage autonomy
concepts to optimize data collection and ensure robust operation. For spacecraft clusters, autonomy can
additionally provide a feasible method of ensuring coordination through onboard peer-to-peer scheduling.
However, in exchange for providing flexible mission capabilities and operational convenience, autonomy
introduces additional uncertainty and software complexity, which complicates the mission assurance process.
This research presents a framework for designing and testing schedules consisting of heavily constrained
tasks.

The core of this framework, the Schedule Manager (SM), manages tasks by associating constraints with
each task including time windows, task priority, conflict categories, and resource requirements, which assures
that tasks will only run when capable. This increased control over individual tasks also

improves the modularity of the overall mission plan, and provides a built-in fail-safe in the event of
unexpected task failure through the loading of predefined contingency schedules. The SM can use estimated
task durations and resource requirements to simulate schedules ahead of time, which can be used on the
ground for schedule validation and onboard as a method of prognostics and to calculate resource availability
windows. The ability to predict availability windows onboard and dynamically adjust depending upon
currently scheduled tasks enables peer-to-peer tasking and scheduling. For example, a spacecraft can schedule
a coordinated action by broadcasting the task requirements in an availability window request to all applicable
spacecraft. Then, based upon the availability windows received from each spacecraft, the coordinating
spacecraft can then issue a final task scheduling command with a much lower probability of conflict.

The SM has been integrated with the core Flight System (cFS) from NASA, which has flight heritage on
previous successful large-scale missions such as the Lunar and Dust Environment Explorer (LADEE). This
integration is in the form of a cF'S application called the cF'S Schedule Manager (CSM), which will manage
the operations for the Space Test Program Houston 7 Configurable and Autonomous Sensor Processing
Research (STP-H7-CASPR) experiment that is planned for launch on SpaceX-24 to the International Space
Station (ISS) in December 2021. Software validation was achieved with cFS unit tests, functional tests, and
code analysis tools. Demonstrations were built using the COSMOS ground station and the 42 spacecraft
simulator, and these were tested with a cluster of development boards in the loop as representative flight
hardware.
INTRODUCTION or cost-prohibitive are a significant motivating factor
for the continued improvement of autonomous space-

The past few decades have seen research and de-
velopment into many different types of distributed
spacecraft missions.! Ambitious mission concepts
featuring constellations of satellites to achieve mis-
sion objectives previously deemed to be impossible

craft constellation management capabilities. How-
ever, there are many required components that
are necessary to enable these missions,? and the
increased complexity of these components relative

Gillette

35t" Annual Small Satellite Conference

to their counterparts for solo spacecraft missions
widens the gap between theoretical research (e.g.,
constellation navigation and consensus algorithms)
and realized implementations tested on flight-like
hardware. Also, due to the variety in types of multi-
spacecraft missions and corresponding required ca-
pabilities, it is more challenging to leverage concepts
and software developed for prior missions compared
to solo spacecraft missions.

This research aims to address the current chal-
lenges associated with constellation mission soft-
ware research and development through a simpli-
fied and general-purpose baseline that can demon-
strate autonomous mission management concepts
on resource-constrained embedded platforms. With
the focus of this study being on developing soft-
ware that has a path to flight, many additional de-
sign considerations are necessary, such as the pro-
gramming language and paradigms used, resource
requirements, and feasibility of testing to the stan-
dards required for flight software. The resulting so-
lution was achieved in the design of the Schedule
Manager (SM), a library of schedule-management
functions written in C that targets many design con-
siderations, such as simplicity, scalability, efficiency,
safety, and interoperability. With the SM as the
core, integration with the core Flight System (cFS)
developed by NASA Goddard Space Flight Cen-
ter (GSFC) was achieved through the cFS Schedule
Manager (CSM) application to demonstrate perfor-
mance capabilities in the context of a realistic flight
software solution.

The SM enables the upload and execution of
schedules consisting of heavily constrained tasks.
Each individual task can be assigned a selection of
optional constraint fields, and through the proper
design and upload of task schedules, a user can con-
trol how the system will respond even with many
unpredictable and uncertain influencing factors. By
having constraints assigned to individual tasks, the
mission planning phase can be modularized to mini-
mize operational complexity. If individual tasks are
properly designed with specified conditions and re-
sources required for successful execution, then un-
predictable situations such as delays in the avail-
ability of shared resources will be handled automat-
ically. The development of the SM required itera-
tive redesigns and tradeoff explorations to be able to
achieve a satisfactory balance between the usability
of the system and the support of the desired features
initially conceptualized.

The first phase of research for the SM and CSM
was to enable autonomous control for solo space-
craft missions, with a practical goal of enabling

autonomous operations for space missions devel-
oped at the National Science Foundation (NSF)
Center for Space, High-Performance, and Resilient
Computing (SHREC) based at the University of
Pittsburgh. At SHREC, two missions have been
launched and one planned for the U.S. Department
of Defense Space Test Program (STP) Houston,
namely STP-H5 CHREC Space Processor (STP-
H5-CSP) which launched on SpaceX-10 in 2017,3
STP-H6 Spacecraft Supercomputing for Image and
Video Processing (STP-H6-SSIVP) which launched
on SpaceX-17 in 2019,* and STP-H7 Configurable
and Autonomous Sensor Processing Research (STP-
H7-CASPR) which is planned for launch on SpaceX-
24 in December 2021,° and mounted on the Interna-
tional Space Station (ISS). Figure 1 illustrates STP-
H5-CSP, STP-H6-SSIVP, and STP-H7-CASPR. The
CASPR mission uses the CSP and two SHREC
Space Processors (SSPs), based on the Zyng-7020
and Zyng-7045 systems-on-chip (SoCs), respectively.
As a multi-technology demonstration, CASPR in-
cludes many subsystems that cannot be run concur-
rently due to power constraints and would benefit
from the ability to specify start times and resource
constraints for specific operations (such as for image
capture).

Figure 1: STP-H5-CSP (Top Left), STP-H6-
SSIVP (Top Right), STP-H7-CASPR (Bot-
tom)

Gillette

35t" Annual Small Satellite Conference

The second phase of this research was to demon-
strate the applicability of the SM and CSM for
multi-spacecraft missions that require autonomous
collaboration, as well as to emphasize the feasibility
of validation and testing of the established software
framework to show suitability for future high-profile
missions. Towards this goal, onboard schedule sim-
ulation and resource-availability prediction capabil-
ities were designed and added to the SM. These ca-
pabilities can be used as an additional method of
schedule validation as well as to enable dynamically
scheduled tasks for multi-spacecraft missions with
collaborative availability communication.

In the following sections, first a background of
related technologies and related works will be cov-
ered. Next, the design of the SM and CSM will be
presented, followed by an overview of the methods
used for testing, and finally details on the tested
demonstrations.

