SSC21-XX-XX

A Versatile and Open-Source Radio Framework for the D3 CubeSat Mission

Carlos Carrasquillo
University of Florida Department of Mechanical & Aerospace Engineering
939 Center Dr, Gainesville, FL 32611
c.carrasquillo@ufl.edu

Faculty Advisor: Riccardo Bevilacqua
University of Florida Department of Mechanical & Aerospace Engineering

ABSTRACT

This paper details the design and implementation of the communications system for the Drag De-Orbit
Device (D3) CubeSat mission. The D3 mission aims to validate the effectiveness of a novel approach to
aerodynamically-based orbital maneuvering and controlled re-entry. Using four deployable tape-spring booms
that can be retracted to any intermediate length, the D3 can accurately modulate the ballistic coefficient
profile of the CubeSat in low Earth orbit (LEO). To compute the necessary boom deployment and reproduce
a desired trajectory, the guidance profile of the CubeSat must be actively generated, which itself is a very
computationally intensive process. The guidance will therefore be generated in a local computer, condensed
into a transmittable file, and uplinked to the D3 CubeSat.

In order to enable the transmission of telecommands, the execution of telecommands, and the collection
of the CubeSat’s telemetry, robust radio libraries and protocols were developed to run on both the CubeSat’s
onboard computer and the ground station. The ground station program, written in Python, interfaces with a
terminal node controller (TNC), which itself interfaces with the ICOM9100 transceiver. The onboard radio
library runs was developed in C+4 and built to be compatible with Linux. It interprets, executes, and
responds to inbound telecommands when invoked using a single line of code. Both programs were developed
using the same architecture and design principles, which can easily be ported over for other missions and
applications. When fully tested, the software will become available for use by hobbyists, amateurs, and

professionals for use in future CubeSat missions.

Introduction

One of the largest obstacles in the design of a
CubeSat is the implementation and testing of the
communications system. The communications sys-
tem is responsible for transmitting commands to
the CubeSat and relaying information about the
CubeSat back to a ground station. Excluding fully-
autonomous missions, a CubeSat mission is usually
considered a failure if a secure connection with a
ground station cannot be made.

One study that surveyed 178 deployed missions,
70 resulted in either partial or full mission failure.
Out of these 70, 14% were identified to have failed
due to problems with the communications system.!
Another study found that 19 of 27 studied failed
missions experienced anomalies that could have been
avoided with more ground testing? (although it must
be noted that these are all not necessarily attributed
to communication failures). Because the flight soft-
ware can not be restarted in the event of a commu-
nication failure, the radio must be rigorously devel-

oped and tested prior to launch.

Current radio applications are either closed
source, mission-specific, or require a large learning
curve to integrate into an existing software suite.
One reason why it can be hard to integrate exist-
ing radio nodes into existing software is because the
command and data handling node, considered a part
of the radio node for the purposes of this paper, is
often the backbone for the flight software. The com-
mand and data handling functionality is therefore
inseparable from the flight software’s main logic.

This paper outlines the development of a new set
of software nodes set to run on a ground station and
a CubeSat, respectively. The radio nodes were de-
signed to be able to transmit large amounts of infor-
mation over any number of packets. Robust packet
structures and protocols were developed to iden-
tify packet losses and prevent illegal or disruptive
telecommands. The architecture was also designed
to be easily modified for any other CubeSat applica-
tion with minimal adjustments to the communica-
tion protocol/interface. The CubeSat node can be

Carrasquillo

35t Annual Small Satellite Conference

invoked by a single command from the main software
loop. When invoked, the node interprets any incom-
ing data, executes the inbound telecommand, and
responds with with either an acknowledge message,
error message, or the requested telemetry. Because
all command and data handling occurs outside of the
main software loop, developers can instead focus on
the CubeSat’s mission-specific functionality.

Mission Overview

The Drag De-Orbit Device (D3) is a <1U at-
tachment to a CubeSat that can modulate its aero-
dynamic drag coefficient by deploying or retracting
four independent tape-spring booms to any interme-
diate length. The variable aerodynamic drag coeffi-
cient can be used for orbital maneuvering, collision
avoidance, and de-orbit location targeting.> The D3
was conceptualized and designed in support of the
Space Situational Awareness (SSA) effort to keep
track of objects in orbit and predict where they will
be at any given time.

