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ABSTRACT  

Aerocapture is a maneuver that can improve the capabilities of interplanetary small satellite missions to efficiently 

deliver a probe to a target destination. The maneuver is accomplished with a single atmospheric pass followed by a 

small propulsive burn to reach the final orbit. In this paper, we consider a SmallSat atmospheric sampling probe with 

an existing heatshield and evaluate the performance and benefits of ballistic aerocapture. The performance is assessed 

by comparing ΔV required of a fully propulsive orbital insertion and that of a ballistic aerocapture. Significant fuel 

mass savings can be achieved with a passive lifting vehicle. With a sample case of arrival V∞ of 4 km/s, vehicle 

ballistic coefficient of 200 kg/m2, and lift-to-drag ratio (L/D) from 0 to 0.5, the results show a 99-percentile ΔV saving 

of 30 m/s for L/D of 0, 1700 m/s for 0.2, and 2600 m/s for 0.4 and peak heat rate of about 100–750 W/cm2, a peak 

total heat load of about 4–20 kJ/cm2, and a peak deceleration load of up to 18 Earth’s G.  

INTRODUCTION 

Aerocapture is a promising orbital insertion maneuver 

that can be used in missions to any atmosphere-bearing 

body. Previous studies have shown that aerocapture can 

provide either a short time-of-flight, a higher delivered 

payload, or both.1 Aerocapture allows for a mass saving 

from the reduction of the typical propulsive engine-fuel 

system. However, performing an aerocapture maneuver 

requires specific design considerations that are similar to 

an entry vehicle.  

The conventional benefit trade-off between aerocapture 

and other orbit insertion maneuvers is between the added 

mass of the thermal protection system (TPS) and the 

propellant mass required for fully propulsive orbit 

insertion. However, such comparison is inadequate in the 

case where the probe has already equipped a heatshield 

(for example, an atmospheric sampling probe). The 

probe may be able to perform an aerocapture maneuver 

without major design changes. Ultimately, aerocapture 

could help reduce the total mass required to perform the 

initial orbital insertion and may enable a certain class of 

small satellite missions.  

Ballistic aerocapture requires the probe to arrive at a 

“safe” entry flight-path angle as shown in Figure 1. With 

perfect knowledge of all conditions (i.e., atmospheric 

density, vehicle aerodynamics, etc.), the maneuver is still 

very sensitive to the entry conditions—the probe may 

“crash” if the entry flight-path angle is too steep.2 

Achieving a captured orbit can be challenging without 

trajectory control, and the probe may also escape after 

the atmospheric pass. Thus, a post-aerocapture trajectory 

correction maneuver (TCM) is needed to reach the target 

orbit. The main advantage of ballistic aerocapture is the 

simplicity in probe design and operation (i.e., a passive 

lifting rigid body), whereas aerocapture in the literature 

requires some trajectory controls onboard, such as 

additional thrusters for banking maneuver.3 

 

Figure 1: Schematic of Ballistic Aerocapture  

Performance of ballistic aerocapture depends on probe 

aerodynamics, arrival conditions, and atmospheric 

densities. For probes with a heatshield that is designed 

for the prime mission (for example, to withstand heating 

during atmospheric samples collection), the heatshield 

may have a limiting heat rate that is insufficient for 

aerocapture. Thus, we need to ensure the probe can 

survive the ballistic aerocapture in terms of the peak heat 

rate. If ablative TPS material is used, the total heat load 

must also be considered when designing the thickness of 

the heatshield. Ballistic aerocapture may add some mass 

to the existing heatshield if design changes are needed, 

meanwhile reducing the propellant mass required. For 

the heatshield, allowable peak heat rate and total heat 

load are the key considerations. The aerothermal heating 

conditions depend on the atmospheric entry velocity (or 



the approach velocity), probe lift-to-drag ratio, ballistic 

coefficients, and atmospheric density profile.4 

Applicable Mission Concept 

One mission concept that may be suited for ballistic 

aerocapture is Cupid’s Arrow—a small spacecraft 

mission concept shown in Figure 2.5 The proposed 

mission is to determine the noble gas composition of 

Venus' atmosphere. The Cupid’s Arrow probe is 

designed with a heatshield that would protect it from 

atmospheric heating while collecting atmospheric 

samples.   

 

Figure 2: Concept Cupid's Arrow Vehicle5 

The Cupid’s Arrow mission concept is an example where 

ballistic aerocapture may be used. Ballistic aerocapture 

may also benefit traditional missions with high arrival 

velocities by potentially increasing the payload mass or 

reducing the total mass for launch. 