BACKGROUND

This section will begin with an overview of the
capabilities and benefits of cFS including a descrip-
tion of recent cF'S mission examples as a reference.
Next, the tools used to assist in simulation and test-
ing will be described. Finally, this section will con-
clude with a summary of related research.

Capabilities of the core Flight System and
Adoption Benefits

The initial goal of this research was to im-
prove the autonomous capabilities of cF'S. The cFS
framework includes the core Flight Executive (cFE),
which provides a set of apps that support cFS such
as the Software Bus (SB) app which enables the
sending of command and telemetry messages be-
tween all ¢cFE/cFS apps via a publish-subscribe
message bus with accepted packets following the
Consultative Committee for Space Data Systems
(CCSDS) protocol. CCSDS headers contain fields
for commands including message 1D, sequence num-
ber, packet length, command code, and checksum,
as well as timestamp for telemetry, to support the
routing of messages between apps. The cFE also
includes other apps such as the Executive Services
(ES) app which enables the startup and runtime
management of other cFE and cFS apps, and the Ta-
ble Services (TBL) app which manages a system for
the validation and loading of compiled tables. Any
apps developed outside of the ¢cFE core are consid-
ered cF'S apps, and NASA GSFC has released many
open-source cFS apps on GitHub such as the Com-

mand Ingest (CI) app which enables the system to
receive external SB command messages through a
UDP socket, the Telemetry Output (TO) app which
enables the output of SB telemetry messages on a
UDP socket, the Schedule (SCH) app which can
send defined SB command messages periodically, the
Stored Commands app (SC) which can load tables
of SB command messages and send them at specified
times, and the Limit Checker (LC) app which can
monitor SB telemetry messages and send specified
SB command messages if certain thresholds are ex-
ceeded. cFS is built on top of NASA’s Operating
System Abstraction Layer (OSAL), enabling soft-
ware deployment to multiple OS platforms, and the
OSAL includes several Platform Support Packages
(PSPs) to assist with hardware compatibility.®

The functionality provided by these cF'S apps is
relatively straightforward but has been used to sup-
port many high-profile missions. An example of a
prior mission that used cFS is Dellingr, which was
a 6U CubeSat developed by NASA GSFC.” Dellingr
used the LC app to monitor and respond to poten-
tial issues such as unsuccessful antenna or boom de-
ployment, invalid radio/heater configurations, and
other system errors. After the detection of a sys-
tem failure, the error could be handled by sending
a SB command message to trigger a suitable SC
schedule to perform actions such as restarting oper-
ation sequences, resetting the system, and entering
safe mode. Dellingr encountered various issues on
launch, but many of these issues were successfully
fixable through a variety of methods.® Another de-
tailed example of using cFS to manage spacecraft
operations is provided by the Lunar and Dust En-
vironment Explorer (LADEE) developed at NASA
Ames Research Center (ARC).? In addition to us-
ing the SC and LC in a similar manner to Dellingr,
LADEE also used the Health and Safety (HS) app to
perform actions such as handling unresponsive tasks
in a configurable manner, ranging from resetting an
app a set number of times to triggering an immedi-
ate processor reboot depending on the severity of the
issue. The LADEE mission design process outlined
many potential faults and designed custom methods
to handle each situation.’

The above two missions provide well-described
examples of cFS usage but make up a small portion
of the overall list of missions that have successfully
used cFS to achieve their goals. Out of the various
open-source flight software frameworks available to
the space community, cF'S stands out as a capable
and flight-proven solution.'® By using a commonly
reused flight software solution like cF'S, prior lessons
learned and experience can be built upon and mis-

Gillette

35t" Annual Small Satellite Conference

sion development work can more easily benefit sub-
sequent missions in the future. The level of open-
source activity for cF'S on GitHub has been on the
rise recently, with many discussions with the com-
munity and collaboration on the development and
addition of new features. Through the adoption and
usage of cF'S, many practical benefits can be gained
such as a reduction in required development time,
a lower level of risk due to the tests and analysis
performed for prior usage, and the ability to ask
for support from the community when encounter-
ing software issues or contemplating the practicality
of adding new features.

Simulation and Testing on Software and
Hardware Platforms

A Dbaseline cFS testing framework is provided
by OpenSatKit, an open-source project combining
NASA GSFC’s 42 spacecraft simulator and Ball
Aerospace’s COSMOS ground system to provide
a full end-to-end mission development workflow.!!
The 42 simulator supports features such as the dy-
namics of gravity, magnetic fields, and atmospheric
density using configurable models, and it also pro-
vides methods to visualize and control the move-
ment of spacecraft in orbit. The COSMOS ground
system enables the manual or automated sending of
predefined commands and parsing of telemetry data.
By using these two tools along with cF'S, a mission
software developer can realistically interface with a
simulated spacecraft and see how it would behave
in orbit. For the testing of constellation missions,
multiple targets can be added in COSMOS and 42,
with the main additional necessity being the setup
of virtual machines or containers to run multiple in-
stances of cFS.

For more realistic testing, embedded develop-
ment boards can be used to account and test for
compatibility and capabilities of the target plat-
form. The flight processors developed at SHREC
are based on Zyng-7000 SoC devices developed by
Xilinx. The Zyng-7020 and Zyng-7045 featured on
the CSP and SSP, respectively, both include a dual-
core ARM Cortex-A9 processor and 7-Series FPGA
fabric. Many development boards are commercially
available that include the same devices such as the
ZedBoard and PYNQ-Z2 board, which use the Zynqg-
7020, and the ZC706 board, which uses the Zyng-
7045. Testing on desktop computers means compil-
ing for an x86 architecture and generally without
memory or processing constraints. Cross-compiling
apps for the ARM architecture and testing on de-
velopment boards provides a more accurate runtime

estimate and will bring attention to potential issues
such as memory usage, thread congestion, and ker-
nel compatibility. Aside from custom components
such as the radiation-hardened watchdog and NAND
flash memory and related tests, testing on a Zynq
development board will produce results similar to
testing on the CSP or SSP. As an added benefit of
testing on development boards, building hardware-
in-the-loop demonstrations with many nodes is much
more affordable and with a more manageable form-
factor as can be seen by a picture of the PYNQ-Z2
cluster testbed used for this work in Figure 2.

Figure 2: Cluster of 16 PYNQ-Z2 Develop-
ment Boards

Related Works

A prominent early example of spacecraft auton-
omy was provided by the Autonomous Sciencecraft
Experiment (ASE) on NASA’s Earth Observing One
(EO-1) spacecraft.'? The onboard planner used
on ASE, named the Continuous Activity Scheduler
Planner Execution and Re-planner (CASPER), has
been used on multiple missions since, such as the In-
telligent Payload Experiment (IPEX) CubeSat mis-
sion.'3 The responsibilities of CASPER on IPEX in-
cluded receiving plans generated on the ground and
then autonomously handling conflicts due to over-
lapping observation goals, excessive resource con-
sumption including CPU, RAM, storage, and power,
and deviations in activity durations and image data
product sizes.