The D3 CubeSat mission is a testbed for this
new technology, and aims to validate some of the
results obtained from a MATLAB® simulation for
the guidance algorithm. The satellite has a turnover
date of August 2021 and a projected launch date of
December 2021.

Awvionics

All of the computing on the CubeSat is han-
dled by a central BeagleBone Black developer board.
For guidance generation, telemetry acquisition, and
power, the BeagleBone Black relies on communica-
tion with the following off-the-shelf components:*

e Battery and EPS: a 20Whr DHV Tech-
nology battery and electronic power system
(EPS) power all components, recharge the bat-
tery, and regulate the voltage and current on
the power rails.

e Solar Panels: an array of five solar panels
(supplied by DHV Technology) will be used to
recharge the battery throughout the duration
of the flight.

e GPS: a global positioning system will be used
to report a position fix for critical steps in the
guidance generation.

e IMU: a 9-axis inertial measurement unit used
as the feedback mechanism for closed-loop con-
trol of the angular rates.

e Magnetorquers: using a magnetic dipole,
the magnetorquers can provide the necessary
action for attitude control, detumbling, and
stabilization (as computed by the B-dot law,
which relies on IMU data).

e DC Motors: these motors are equipped with
encoders to perform closed-loop extension and
retraction of the tape-spring booms.

¢ UHF Transceiver: a half-duplex UHF
transceiver receives uplinked telecommands
and downlinks telemetry from/to a ground sta-
tion.

e Antenna System: four tape-spring antennas
in a turnstile configuration are connected di-
rectly to the transceiver for UHF communica-
tion.

The two most relevant devices for the radio are
the UHF transceiver and the antenna system, both
of which will be explored thoroughly in later sections
of this paper.

Flight Software

The D3 CubeSat mission also intends to vali-
date the use of the Robot Operating System (ROS)
framework in CubeSat missions. ROS is an open-
source set of libraries used to facilitate the develop-
ment and deployment of robotics systems. ROS uses
a publisher-subscriber model, where software mod-
ules (called nodes) can communicate with each other
over topics. A more detailed discussion of the ROS
framework (and its specific application to the D3
CubeSat) is detailed in A Nowvel Approach to Cube-
Sat Flight Software Development Using Robot Oper-
ating System (ROS).*

Switch
Triggered

All ROS
Nodes Active
Detumble

Gyroscope Rates
Fall Below
Threshold

GTrack
Telecommand
Received

GTrack |€

Figure 1: The finite state machine running
aboard the D3 CubeSat.

Carrasquillo

35t Annual Small Satellite Conference

Destination Source Digipeter Control | Protocol . .
Flag Address Address Addresses Field ID Information Field FCS | Flag
Bytes:| 1 7 7 0-56 1 1 1-256 2 1

Figure 2: A diagram illustrating the AX.25 packet structure.

At its core, the flight software is a finite-state
machine. Throughout its mission, the flight software
will step through each of its five states, called Idle,
Initialize, Detumble, Link, and GTrack (Fig. 1).

1. Idle: The CubeSat will remain in the idle
stage from the time it is turned over to the
launch provider to the time that it is ejected
into orbit. In this state, all avionics are off
and awaiting power from the EPS. When the
switches on the 1U structure are triggered, all
avionics are powered up and initialization of
the flight software begins automatically.

2. Initialize: The flight software will be initial-
ized in preparation for the detumbling phase.
This stage is critical because improper initial-
ization of the flight software will prevent the
finite state machine from proceeding.

3. Detumble: Once all avionics are online, the
CubeSat will automatically begin the detum-
bling phase. Detumbling aims to reach zero
angular velocity about all axes (except the
Zenith, which points along the length of the
CubeSat). This is done by using the IMU and
the magnetorquers to perform closed-loop con-
trol of the angular rates as governed by the
B-dot law detumbling algorithm. The Cube-
Sat moves on from this stage once the angular
rates dip below a predetermined threshold.

4. Link: A two-way communications link will be
established between the ground station and
the CubeSat. The antennas will be sequen-
tially deployed and the radio will begin scan-
ning. All other software nodes will begin pub-
lishing to topics in preparation for a telemetry
downlink. The CubeSat will remain in this
stage until it receives an explicit telecommand
to proceed with the guidance tracking.