MATHEMATICAL MODELS 

Planar Equations of Motion 

Ballistic aerocapture follows atmospheric flight 

dynamics when the vehicle is below the atmospheric 

interface6, assumed to be 180 km altitude. We consider 

planar equations of motion without planet rotation and 

gravity perturbations since J2 and J4 are small for Venus 

which are negligible for aerocapture maneuver. In 

addition, wind speed is not included due to its 

dependence on interplanetary transfer trajectory. The 

equations of motion are as follows: 

𝑉̇ = −
𝑞

𝛽
+ 𝑔𝑟 sin 𝛾 (1a) 

𝛾̇ =
𝑞(𝐿/𝐷)

𝑉𝛽
cos 𝜎 +

𝑔𝑟 cos 𝛾

𝑉
 (1b) 

𝜃̇ =
𝑉 cos 𝛾

𝑟
 (1c) 

𝑟̇ = 𝑉 sin 𝛾 (1d) 

where 𝑉 is the planet-relative velocity, 𝛾 is the flight path 

angle, 𝜃 is the longitude equivalent, and 𝑟 is the radius. 

𝜎 is the bank angle, 𝑞 = 1/2𝜌𝑉2 is the dynamic 

pressure, ρ is the atmospheric density which is modeled 

after Venus International Reference Atmosphere 

(VIRA), 𝛽 = 𝑚/𝐶𝑑𝐴 is the ballistic coefficient, where 

𝐶𝑑 is the drag coefficient, and A is the reference drag 

area. 𝑔𝑟 = 𝜇/𝑟2 is the radial gravitation acceleration, 

L/D is the lift-to-drag ratio. 

Keplerian Orbits 

For the flight that is above the atmospheric interface, we 

assume a simplified two-body model where the vehicle 

follows Keplerian orbital motion with the following 

analytical equations: 

𝜀 =
𝑉2

2
−

𝜇

𝑟
= −

𝜇

2𝑎
 (2) 

ℎ = 𝑟𝑉 cos(𝛾) (3) 

𝑒 = √1 − ℎ2/(𝜇𝑎), elliptical orbit (4) 

𝑟𝑎 = 𝑎(1 + 𝑒), elliptical orbit (5) 

where ℎ is the specific angular momentum, 𝑒 is the 

eccentricity of the orbit,  𝑎 is the semimajor axis of the 

orbit, and 𝑟𝑎 is apoapsis radius.  

Aerothermodynamic Heating 

Radiative and convective heat rates during aerocapture 

are obtained from empirical relations. The convective 

heat rate follows the Sutton-Grave formulation7:  

𝑞𝑐̇ = 𝑘(𝜌∞/𝑅𝑛)0.5𝑉3 (6) 

where 𝑘=1.896×10-8 is an empirically determined 

constant,  𝑅𝑛 is the nose radius, assumed to be 1 m as the 

baseline. Radiative heat rates are also found as follows:  

𝑞𝑟̇ = 𝑘1𝜌∞
1.2𝑉10.0𝑅𝑛

0.49 𝑉 > 8 km/s (7a) 

𝑞𝑟̇ = 𝑘2𝜌∞
1.2𝑉5.5𝑅𝑛

0.49    8 km/s < 𝑉 < 10 km/s (7b) 

𝑞𝑟̇ = 𝑘3𝜌∞
1.2𝑉13.4𝑅𝑛

0.49  10 km/s < 𝑉 < 12 km/s (7c) 

where 𝑘1=3.33×10−34, 𝑘2=1.22×10−16 and 𝑘3= 

3.07×10−48. The total heat rate 𝑞̇total is the sum of 

convective and radiative heat rates as follows:  

𝑞̇total = 𝑞𝑐̇ + 𝑞𝑟̇ (8) 

The total heat load 𝑄 is the integral of total heat rate over 

the duration of the atmospheric pass: 

𝑄 = ∫ 𝑞̇total

𝑡

0

𝑑𝑡 (9) 

 

 



METHODOLOGY 

To assess the performance of ballistic aerocapture, we 

use a two-step process to determine the proper arrival 

conditions to ensure a successful maneuver. The first 

step is finding the nominal entry condition based on the 

average unperturbed atmospheric density, nominal 

arrival velocity, and nominal vehicle aerodynamics. The 

second step is to find the practical entry conditions using 

Monte Carlo simulation considering expected 

perturbations such as atmospheric density variation, 

vehicle aerodynamics, and interplanetary navigation.  