Another example spacecraft autonomy solution
is provided by the flight software that was developed
for the CubeCAT-1 nanosatellite (3Cat-1).1* An on-
board task planner design was used to schedule time-
tagged activities while managing four resources: en-
ergy, instantaneous power, storage capacity, and op-
eration simultaneity.

Regarding autonomy for distributed satellite
missions, Araguz et al.? overviews the current state
of distributed satellite systems, including potential

Gillette

35t" Annual Small Satellite Conference

benefits for the application of autonomy to dis-
tributed missions, as well as guidelines for concepts
to consider in the development of autonomous mis-
sion planners. From this detailed overview, it is
evident that there are many benefits but also cor-
responding challenges associated with applying au-
tonomy to distributed satellite systems.

APPROACH

Towards the goal of achieving autonomous coor-
dination of spacecraft constellations, the SM and re-
lated components were designed and developed with
many tradeoffs considered. One significant challenge
to overcome was feature creep along with an expo-
nentially growing level of complexity involved with
the understanding and usage of the developed frame-
work. For example, flexibility and capability can be
gained by adding additional features, but at the cost
of overall simplicity, predictability, and safety. Mod-
ularity of functional components can help with over-
all testing and development, but correspondingly in-
troduces integration complexity and challenges.

The core component of the autonomous mission-
management solution described in this paper is the
SM, which manages the execution of schedules of
heavily constrained tasks by defining consistent rules
for how each constraint affects the execution logic of
tasks or their corresponding contingencies. When
used standalone, tasks for the SM can represent ei-
ther external processes such as executable binaries
or scripts, or alternatively function calls which are
generally used for schedule management. When the
SM is used in a cFS app in the form of the CSM,
tasks can additionally represent raw SB command
messages or cF'S function calls to fit in the paradigm
of cFS-based mission design. The CSM enables in-
terfacing with cFS using standardized commanding
and configuration methods. The following sections
will describe the capabilities of the SM and CSM,
followed by the design and application of the coordi-
nation and availability prediction capabilities added
to the SM.

Schedule Manager Concept Overview

The SM enables a user to design a schedule of
tasks, upload the schedule to the running SM in-
stance in various acceptable formats, and watch the
execution of the tasks in real-time. The uploaded
schedule first goes through a validation step, where
each task’s constraint fields are analyzed for accept-
ability and validity, followed by task addition to the
main schedule. On every processing cycle (every sec-

ond by default), every task in the main schedule is
sorted by each task’s priority value, and then from
the top, first each running task is checked to see if it
is finished running or if it’s running longer than ex-
pected, and afterwards, each pending task is checked
to see if its constraints have been satisfied to be run,
or if it has expired and needs to be removed. Figure
3 shows a flowchart of the operation of the SM.

Start SM with desired
configuration options
r:\'} Upload schedule (default or
assign syntax)
Schedule tasks are
individually validated
1

— Setup

-

Tasks are sorted based on
F> priority field (high to low)
Finished and expired tasks
are checked and removed
Check duration of currently
running tasks
Detect problems and load
required contingencies
Launch tasks with
constraints satisfied

Wait for next process cycle
— or schedule upload

Validated tasks are added
to main schedule

9
]
»
]
d

- Routine
Processing

Figure 3: Schedule Manager Operation Flow

To facilitate working with and testing the SM,
certain features were added mainly for testing con-
venience. For example, when the SM is started in
standalone mode, configuration parameters can be
passed to it on the command-line to control aspects
such as constraint check overrides and configurations
like the path to a system temperature file. After the
SM is started and configured, it will either load a de-
fault schedule or wait until it detects a new schedule
based on the file modification date. The SM accepts
two main formats for schedules, the default being
comma-separated task fields with one line per task
and an alternative format where only desired fields
need to be provided and are specified with assign-
ment syntax (e.g., id=1, priority=3, etc.). With
the schedule filetype being a comma-separated val-
ues (CSV) file, the default syntax is manageable by

Gillette

35t" Annual Small Satellite Conference

editing the schedule in a spreadsheet such as Mi-
crosoft Excel, otherwise the assignment syntax is
easier to manage when using a text editor. When
the SM loads a schedule, it will perform task valida-
tion for each task in the schedule, making sure there
are no syntax errors or invalid field values. Aside
from the status and pid fields which are populated
at runtime, Table 1 describes the task fields that can
be provided for each task in the schedule.

Table 1: Schedule Manager Task Fields

Name

Description

status The current status or return value of a
function task

pid The process ID returned when forking and
executing a task with type 0

id The identification number of the task, also
includes task sequence 1D

start_time The earliest time that the task can execute

in seconds since Jan 1, 1970

The deadline for the task to execute in sec-
onds since Jan 1, 1970

expire_time

interval The delay in seconds to add when
rescheduling a completed routine task

duration The expected duration of the task in sec-
onds

conflict The conflict categories the task belongs to,
each bit corresponds to a category

priority The priority of the task, higher priority
tasks execute first

type The task type (0: process, 1: function, 2:
cFE message, 3: cFE function)

constraints The index in the variable constraints table
to associate with the task

args The custom arguments that correspond to

the task

mem_lower The minimum free system memory in MB

required for the task to execute

mem_upper | The threshold for free system memory in

MB for triggering a contingency

store_lower The minimum free system storage in MB

required for the task to execute

store_upper | The threshold for free system storage in

MB for triggering a contingency

power_lower | The minimum free system power in W re-

quired for the task to execute

power_upper | The threshold for free system power in W

for triggering a contingency

temp_lower | The threshold for system temperature in

°C for triggering a contingency

temp_upper | The maximum allowable system tempera-

ture in °C for a task to execute

Excluding the args task field, which can store a
string argument, all other task fields are 32-bit inte-
ger fields. The status and pid fields are used when
running a process or function task, respectively. The
SM can keep track of running functions with the
status field or monitor signals from a forked process
with the pid stored in the pid field. The following
task fields id, start_time, expire_time, interval,
duration, conflict, priority, and type represent
the core constraints of the SM. Following the core
constraints, the constraints field links the task to
an index in a separate variable constraints file which
contains a list of task profiles and corresponding
variable constraints (by default including memory,
storage, power, and temperature constraints).