5. GTrack: The telecommand to initiate guid-
ance tracking (GTrack) is uplinked along with
a guidance file.The CubeSat will use the DC
motors to modulate the extension and retrac-
tion of the tape-spring booms as dictated by

the guidance tracker control law.? The Cube-
Sat will receive intermittent guidance file up-
links to account for error accumulation. This is
the last state programmed into the finite-state
machine.

Telemetry Specifications

All telemetry will be conducted over the 70 cm
Amateur Radio bands. The Amateur Radio bands
are free to use and are typically reserved for non-
commercial endeavors, making them very popular
amongst hobbyists and in education. The Amateur
community also provides a lot of useful information
about working with radios that utilize the Amateur
bands, which is ideal for new missions like D3. The
D3 mission has been designed to operate over UHF
Amateur frequencies in half-duplex mode. Table 1
lists some notable system parameters for transmis-
sion.

Table 1: Transmission Specifications

Parameter Value
Operating Frequency 437.08 MHz
Data Rate (Rb) 9600 bps
Modulation Type GMSK
Protocol (AX.25) Overhead 7.25%
Desired Bit Error Rate 1E-5
Required Eb/NO 9.6 dB
eirp 33 dBm

AX.25 Protocol

The communication protocol to be used for
transmission over the UHF bands is the AX.25 pro-
tocol. AX.25 is a data-link layer protocol frequently
used in packet radio networks. AX.25 offers call
setup and teardown, error detection and correc-
tion, and robustness for communicating over chan-
nels with long delays.> An AX.25 frame is shown in
Figure 2. Since no digipeters will be used between
the ground station and the CubeSat, only 20 bytes
were considered for the protocol overhead calcula-
tion. For uplinks that utilize the maximum length

Carrasquillo

35t Annual Small Satellite Conference

of the data field (256 bytes), the protocol overhead
is 7.25%. For packets that consist of a single 8-bit
telecommand, the protocol overhead can be as large
as 95.24%. This was deemed acceptable because, us-
ing a baud rate of 9600 bps, the transmission lasts
approximately 0.2 seconds, which is a small fraction
(0.06%) of the time available during a single pass.

Satellite Passes

Planned parameters of the D3 CubeSat’s or-
bit are listed in Table 2. Experimentation involv-
ing communication with other CubeSats in LEO at
the Erich Farber ground station (the D3 mission’s
ground station) suggest that clear reception is re-
ceived beginning at an elevation angles of 20 de-
grees. The estimated contact time during each ideal
overhead pass, t., can be computed using simple
trigonometry, where, R = the radius of the Earth,
r = the perigee/apogee of the CubeSat, ¢ = the an-
gle of elevation, and T = the orbital period.1

Table 2: Planned Orbit Parameters

Parameter Value
Apogee 6786 km (415 km altitude)
Perigee 6786 km (415 km altitude)
Inclination 51.6 deg
Period 1.55 h
t. = 2tan"* (T_Rsec(w—gb)) X % (1)

The resulting duration of a directly overhead
pass is 5.6 minutes. All uplinks and downlinks
should ideally be transmitted within that 5.6 minute
window with an additional factor of safety in the
event of packet failures.

Communications System Hardware Design

The communications system consists of both the
ground station radio and the onboard radio. The
ground station is considered the master device while
the onboard radio is the slave device. The implica-
tions of this design choice are discussed in the Com-
munications System Software Design section.

Ground Station Radio

The D3 mission will make use of the Erich Farber
ground station based at the University of Florida’s
Energy Research and Education Park. The Erich

Farber ground station has been used (and is cur-
rently in use) for a number of CubeSat missions, in-
cluding the University of Florida’s CHOMPTT and
SwampSat II missions. Table ??7 shows the unique
configuration of the ground station hardware as re-
quired for the D3 mission.

The station was designed to operate as a packet
radio station, where packets are composed (on up-
link) and interpreted (on downlink) purely in soft-
ware. Having a software solution for data manage-
ment can cut down on both operator time and expe-
rience while simultaneously reducing the chances of
user error. The terminal node controller (TNC) is
the primary controller for the packet radio scheme.
It interfaces with a computer over a serial port on
one end and with the transceiver over the other.