Nominal Entry Condition 

Nominal entry condition for a successful aerocapture 

maneuver is determined through iterations over entry 

flight-path angle (EFPA) using the bisection method. To 

find the nominal EFPA, denoted by γ0, the motion of the 

vehicle is modelled and simulated numerically using 

equation 1. Equations 2–5 are used to characterize the 

post aerocapture orbit, i.e., 𝑟𝑎. γ0 is iterated until the 

target apoapsis radius is met from the exit conditions.  

Perturbations and Monte Carlo Simulation 

Major perturbations are considered and modeled in the 

simulation. The entry velocity, entry altitude, ballistic 

coefficient, L/D, and atmospheric density all have 

uncertainties thus they are varied assuming a Gaussian 

distribution which are all listed in Table 1.  

Table 1: Nominal Parameters and Uncertainties  

Parameter Nominal Variation 3σ 

Entry 
Velocity 

10.9 km/s Gaussian  3%  

Entry 
Altitude 

180 km Gaussian 3 km  

Ballistic 
Coefficient 

200 kg/m2 Gaussian 15%  

L/D 0 – 0.4 Gaussian 10% 

Density VIRA Gaussian 0–60% * 

Nominal entry velocity of 10.9 km/s corresponds to a V∞ 

of 4 km/s. Each parameter is perturbed about the nominal 

values with a Gaussian distribution and remains constant 

in each simulation. The 3σ variation of atmospheric 

density varies linearly with the altitude (from 60% at 180 

km to 0% at surface) as shown in Figure 3. The vertical 

line at 1 denotes the nominal atmospheric density, upper 

and lower bounds are shown in red, and 50 random 

atmospheric profiles are also generated as illustration.  

 

* 3σ varies linearly at surface from 0% of nominal 

density to 60% at entry altitude. 

 

Figure 3: Atmospheric Density Modeling and 

Perturbation 

Monte Carlo simulation uses the perturbed parameters as 

noted in Table 1 and repeats the simulation 1000 times 

for each set of nominal values.  

Adjusted Entry Conditions 

Since the nominal γ0 does not account for the 

perturbations, any variations during the actual flight may 

cause the vehicle to deviate from the desired path, which 

may eventually cause a crash. In order to achieve 100% 

success (non-crash), we need to determine a practical 

entry condition via Monte Carlo analysis, which uses the 

nominal γ0 as an initial guess and simulates the 

maneuver using a range of flight-path angles to 

determine the critical value needed for 100% success. 

The critical value is the adjusted EFPA, denoted by γe, 

which will guarantee a 100% success under realistic 

conditions.  

Optimal Two-Impulse ΔV 

Ballistic aerocapture can provide mass saving but does 

not eliminate the need for propulsive ΔV. After the 

atmospheric pass, a minimum of two impulses are 

needed for post-aerocapture orbit correction. The first 

ΔV immediately or shortly after exiting atmospheric 

interface adjusts the apoapsis radius. The second ΔV is 

executed at apoapsis to raise the periapsis out of the 

atmosphere and to the final target orbit. Assuming 

Keplerian orbit, equations used to calculate the ΔV are 

as follows: 

 



𝛥𝑉1 = √𝑉𝑒𝑥
2 + 𝑉𝑡

2 − 2𝑉𝑒𝑥𝑉𝑡 cos(𝛾𝑒𝑥 − 𝛾𝑡) (10) 

𝛥𝑉2 = √
2𝜇

𝑅𝑎

−
2𝜇

𝑟𝑝,𝑡 + 𝑟𝑎,𝑡

− 𝑉𝑎,𝑡 (11) 

𝛥𝑉𝐴𝐶 = 𝛥𝑉1 + 𝛥𝑉2 (12) 

where 𝑉𝑒𝑥 is the exit velocity,  𝑉𝑡 is the velocity of the 

transfer orbit,  𝛾𝑒𝑥 is the exit flight-path angle, 𝛾𝑡 is the 

flight path angle for the transfer orbit, 𝑅𝑎 is the apoapsis 

of the target orbit, 𝑟𝑎,𝑡 and 𝑟𝑝,𝑡  are the apoapsis and 

periapsis radius of the target orbit, and 𝑉𝑎,𝑡  is the velocity 

at apoapsis of the transfer orbit. 