The id field specifies both an individual task’s
ID and the sequence it belongs to. By default,
0-999 is reserved for the individual task’s ID, and
the remaining digits represent the sequence ID (e.g.
task IDs 5001, 5002, 5003 represent task 1, 2, 3 as
part of sequence 5). Tasks that belong to a se-
quence require the previous task to complete suc-
cessfully before running, and are automatically re-
moved /rescheduled along with the other tasks in the
sequence in cases such as task expiration/failure or
routine task sequences.

The start_time field specifies the earliest sys-
tem time that the task is allowed to start. The
expire_time field specifies the latest system time
the task is allowed to start, and triggers task re-
moval/contingency if the task is unable to start by
that time. The interval field specifies if and how
often a task should be rescheduled after execution,
with the value of the field corresponding to the de-
lay between the task’s completion and next required
start time. The duration field specifies the longest
that the task is allowed or expected to run, and is
used to trigger warnings or contingencies in the event
of unexpected delays.

The conflict field specifies which categories of
resources or requirements the task requires. Every
bit in the 32-bit conflict field represents a mu-
tex and can represent many task requirements such
as the availability of a sensor/actuator or modes of
operation to block specific categories of tasks from
running. Before a task is launched, its conflict
field is compared with all other running tasks, and
if any set bits overlap, the task is not allowed to
run. The priority field specifies which tasks will
attempt to start first. On every processing cycle,
the SM sorts all tasks based on the priority field
(with first-come-first-serve for tasks with the same
priority), and therefore tasks with a higher priority
will be able to start and obtain shared system re-

Gillette

35t" Annual Small Satellite Conference

sources ahead of lower priority tasks which will need
to wait their turn. The type field specifies the type
of the task, and for the SM in standalone mode can
represent either a process call such as an executable
or script with value 0 or a function call with value
1. The most commonly used function call is the
clear_task function, which can accept parameters
to control which tasks are removed taking into ac-
count their run status, and also a result/status value
in the case where another task or node is clearing the
task. Other example function tasks include loading
different types of schedules through a specified file
path and killing the main SM process (useful for test-
ing purposes). Additional options available for the
type field when running in CSM will be described
in the next section.

The constraints field specifies the variable con-
straints that are associated with the task. By de-
fault, a separate variable constraints file includes
lower and upper bounds for memory, storage, power,
and temperature values for a category of task to
execute. This simplifies the main schedule syntax,
enables tasks to share a variable constraints profile
with other tasks, and allows for variable constraints
to change in value at runtime (e.g., to change in lev-
els of safety). For the example variable constraints,
the lower bound of the memory, storage, and power
constraints represent a requirement for task execu-
tion, while the upper bound of these constraints will
generally be used for contingency tasks, such as if the
value of one of these resources drops below a user-
defined threshold. For the temperature constraint,
the upper bound is instead used as a requirement
for task execution (i.e., temperature must be be-
low a certain value), and the lower bound is used
for contingency tasks (i.e., temperature above a cer-
tain value triggers contingency tasks). Similar to the
variable constraints file, a separate contingency file
can also be used to enable contingency schedules to
automatically be loaded when a task fails (i.e., re-
turns a nonzero value or exit code), with each line
in the file corresponding to a contingency schedule
filename and the index of the loaded schedule corre-
sponding to the task return value.

By properly assigning these described constraints
to individual tasks in a schedule, a mission operator
can have finely nuanced control over how the space-
craft will operate and respond to unexpected situa-
tions. The capability of assigning constraints to each
individual task also enables multiple mission opera-
tors and schedule designers to share the system as-
suming critical task priorities and resources are dis-
cussed and agreed upon in advance. With a proper
schedule design, a wide range of potential mission

situations can be supported and can result in both
optimized operations (e.g., reducing the need for ar-
bitrary scheduled buffer times between conflicting
tasks) and safer operations (e.g., preventing destruc-
tive task conflicts from occurring due to unexpected
delays or schedule design oversights). The next sec-
tion will describe how the SM can be integrated and
used with cFS, in the form of the CSM app.

cF'S Schedule Manager Overview

For missions designed with cF'S, necessary func-
tionality is developed as separate cFS apps that com-
municate using the cFE SB. Similarly to how SCH,
SC, and LC trigger mission operations by sending
SB command messages, the CSM needs to do the
same to be compatible with the existing paradigm.
To achieve this compatibility, two additional task
types are added: the ability to send raw cFS mes-
sages (type 2) and to trigger cFS functions (type

For typical cF'S usage, the SC app enables a user
to define SB command messages in tables with ab-
solute or relative time offsets for execution. After
compiling the table into an SC-compatible format,
either a Relative Time Sequence (RTS) or Absolute
Time Sequence (ATS) schedule, or optionally cre-
ating a schedule text file compatible with the rela-
tively newer Stored Commands Absolute (SCA) app,
schedules can be loaded on the fly using the appro-
priate SB command message. The CSM can repre-
sent SB command messages in its schedule similarly
to the SCA app, with the hex of the command rep-
resented in ASCII in the args field. If the task is
assigned type 2 and has a properly formatted SB
command, the message will be put on the SB at
the specified time and following all the constraints
associated with the task as usual. This method of
sending SB command messages following specified
constraints can be used alongside SC and/or SCA
and trigger the start command for their respective
schedules with a higher degree of controllability.

For more nuanced control, such as SB command
messages that should be formatted on the fly given
the state of the spacecraft, functions can be built
within the CSM that are called when the task is
assigned type 3. These functions can be used to de-
sign any capabilities not feasible or simple with pre-
defined cFS commands. Building reusable mission
operations within CSM functions directly can also
simplify the required schedule design for the mission,
although at the cost of flexibility of the involved op-
erations.

To achieve the effect of monitoring and control-

Gillette

35t" Annual Small Satellite Conference

ling cF'S tasks with duration, some form of compati-
bility needs to be designed with the system, whether
it is on the CSM side or the controlled cFS app
side. For cFS apps with predictable telemetry out-
puts, a CSM function can be built that subscribes
to telemetry from the controlled cFS app to detect
the status and return value of the task. Alterna-
tively, a simpler method that does not require cus-
tom CSM functionality is for the controlled cFS app
to directly alert CSM when its task is finished and
its status through the scheduling of a clear_task
function command.

Multi-Spacecraft Coordination through Avail-
ability Prediction

To predict resource availability and detect po-
tential issues with the main schedule, an availability
simulation function can be called with a conflict
value as an input parameter. When called, this
function creates a copy of the main schedule and
simulates a period of time (10 minutes by default),
keeping track of the combined conflict task field
of all running tasks. Tasks are assumed to be com-
pleted a set amount of time after they are started
based on their duration field. Every second, the in-
put conflict field parameter is compared with the
combined conflict value of all running tasks, and
if there is no overlap, availability is set to 1; other-
wise, it is set to 0. For the default availability array
of size 20, each int in the array stores 30 seconds
of availability info by setting the 30 least significant
bits according to the calculated availability values.
If any tasks expire without being able to run during
the simulation, a warning is issued which can poten-
tially be acted upon with a custom contingency plan
if desired. Even if the calculated availability array
is not needed, the availability simulation function is
still beneficial to run routinely to detect potentially
expired tasks ahead of time.