The output of the transceiver is then fed into a
linear amplifier to increase the overall power of the
signal up to 550 Watts prior to transmission.

The output of the linear amplifier is then am-
plified again by the preamp, which can be adjusted
has an adjustable gain of 10-20 dB. The gain will
be tuned until the power received by the CubeSat’s
transceiver is no more than -70 and no less than -
115 dm, as per the onboard transceiver’s absolute
ratings.® The output of the preamp is input to the
70 cm Yagi antenna.

The antenna is a directional antenna, so it relies
on rotor to track the satellite throughout the pass.
The rotor is cable of setting the azimuth and ele-
vation angles of the antenna, These angles are up-
dated by software running on the main computer,
which are fed into the Rotor Computer Interface via
a RS-232 (COM) connection.

Figure 3 shows a high-level schematic of all the
aforementioned equipment. Table 3 describes the
precise equipment models for the D3 CubeSat mis-
sion.

Onboard Radio

Perhaps the most trivial yet meaningful differ-
ence between the ground station and the onboard
radio is that the onboard radio is immutable. Once
the CubeSat is in orbit, very little can be done to
diagnose hardware problems from the ground. For
this reason, tested OTS components were selected
whenever possible.

The Clyde Space URTX Transceiver is a com-
mercial half-duplex UHF transceiver with the abil-
ity to communicate with the onboard computer us-
ing the 12C bus. It features built-in AX.25 sup-
port, transmit and receive buffers, two redundant
microcontrollers, an inactivity beacon, and health

Carrasquillo

35t Annual Small Satellite Conference

- Outdoor “Indoor
: : — Legend
/ A\
— Uttt vee
g —— GND
— Serial
~— UHF Line
: ~~ Elevation Control Line
70 cm Yagi Antenna - - Azimuth Control Line
: (W
Terminal Node
Controller —
(TNC) N
: UHF
. . . Power
UHF Preamp . | Linear Amplifier Radio Supply
: VHF
Grounding
. Panel @
. . . ~— Rotor Controller Fuse Box Wall
® P Outlet
AZ |
. . . Rotor Uninterruptable
Rotor .
|— : Controller Power Supply
EL

Figure 3: High-level ground station hardware schematic.

telemetry. The output power of the transceiver is
also adjustable through software, but will remain at
2W throughout the duration of the mission. The
transceiver utilizes an SMA connector to send and
receive modulated signals though the antenna sys-
tem.

Legend

20 Whr Battery
and EPS

—(12C Bus

Figure 4: High-level onboard radio hardware
schematic.

The ISIS Turnstile Antenna System consists of
four deployable antennas whose operation is also
controlled over the 12C bus. When the antennas re-
ceive a command from the central computer, a spark
is ignited and spring tensioned wire begins to burn.
The wire burns from anywhere between <1 s to <20
s, depending on the temperature (and by extension,
the CubeSat’s exposure to sunlight). When the wire
fails, the corresponding antenna is deployed. All an-
tennas can be deployed manually or using an auto-
matic burn sequence. A schematic of the transceiver
and antenna circuit is shown in Figure 4.

Table 4: Onboard Radio Link Budget

Device Idle (W) | Peak (W)
URTX Transceiver <0.240 5.1
Antenna System <0.040 2

Both the transceiver and the antenna system are
powered by the EPS and 20 Whr battery. Table
4 shows a simplified link budget of the onboard
radio. It must be noted that the ISIS Antenna
will only require the peak power for less than one
minute throughout the duration of the mission (dur-
ing the Link state). The URTX Transceiver will only
require peak power draw while telemetry is being
downlinked.