𝑉𝑡 and 𝛾𝑡 depend on the characteristics of the transfer 

orbit, which can be expressed using a single variable, 

periapsis radius of the transfer orbit 𝑟𝑝,𝑡  as follows: 

𝑉𝑡 = √
−2𝜇

𝑟𝑝,𝑡 +  𝑟𝑎,𝑡

+
2𝜇

𝑟𝑒𝑥

 (13) 

𝛾𝑡 = cos−1

√2𝜇√
𝑟𝑝,𝑡 𝑟𝑎,𝑡

𝑟𝑝,𝑡 + 𝑟𝑎,𝑡

𝑟𝑒𝑥𝑉𝑡

 
(14) 

The transfer orbit has the same apoapsis radius as the 

target orbit, therefore 𝑟𝑎,𝑡 = 𝑅𝑎 which is known and 𝑟𝑒𝑥 

is the radius of atmospheric interface. ΔVAC is then only 

a function of 𝑟𝑝,𝑡 , which is minimized by letting: 

𝑑Δ𝑉𝐴𝐶

𝑑𝑟𝑝,𝑡 

= 0 (15) 

To evaluate the effectiveness of ballistic aerocapture, we 

compare the optimal two-impulse ΔVAC with the ΔV 

needed from fully propulsive orbit insertion.  

The fully propulsive insertion is minimized by assuming 

the ΔV is performed at target periapsis radius. A single 

ΔV will transfer the vehicle to the target orbit:  

Δ𝑉prop = √
2𝜇

𝑅𝑝

− 𝑉∞
2 − √

2𝜇

𝑅𝑝

−
2𝜇

𝑟𝑝,𝑡  +  𝑟𝑎,𝑡

 (16) 

where 𝑅𝑝 is the periapsis radius of the target orbit.  

 

NUMERICAL RESULTS 

Nominal EFPA 

The nominal γ0 depends on both V∞, vehicle ballistic 

coefficient, and L/D, and is also related to the target 

apoapsis radius. For non-zero L/D, the direction of the 

lift vector has a significant impact on the sensitivity to 

EFPA. Figure 4 shows the nominal γ0 for both lift-up and 

lift-down configurations with vehicle L/D of 0.2 and 0.4. 

The range of EFPA is very minimal for lift-down 

configuration, meaning that very small change in any 

variable will cause the vehicle crash or escape. However, 

for lift-up, there is a reasonable range of EFPA that may 

be sufficient to accommodate uncertainties. In the 

following, we will assume the vehicle flies a passive lift- 

up configuration for non-zero L/D.  

 

Figure 4: Nominal EFPA for Lift-up and Lift-down 

Configurations with Entry Velocity of 10.9 km/s. 

Figure 5 shows the relation between the nominal γ0 and 

the target apoapsis at different ballistic coefficients with 

L/D of 0. Figure 5 also shows the theoretical maximum 

and minimum EFPA for β = 200 kg/m2, that correspond 

to the critical values for non-crashing and non-escaping, 

that is, a steeper EFPA will cause the vehicle not exiting 

the atmosphere, hence a crash; whereas a shallower 

EFPA produces very minimum deceleration, resulting in 

an escape.  

Figure 6 shows the same detail as Figure 5 but for L/D 

of 0.2. Due to an increase in lifting capability, the ranges 

of EFPA for L/D of 0.2 are general steeper than that of 

L/D of 0. As L/D increases, the nominal γ0 will become 

steeper.  

To define the nominal γ0, we will use a target apoapsis 

of 56,000 km (equivalent altitude of 50,000 km) for all 

following results.   



 

Figure 5: Target Apoapsis vs Nominal EFPA for 

L/D of 0 

 

Figure 6: Target Apoapsis vs Nominal EFPA for 

L/D of 0.2 

 

Adjusted EFPA 

The adjusted γe represents the practical value that 

depends on the uncertainties of environmental and 

vehicle parameters. Using Monte Carlo simulation, 

Figure 7 shows the comparison between the nominal and 

adjusted EFPA for vehicle L/D from 0 to 0.5.  

The nominal γ0 for each L/D allows the vehicle to exit 

the atmosphere and arrive at the target apoapsis radius.  

As shown in Figure 7, for L/D of 0, the adjusted γe is 

shallower than γ0 and as L/D increases, the adjusted γe 

can be steeper than the nominal γ0. It is important to note 

that adjusted γe does not target for a specific orbit and 

can be considered as the critical EFPA that is required 

for 100% non-crash. Any EFPA that is shallower than γe 

will also result in 100% non-crash. However, due to the 

need for high deceleration, a steeper angle is usually 

preferred. Table 2 lists the nominal and adjusted EFPA 

which are used in the following results.  

 

Figure 7: Nominal and Adjusted EFPA for L/D from 

0 to 0.5 

Table 2: Selected Nominal and Adjusted EFPA 

L/D Nominal γ0 Adjusted γe 

0 −6.9° −6.7° 

0.2 −7.0° −7.3° 

0.4 −7.2° −8.2° 

 

ΔV Saving 

Using the adjusted γe, we assess the performance of 

ballistic aerocapture by comparing the ΔV of 

aerocapture with that of fully propulsive orbit insertion. 