Using the capability to calculate availability win-
dows for specific conflict field values, a spacecraft
can predict the availability of its peer spacecraft by
sending requests for availability windows. For exam-
ple, if it is desired to schedule a synchronized data
collection event, a spacecraft can send an availabil-
ity request to all other spacecraft in the cluster pro-
viding a conflict value representing the resource
requirement for the data capture task (e.g., relevant
sensors available and spacecraft not busy maneuver-
ing) and then, based on the earliest time acceptable
for all spacecraft, schedule the task among all space-
craft. Figure 4 shows an example of how a task with
varying duration values can be scheduled given the

availability windows of four spacecraft.

Spacecraft Availability Windows

0 sc1 sc2 sc3 scd Overall
H H H Scheduled
1 0 H F &2 here if task
O O H H 1-5s long
10 1
I H H H Scheduled
20— HH L1375 here if task
O O O O n 6-10s long
0 H H B B F
g 0 H H H]
8 30] I T
] - - - I
w - = -
40 ~I H I H
H B H H Scheduled
01 H H H H {3 here if task
1 H O H] 11-15slong
50 —H—H—H—H H
g0 —1 1 1T n

Figure 4: Coordinated Task Scheduling with
Spacecraft Availability Windows

To accomplish a synchronized scheduled event,
a networking infrastructure needs to be established.
Using the CSM and a custom-built cFS communi-
cation app that can send SB command messages to
specified IP addresses, a function that creates a mes-
sage specifying source IP, destination IP, timestamp,
conflict value, and availability request can be used
to trigger a CSM function on a destination space-
craft, which will then run the availability simulation
function and return a similar message with the avail-
ability window to the source IP. Using this infras-
tructure, spacecraft in a constellation can schedule
tasks amongst each other and improve their overall
synchronization and collaboration capabilities. An
example of this capability is described in the demon-
stration section.

Gillette

35t" Annual Small Satellite Conference

TESTING AND CODE ANALYSIS

For spacecraft flight software, adequate code
testing is a formal requirement for many high-
profile and safety-critical missions. There are many
methodologies that are used for code testing, but the
overall goal is to show that all parts of the code are
tested and that there are no flawed edge cases. For
the cFS apps released by NASA GSFC on GitHub,
unit tests are provided leveraging a NASA-developed
unit testing framework called UT-Assert. A newer
proof-of-concept coverage test was recently released
in their cFS sample application repository which
provides a method for running cFS app unit testing
and outputting code coverage results. Following the
example provided by legacy cF'S tests along with the
newer testing implementation, it is currently possi-
ble to build cF'S app tests that will likely conform to
the new standard following the release of the next
major version release of cFS, cFS Caelum (v7.0).

However, due to the design of the SM and its
flexibility for schedule execution, unit testing alone
is not sufficient to be confident of proper functional-
ity. To completely exercise the SM, end-to-end func-
tional tests are required, including comparisons to
prior established correct outputs to ensure no mech-
anisms have broken. Compared to unit tests which
ensure each function operates exactly as designed,
functional tests ensure the whole system functions
together in a predictable manner given a range of
acceptable inputs. By combining these two tech-
niques as well as including code analysis tools such
as gcov and 1cov to detect the code coverage percent
achieved through tests, a higher degree of confidence
can be gained as to the reliability of the built code.

Unit Testing

The simplest application of unit tests is to pro-
vide arguments to a function and ensure the output
matches what is expected. Unit testing frameworks
such as GoogleTest add convenience tools to run
functions and check their outputs, potentially with
mock functions to assist with setting up tests. For
unit testing the SM standalone, due to the SM li-
brary functions not following a typical method of
input/output and often reading and writing to struc-
ture and array pointers instead of returning values,
unit tests in a traditional sense would be impractical
and inefficient. For example, one method to imple-
ment unit tests would be to call the SM function
to load a schedule, and then run tests for each field
in the loaded schedule (i.e., every field in the array
of task structs). This procedure would result in a

large amount of code and would not add anything
that a functional test with proper coverage would
not offer. The next section will cover how the SM
uses functional testing combined with coverage anal-
ysis to accomplish the same goal in a more efficient
manner.

For unit testing the CSM, the example coverage
test provided by the cFS sample app can be used as
a template to validate the cFS app structure of the
CSM. Because the CSM does not include any ma-
jor differences to the standard template and simply
adds custom functions and command code handlers,
adapting the coverage test is not challenging and
adds some assurance that there are no issues intro-
duced to the cFS-specific portions of the CSM app.
The updated version of the cFS framework also in-
cludes the ability to run all unit tests and generate
coverage reports with lcov directly using the main
makefile.

Functional Testing

To further ensure proper functionality for the
SM, accelerated functional testing can be used to
ensure outputs match expected values for a collec-
tion of schedules developed and tested previously.
Using a top-level functional test script, the SM can
be started with predefined schedules loaded to cap-
ture the log output. By comparing the log outputs
to logs previously manually validated for correctness
and saved, schedule correctness can be verified after
making modifications to tangential SM functionality
without requiring repeat manual scrutiny.

To ensure schedule outputs are the same and to
accelerate functional testing, the Linux faketime
utility can be used to start the SM instance at a
simulated time as well as run at a specified rate.
Through testing, a speedup value of x40 sometimes
resulted in inconsistent results (with task start/end
times occasionally being off by a second), but at x30
the results were sufficiently consistent, resulting in
significant time savings for running through the list
of built functional tests. Figure 5 below shows an
example functional test and execution output to val-
idate the functionality of the start_time task field.