Carrasquillo

35t Annual Small Satellite Conference

Table 3: Ground Station Equipment List

Device Model Purpose
70 cm Yagi Antenna M2 436CP30 UHF (432-438 MHz) antenna
Preamp SP-7000 Increase the gain of the UHF antenna

Rotor and Rotor Controller Yaesu G-5500

Azimuth and elevation controller for the antenna

Rotor Computer Interface Yaesu GS-232B

Enables rotor control through software

Radio iCOM IC-9100

Uplink/downlink frequency control

Terminal Node Controller KAM-XL

Packet radio, modulation/demodulation

Fuse Box MFJ-1129

Overcurrent protection

UHF Linear Amplifier Beko HLV-550

UHF gain amplifier

Power Supply Astron RS-20A

Dedicated power supply for the tranceiver

Uninterruptible Power Supply APC LS-700

Emergency/back-up power

Communications System Software Design

The radio will operate in a master-slave configu-
ration, where the ground station is the master device
and the onboard radio is the slave. The onboard
radio will not transmit unwanted telemetry unless
it is prompted to do so by a telecommand from the
ground station. The only exception to this rule is the
inactivity beacon, which downlinks health teleme-
try automatically after a period of inactivity. The D3
mission will use the inactivity beacon to transmit
the CubeSat’s health data, including the battery’s
charge, IMU data, temperature data, voltages on
the power rail among other information. The in-
activity beacon serves two very important purposes.
The first is that, in the event of a ground station fail-
ure, Amateurs will be able to publish the CubeSat’s
health data on the mission’s website. This will allow
project overseers to know the status of the satellite
until the ground station is fixed. The second purpose
is to provide validation that the CubeSat is still on-
line. This is especially useful during stretches where
contact is unsuccessful.

Data Flow Overview

All telemetry exchanges will commence with the
ground station. The ground station software will
package all of the data into a KISS frame, which will
be transmitted to the TNC. The TNC will use the
KISS packet to generate the AX.25 packet, which
it modulates into an audio signal. The audio sig-
nal will then be transmitted over UHF by the radio.
The UHF signal will propagate until it reaches the
D3 CubeSat, where the transceiver will demodulate
the data and convert the digital data from an AX.25
packet to a Simple Protocol packet.

Preamble Data Data Field Checksum
Length
Bytes: 2 1 1-256 1

Figure 5: A diagram illustrating the Simple
Protocol packet structure.

The Simple Protocol is a special packet structure
implemented by the URTX UHF Transceiver (Fig.
5). It acts as an extra layer of security for inbound
and outbound transmissions. If the incoming or out-
bound packet does not abide by the Simple Protocol,
it is discarded by the transceiver. If it passes, the
packet is then interpreted by the radio software to
extract the data field. The reverse process is used to
downlink telemetry. Both the uplink and the down-
link process are shown in Figure 6.

! Ground Station i | D3Cubesat i D3 CubeSat i | Ground Station

‘s i : K HH
: : : Data S KIss

AX.25 e : H Bytes HE Protocol
2 Hils H [z HHE
: KISS o Data : : Simple I Data

Protocol N Bytes H : Protocol N Bytes
[il : HIE
' Data ol Simple H

Bytes I Protocol AX25

Figure 6: A flow chart showing how data is
packaged and transmitted during uplink (left)
and downlink (right).

The radio aboard the CubeSat was implemented
as a software library responsible for both 12C com-
munication with the avionics and command data
handling. The library was written entirely in C++

Carrasquillo

35t Annual Small Satellite Conference

for speed and cross-platform operating system com-
patibility. The functionality of the radio is invoked
using a single function call, Radio.scan(). When the
Radio.scan() function is called, a telecommand is
read from the receive buffer (if one is available),
executed, and the corresponding acknowledge sig-
nal/telemetry is transmitted.

The simplest form of the radio library consists of
five different classes as shown in Figure 6. When
an instance of the Radio class is created, it cre-
ates instances of the UHF_Transceiver, Interpreter,
Handler, and Packager. The functionality of these
classes is described below.

e I2C _Functions: This library was developed
to facilitate the development of all avionics li-
braries. One instance is created for each de-
vice to store the active I2C bus and the de-
vice address. Data can then be written or read
to/from the device by using only the register
address.

e UHF Transceiver Library: This library is
responsible for getting and/or setting data to
and from registers in the URTX transceiver.
There is one getter function for each readable
register in the transceiver. Each getter func-
tion requires no parameters and returns an 8-
bit unsigned integer array containing anywhere
from 1 to N bytes of data (i.e., one byte per
register, up to N registers). Similarly, there
is one setter function for each writable regis-
ter in the transceiver. Setter functions have
no return value but require an 8-bit unsigned
integer array of 1 to N bytes of data as the
only parameter (one byte per register, up to N
registers). This library also has additional sup-
port functions, including a sendString function
for sending strings of data instead of 8-bit un-
signed integers. The only dependency of the
UHF Transceiver library is the I2C_Functions
library.