Using Monte Carlo analysis, we perturbed the uncertain 

parameters and numerically simulated the atmospheric 

trajectory 1000 times for each L/D.  

Figure 8 shows the distributions of ΔV saving of ballistic 

aerocapture for L/D of 0, 0.2 and 0.4 respectively. 

Positive ΔV saving means that ballistic aerocapture is 

more efficient. We notice a significant improvement of 

ΔV savings by incorporating some passive lifting 

capability. As L/D increases, the ΔV savings are more 

concentrated about the average.  

Table 3 lists the mean, minimum, maximum, and 

standard deviations for the results shown in Figure 8 as 

well as the actual ΔV from aerocapture and fully 

propulsive orbit insertion.  



 

Figure 8: Histograms of ΔV Savings  

Table 3: Statistics of ΔV in m/s 

Parameter 
L/D 

0 0.2 0.4 

ΔV saving, mean 367 2398 2924 

ΔV saving, min. 32 1707 2671 

ΔV saving, max. 1195 3011 3149 

ΔV saving, std. 209 277 91 

Although, for L/D of 0, the mean ΔV saving is more than 

300 m/s, when designing the vehicle, we need to 

consider the 99-percentile ΔV saving, i.e., equivalently 

the minimum values in Table 3. As L/D increases, ΔV 

saving is more significant at over 1700 m/s 99-percentile 

for L/D of 0.2, and over 2600 m/s for 0.4.  

Structural and Thermal Loads 

We also evaluated the peak heat rate, total heat load, and 

peak deceleration to demonstrate the structural and 

thermal loads on the vehicle. The results shown in this 

section are consistent with ΔV saving.  

Figures 9–11 show ΔV saving vs peak heat rates, total 

heat load, and peak g-load respectively for all 1000 runs 

of Monte Carlo simulation with L/D of 0, 0.2, and 0.4. 

The blue points correspond to a L/D of 0, red plus 

markers for L/D of 0.2, and magenta star markers for a 

L/D of 0.4. It is important to note that the adjusted γe 

with 100% non-crashing rate is used. Also, for some 

cases with L/D of 0, ballistic aerocapture only provides 

a very small deceleration and the vehicle will exit the 

atmosphere on an escape orbit, resulting in very minimal 

ΔV saving.   

As expected, there is a positive correlation between the 

ΔV savings and peak heat rate, total heat load, and peak 

g-load. More ΔV saving means higher peak heat rate, 

higher total heat load, and higher peak deceleration.  

From Figure 9, we notice that as L/D increases, the peak 

heat rate increases significantly, yet is reasonable 

compared with the state-of-the-art TPS materials. Heat 

rates experienced during the atmospheric pass for high 

ΔV savings increase with increased vehicle L/D which is 

also a result of high deceleration as shown in Figure 11. 

The total heat load in Figure 10 shows an interesting 

result where for L/D of 0.4, the total heat load is roughly 

the same as that for L/D of 0.2. From the design 

perspective, total heat load is positively correlated with 

the total mass fraction for the heatshield. Assuming that 

the same TPS materials are used for both L/D of 0.2 and 

0.4, an increase in L/D will result in a higher ΔV saving 

meanwhile requiring no increase in heatshield mass.  

 

Figure 9: Heat Rate and ΔV Savings 

 

Figure 10: Total Heat Load and ΔV Savings 



 

Figure 11: Peak G-Load and ΔV Savings  

 

SUMMARY  

Ballistic aerocapture maneuver can be used to reduce the 

total ΔV necessary to deliver a probe into orbit. Using 

the assumed arrival condition, we have shown that the 

deceleration and thermal loads are reasonable. The peak 

heat rate of the aerocapture maneuver is within the 

capability of currently available TPS materials. A 

slightly increase in the vehicle aerodynamic L/D can also 

allow for a significant improvement in performance.  

Using Monte Carlo simulations, adjusted γe is found 

which considers perturbations in entry velocity, entry 

altitude, ballistic coefficient, L/D, and atmospheric 

density. A minimal control strategy allows for the 

maneuver to increase mass margins through ΔV savings 

while ensuring the probe survives the atmospheric pass 

by properly targeting the entry flight path angle.  

A probe with a passive lift-up design will be able to 

attain more ΔV savings than a non-lifting vehicle, but 

both are able to safely perform the maneuver with very 

minimal risk. Ballistic aerocapture can provide 

potentially significant mass savings when probe and 

mission design are thoroughly evaluated. 
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