By adding the fprofile-arcs and
ftest-coverage flags when compiling the SM with
GCC, the number of times each line in the code is
run can be tracked. gcov can be used to generate
coverage data and along with 1cov and genhtml to
generate a human-readable coverage report showing
any lines in the code that were never run. Figure 6
shows the coverage report generated after using the
functional-test script to run through all functional

Gillette

35t" Annual Small Satellite Conference

Top-level Functional Test Script Functional Test Output
1functional_tests.sh || EGNGINGNGNEEEEEEEEEEEE

#! /binfbash

dded

="@2017-07-13 22:40:00"
=""x40"
=1

e interval dur
« /dummy_task.sh 1 1

Start time test
. /dummy_task.sh 2 1

cp ./functional_tests/ t.csv ./schedule_assign.csv T > 58 0 /iy itaal xh 5 1
unbuffer faketime -f "$STARTTIME S$SPEEDUP" ./sm 0 8 95 8 0 0 8 killsm
tee ./functional_tests/logs/start.log il d
*start.csv
id,start exp-ir'e,-interval dur,conflict riority,type,con,args
This should launch third

id=1, confhct 1,start= 1500@00005 args .-’dummy task.sh 1 1

J ### This should launch first ##as#ss
id=2,conflict=1,start=1560000002,args=. Jdummy_task sh 21

This has a typo and should fail verification #g#sesses
id=3,conflict=1,start=150080083,args=. fdummy_task.sh 31 - o o O S S S e S O e e e . .
This has a typo and should fail verification

id=4,conflict=1, sta\ 15000000003 args- Jdummy_task.sh 4 1

'-f.f: This shou
id=5,conflict=1,start= 1.:00@00@04 sargs=. /dummy_task.sh 5 1
g#fganed#e Kill sm when all tasks finished

id=6,conflict=1,start=1560800005, type=1,args=killsm

Example Functional Test Output Validation using Diff

Figure 5: Functional Test and Example Schedule (Left), and Execution Output (Right)

LCOV - code coverage report

Current view: top level - schedulemanager - sm.c (source [functions) Hit Total Coverage
Test: main_coverage.info Lines: 617 799 77.2%
Date: 2021-05-28 18:06:10 Functions: 27 28 96.4%

Line data Source code
1 : #include "sm.h"

150 4 : index = result * -1;

151 :

152 : /* Open contingency index file read-only */

153 4 : fp = fopen(CONTINGENCY INDEX, "r");

154 4 : if (fp == NULL) {

155 P
156

157 : I else {

158 4 printf("SM: Found and opened contingency index (%s)\n", CONTINGENCY INDEX);
159 :

Figure 6: Coverage Report Snippet for Schedule Manager After Functional Tests

Gillette 10 35t" Annual Small Satellite Conference

tests.

By scrolling through the report, one can imme-
diately identify which lines of code have not been
tested. In Figure 6, coverage percent values for both
lines and functions are shown in the top right, and
functional code lines that have not been run are
highlighted in red. In this example, the error con-
dition for the contingency index file being unable
to be opened is never tested. Because the SM is
designed to check a hard-coded path for this file,
an easy method of testing this line would be to re-
name/remove the contingency index file directly in
the top-level functional test script and have it re-
placed before the next test. By creating and adding
new schedules to the functional test runner and us-
ing a script to recompile the SM, rerun the func-
tional tests, and regenerate the coverage report, it is
possible to rapidly and iteratively improve code test
coverage compared to the unit-test method.

To validate CSM functionality with functional
tests, the process is more complex due to having
to validate the command and telemetry interfaces
to the CSM app. To assist with sending commands
and receiving telemetry, the COSMOS ground sta-
tion can be used. COSMOS includes script test-
ing capabilities which allows the user to automate
the sending of commands and parsing of resulting
telemetry, with any errors automatically detected
and printed. COSMOS also provides a command
sequence tool that can be modified to generate cFS
table schedules for the SC app (a potential target
for CSM tasks). The demonstration section below
will show some examples of functional tests through
actual mission scenarios.

DEMONSTRATIONS

To show the practical capabilities of the SM and
CSM, demonstrations were developed for various
platforms. In the first demonstration, the capability
of CSM for managing the operations on the CASPR
mission will be described. The second demonstra-
tion will demonstrate cluster data distribution on
VMs. The final demonstration will demonstrate con-
stellation coordination in 42 using simulated avail-
ability windows with 42 and on a PYNQ-Z2 cluster.

STP-H7-CASPR Experiment

Although CASPR was developed with cF'S, only
a few of the onboard experiments were designed to
be operated through cFS apps due to the redundant
safeguards put in place in the case of system failure,
the risk-tolerant nature of the mission, and the con-

venience and flexibility needed by users to simply
build shell scripts to control their experiments.

With CASPR being mounted onto the ISS, even
if a process external to cFS crashes and the system
goes in an indeterminate state, the mission is not at
risk because there are no mechanisms like propul-
sion or battery requirements that could result in
catastrophic failure. CASPR also leverages multiple
hardware and software resilience technologies such
as watchdog management and multi-boot. Using the
watchdog management capability provided by cFE’s
PSP and a radiation-hardened hardware watchdog
on the CSP, the head node of CASPR can be re-
booted if cFS ever becomes unresponsive and loses
the ability to signal heartbeats to the watchdog. Ad-
ditionally, by using the multi-boot capability of the
Zynq SoC along with redundant boot images that
are signed using an RSA key stored in the eFUSE
register of the Zynq, any image corrupted due to
radiation will be skipped, further improving the re-
liability of the system. After analyzing the tradeoffs
relating to software capability, convenience, and sta-
bility, it was decided by the CASPR software team
that it was an acceptable risk to allow experiments
to be controlled via scripts external to ¢cFS (which
would typically not be allowed for traditional mis-
sions).

Therefore, the software design of CASPR uses
cF'S to manage communications with the STP pallet
and manage critical services such as telemetry and
file uplink/downlink, while other experiment capa-
bilities are controlled through shell scripts. CASPR
includes many different payloads including a com-
pact binocular telescope to capture high-resolution
and low-GRD (ground-resolved distance) NIR(Near-
Infrared)/RGB images, a gimbal motor to position
the telescope optics, a neuromorphic event-driven
sensor, and an AMD GPU SoC. Along with mul-
tiple processor boards including a CSP, two SSPs,
and a pCSP using a Microchip SmartFusion2 SoC,
CASPR would exceed its power budget if all subsys-
tems were powered on concurrently. It would also
be beneficial to routinely run specific experiments
at specified times and remove the risk of potential
overlaps due to periodic experiment activation inter-
vals.

By using the CSM with tasks specifically refer-
ring to one shell script per experiment, conflicting
experiments can be determined in advance and, with
proper constraint specification, the risk of any acci-
dental, destructive overlap can be mitigated. For
example, experiments can configure the imager and
collect images without considering potential con-
flict with a routine image capture script. Also,

Gillette

11

35t" Annual Small Satellite Conference

each of the variable constraints described in the SM
overview are critical to manage on CASPR. For ex-
ample, images are captured with 4K resolution, and
the super-resolution experiment requires dozens of
images, representing hundreds of megabytes of com-
bined RAM and flash memory, to execute. Along
with the power and temperature constraints to en-
sure that CASPR operates only under acceptable
conditions, the CSM has significant potential to
improve the capabilities and science return of the
CASPR mission.

Virtual Machine Cluster Testbed

Towards the rapid prototyping of advanced dis-
tributed space mission concepts, many applicable
software tools exist that can be used together to cre-
ate a complete end-to-end test system completely in
software. The Yocto Project enables the creation of
custom, lightweight operating systems with commu-
nity support for Xilinx Zyng-based platforms due in
large part to its use in the PetaLinux development
tool by Xilinx. One benefit to Yocto is the ability
to have parallel builds for multiple platforms (e.g.,
x86 and ARM) with minor changes necessary to a
local configuration file. After generating an x86 im-
age with Yocto, a Virtual Machine Disk (VMDK)
can be exported which can then be loaded by vir-
tualization technologies such as Oracle VM Virtu-
alBox. One benefit of using cloned virtual images
is the relatively low complexity in making system-
configuration changes to individual machines such as
changing startup operations without requiring im-
age regeneration typically necessary for other ap-
proaches like with Docker.

A configurable cluster of networked VMs based
on a single VMDK can quickly be launched from the
command-line by writing a script that uses the Vir-
tualBox command-line utility VBoxManage to clone
the VMDK a desired number of times, create indi-
vidual VMs with specified resources and configura-
tions such as a serial port connection, and then con-
figure the network and startup files after boot. With
proper configuration, the resource requirements nec-
essary can be minimized, with required memory and
storage being well under 256 MB per VM. Using this
method, within minutes a network virtual testbed
can be set up from scratch with a configurable num-
ber of nodes and the latest software resources to be
tested.

After starting cF'S on each target, tests can be
performed by using the command-line test capa-
bilities of COSMOS. After defining command and
telemetry definitions in COSMOS, individual com-

mands can be referenced by name to be sent using a
Ruby script file, and similarly, individual telemetry
fields can be checked to validate successful opera-
tion. For example, a Ruby test file can be built that
checks a telemetry command count field for a spe-
cific cF'S app, sends one or multiple commands to the
app, and then verifies that the command count field
went up by the expected number. By being able to
set up and test a virtual cluster running cFS from
the command-line, software development overhead
can be greatly reduced compared to graphical-based
alternative workflows.

Using the approach described above, a vir-
tual constellation testbed was built, featuring the
Better Approach to Mobile Adhoc Networking
(B.A.T.M.A.N) protocol to create a mesh network
between the VMs as well as the UDP-based File
Transfer Protocol (UFTP) daemon to enable lossy
unidirectional multicast file transfer. The mesh net-
work capability offered by B.A.T.M.A.N. enables the
creation of a decentralized network with dynamic
routing table changes, perfectly suitable for a con-
stellation of satellites that may change in position,
resulting in the availability of network routes fluctu-
ating constantly. UFTP enables file transfer over a
lossy network (e.g., radio communications over long
distances) by splitting the file transfer into multi-
ple phases, with an initial transfer attempted with
UDP, and recipients requesting specific corrupted or
missing packets until the transfer is successful. Com-
bined, this approach enabled the rapid and replica-
ble creation of a cluster of VMs in a realistic, flight-
like configuration with cFS started on boot and with
COSMOS to validate networked communication and
file transfer over a mesh network.

Constellation Coordination in 42 Simulator
on PYNQ-Z2 Cluster

For a satellite constellation, coordinated actions
can be useful for various reasons. In general, syn-
chronized sensor readings is a commonly useful and
often required capability mentioned for constella-
tion missions. To demonstrate this capability with
the previously described availability simulation ap-
proach, a cluster of simulated spacecraft running
cFS and CSM were realized on PYNQ-Z2 develop-
ment boards (based on the Zyng-7020 and similar to
the CSP) and represented in the 42 simulator.

For the demo including four spacecraft, one
spacecraft was designated as a leader node, repre-
senting a node that might have a specialized sen-
sor or some method of determining the ideal tim-
ing to capture a synchronized sensor reading. Using

Gillette

35t" Annual Small Satellite Conference

a custom cFS app to enable socket-based node-to-
node communication, CSM on the leader node was
able to use the procedure described in the Availabil-
ity Prediction subsection above to decide on a time
and schedule an image-capture event in 42. To ob-
serve the effect of the command, the spacecraft in the
constellation represented in 42 were issued rotation
commands to point towards Earth (using instanta-
neous reorientation mode for convenience). Through
this proof-of-concept, the feasibility of scheduling
other synchronized actions can be seen. Figure 7
shows a picture of the satellite constellation in 42
along with a view from one of the spacecraft.

Figure 7: Constellation of Four Satellites in
42 Simulator (Top), Spacecraft View from
Lead Satellite (Bottom)

DISCUSSION

Due to the complexity associated with the prac-
tical development of autonomous mission manage-
ment solutions, especially solutions applicable to
multi-vehicle missions, it is difficult to design an au-
tonomous mission manager that is general-purpose.
Even the design of a solution to a specific tar-
geted constellation mission can grow in complexity
to an infeasible level without a proper, modular solu-

tion to accommodate potential situational conflicts.
Without explicitly checking an individual task’s con-
straints before running the task, the alternative is to
ensure excess resources are available on the system
and separate potentially conflicting tasks with large
buffers of time in between. Not only is this solution
not fool-proof, it also is much less efficient and adds
complexity to the schedule validation and approval
process.

The downside to assigning constraints to each in-
dividual task is that it may be excessive in certain
situations, especially in simple scenarios, and may
be an inefficient solution for conflict resolution in
more complex scenarios. In the case of simple sce-
narios, the flexibility in schedule syntax for the SM
(either the default comma-separated field values or
the field-assignment syntax) and the consistency in
field types (int32) and default values (0) aims to
address lowering the complexity when it is not nec-
essary. In the case of complex scenarios, the goal of
the SM and CSM is to provide a potentially feasi-
ble baseline solution which can then be iterated on
as needed. The schedule design process will likely
be the main bottleneck when designing more com-
plex missions, and the construction of an automated
planning and schedule-generation tool would aid in
this process.

As future work, improvements to both the sched-
ule design and testing framework are planned. An
early iteration of this research included a Python Tk-
inter GUI to assist with schedule creation by includ-
ing a scrollable menu of template tasks that could
be selected to populate field values to be option-
ally modified with editable dropdown fields for every
constraint before appending to a specified schedule
file. However, this approach ended up being more of
a maintenance burden than a benefit, with a simple
copy-paste from existing schedule tasks often result-
ing in a more rapid schedule-creation method. Un-
fortunately, relying on the manual approach of gen-
erating schedules increases the learning curve dif-
ficulty for schedule creation for those less familiar
with the project and loses the potential benefits of
automatic task suggestions, syntax checking, and
validation that could be added in a tool. For the
testing framework, improvements will focus on out-
lining specific requirements and linking them to spe-
cific functional tests, similarly to the reports gener-
ated for various NASA GSFC cFS app tests. Ad-
ditionally, the coverage percent achieved should be
at or close to 100%, which would add an additional
layer of assurance that the software is safe for flight.

Gillette

35t" Annual Small Satellite Conference

CONCLUSION

Through the above-described tests and demon-
strations, the capabilities and functional mecha-
nisms of the SM and CSM are overviewed. The
goal of this research is to contribute to the devel-
opment and improvement of the next generation of
autonomous space missions. The concepts described
in the design of the SM aim to establish a general-
purpose baseline that is a step-up from traditional
mission management without any level of autonomy.
In exchange for the capabilities potentially offered
by more sophisticated autonomy solutions leverag-
ing technologies such as heuristics or neural net-
works, the relatively simplistic solution achieved by
the SM offers a comprehensible general-purpose so-
lution that, at minimum, can act as a baseline for
comparison to justify the need for more sophistica-
tion.

The design of the CSM represents a demonstra-
tion of how the SM concept can be integrated into
other flight-software frameworks. The benefits of-
fered by leveraging an open-source flight-software
framework are immense, and can be indispensable
if the goal is to learn and benefit from others in the
space community. By improving the autonomous
capabilities of an open-source flight-software frame-
work like cF'S, the probability is much higher for the
effort to lead to the successful deployment of a mis-
sion such as a collaborative constellation of small
satellites.

Acknowledgments

This research was funded by industry and gov-
ernment members of the NSF SHREC Center, the
National Science Foundation (NSF) and its IU-
CRC Program under Grant No. CNS-1738783,
and NASA STTR contracts NNX16CG21P and
80NSSC18C0178. The authors would like to thank
Brendan O’Connor from Emergent Space Technolo-
gies for providing thorough guidance regarding the
design of the SM, as well as everyone else at Emer-
gent who provided feedback, Christopher Wilson
from NASA GSFC for initial project guidance and
support, and Rachel Misbin from SHREC for devel-
oping the 42 modifications and contributing to the
demonstrations.

References

[1] Jacqueline Le Moigne, John Carl Adams, and
Sreeja Nag. A new taxonomy for distributed
spacecraft missions. IEEE Journal of Selected

Topics in Applied Farth Observations and Re-
mote Sensing, 13:872-883, 2020.

Carles Araguz, Elisenda Bou-Balust, and Ed-
uard Alarcén. Applying autonomy to dis-
tributed satellite systems: Trends, challenges,

and future prospects. Systems FEngineering,
21(5):401-416, 2018.

Christopher Wilson, Jacob Stewart, Patrick
Gauvin, James MacKinnon, James Coole,
Jonathan Urriste, Alan George, Gary Crum,
Elizabeth Timmons, and Jaclyn Beck. Csp hy-
brid space computing for stp-h5/isem on iss. In
29th Annual AIAA/USU Conference on Small
Satellites, 2015.

Sebastian Sabogal, Patrick Gauvin, Brad Shea,
Daniel Sabogal, Antony Gillette, Christopher
Wilson, Alan George, Gary Crum, Ansel Bar-
chowsky, and Tom Flatley. Ssivp: Spacecraft
supercomputing experiment for stp-h6. In 31st
Annual AIAA/USU Conference on Small Satel-
lites, 2017.

Seth Roffe, Theodore Schwarz, Thomas Cook,
Noah Perryman, Justin Goodwill, Evan Gretok,
Aidan Phillips, Mitchell Moran, Tyler Garrett,
and Alan George. Caspr: Autonomous sen-
sor processing experiment for stp-h7. In 34th
Annual AIAA/USU Conference on Small Satel-
lites, 2020.

David McComas, Jonathan Wilmot, and Alan
Cudmore. The core flight system (cfs) com-
munity: Providing low cost solutions for small
spacecraft. In 30th Annual AIAA/USU Confer-
ence on Small Satellites, 2016.

L. Kepko, Chuck Clagett, L. Santos, Behnam
Azimi, D. Berry, T. Bonalsky, D. Chai,
Matthew, Colvin, Alan Cudmore, A. Evans,
Scott Hesh, S. Jones, J. Marshall, N. Pascha-
lidis, Zach, Peterson, J. Rodriquez, M. Ro-
driquez, Salman Sheikh, S. Starin, and E. Zesta.
Dellingr: Nasa goddard space flight center’s
first 6u spacecraft. In 31st Annual AIAA/USU
Conference on Small Satellites, 2017.

Larry Kepko, Luis Santos Soto, Chuck Clagett,
Behnam Azimi, Dean Chai, Alan Cudmore,
James Marshall, and John Lucas. Dellingr: Re-
liability lessons learned from on-orbit. In 32nd
Annual AIAA/USU Conference on Small Satel-
lites, 2018.

Gillette

35t" Annual Small Satellite Conference

[9] H. Cannon, P. Berg, A. Bajwa, and A. Crocker.
Ladee preparations for contingency operations
for the lunar orbit insertion maneuver. In 2015
IEEE Aerospace Conference, 2015.

[10] Danilo José Franzim Miranda, Mauricio Fer-
reira, Fabricio Kucinskis, and David McCo-
mas. A Comparative Survey on Flight Soft-
ware Frameworks for New Space Nanosatellite
Missions. Journal of Aerospace Technology and
Management, 11, 00 2019.

[11] David McComas and Ryan Melton. Opensatkit
enables quick startup for cubesat missions. In
31st Annual AIAA/USU Conference on Small
Satellites, 2017.

[12] Steve Chien, Rob Sherwood, Daniel Tran, Ben-
jamin Cichy, Gregg Rabideau, Rebecca Cas-
tano, Ashley Davis, Dan Mandl, Stuart Frye,
Bruce Trout, Seth Shulman, and Darrell Boyer.
Using autonomy flight software to improve sci-
ence return on earth observing one. Journal of
Aerospace Computing, Information, and Com-
munication, 2(4):196-216, apr 2005.

[13] Steve Chien, Joshua Doubleday, David R.
Thompson, Kiri L. Wagstaff, John Bel-
lardo, Craig Francis, Eric Baumgarten, Austin
Williams, Edmund Yee, Eric Stanton, and
Jordi Piug-Suari. Onboard autonomy on the
intelligent payload experiment cubesat mis-
sion. Journal of Aerospace Information Sys-
tems, 14(6):307-315, 2017.

[14] Carles Araguz, Marc Mari, Elisenda Bou-
Balust, Eduard Alarcon, and Daniel Selva.
Design guidelines for general-purpose payload-
oriented nanosatellite software architectures.

Journal of Aerospace Information Systems,
15(3):107-119, 2018.

Gillette 15 35t" Annual Small Satellite Conference