e Interpreter: The interpreter class is respon-
sible for accepting an incoming package and
extracting the telecommand and parameter
fields. When the interpreter is invoked by
the Radio, it uses the UHF_Transceiver library
to read the incoming bytes from the receive
buffer. The incoming bytes are organized in
an unsigned 8-bit integer array according the
Simple Protocol packet structure (Fig. 5).
The packet is separated into the correspond-
ing fields and the data field is extracted. The
first byte of the data field is extracted to form

the telecommand and the remaining bytes are
assigned to the parameters (one long string).
The telecommand and parameters are then re-
turned as a structure.

Handler: The Command Data Handler, or
Handler, is responsible for executing some ac-
tion and/or collecting the data to be down-
linked. It is organized as a large switch-
case statement (or optionally a look-up table),
where the compared expression (or index in a
look-up table) is the telecommand. If neces-
sary, the handler spawns a new thread to exe-
cute the task while the parent thread sets the
downlinked signal’s value. FExamples of exe-
cuted tasks can include spawning a ROS node,
initializing a class and calling a function, or
running a shell script. The downlinked signal’s
value can either be an acknowledge or error
signal, bytes of telemetry, or a filename. The
Handler then passes this value to the Packager
before it is transmitted. The Handler also
keeps a time-stamped log of all of the telecom-
mands executed by the CubeSat, which can be
downlinked on request.

Packager: The Packager is responsible for as-
sembling the data according to the simple Pro-
tocol packet structure. If the data is teleme-
try or an acknowledge/error signal, the length
and checksum are computed and the string is
converted into an 8-bit unsigned integer ar-
ray. array. If the data is a filename, the file
is opened, converted into a byte array, con-
verted into packets, and transmitted. The
UHF_Transceiver’s sendString function is then
invoked and the data is transmitted.

Radio: The radio (software) is responsible for
configuring the URTX UHF _Transceiver upon
startup and facilitating the transmission of
data between objects. When the Radio.scan
function is invoked, the radio calls on the In-
terpreter to fetch the inbound command. If
the command exists, a command structure is
passed to the Handler. The radio class also has
functions that routinely check the configura-
tion of the URTX UHF_Transceiver to ensure
that they have not changed (as recommended
by the datasheet).

A special case occurs when the telecommand Up-
load File is received. The handler identifies this com-
mand and extracts the packet number from the first
byte of data. If the packet number is 1, the num-

Carrasquillo

35t Annual Small Satellite Conference

simple protocol

Radio \

telecom,

Interpreter
parameters

packet array
12C RX »! Rx UHF
Library Transceiver
Functions | ™% [€ ™ Library

simple protocol
packet string

N

Handler

response

/

Figure 7: The basic architecture of the onboard radio software. All nodes are implemented as
classes. Data flow between nodes is controlled by the Radio class.

ber of packets to be received is read from the sec-
ond byte. The length of the destination field is read
from the third byte, followed by the destination field
(which includes the filename). A Start of File (SOF)
ASCII character is then expected, followed by the
contents of the file. Each inbound packet is scanned
for the packet counter bit, which is expected to incre-
ment for each packet received. If the packet counter
bit jumps by more than 1, a packet was lost and an
error message is downlinked. The file is closed when
the End of File (EoF) character is received.

File uploads are a time-consuming process, so file
backups were implemented into the software to undo
an accidental file upload. If the uplinked file already
exists, a backup of the last file is created. A user
can then send an Undo File Upload telecommand
to delete the latest version and restore the previous
version.

To downlink a file, a similar procedure is re-
peated. The packet number is set as the first byte,
and, exclusively for the first packet, the expected
number of packets is transmitted. Both the destina-
tion and length of the destination field are omitted
from the downlinked packet, and the decision over
the destination address is surrendered to the user.
The number of packets is therefore immediately fol-
lowed by the SOF character and the data itself. All
subsequent packets behave as described in the uplink
procedures.

The radio was designed to abide by the principle
of encapsulation. All radio exchanges are handled
by the this library, which greatly reduces the com-
plexity of the remainder of the flight software. This
structure also has the added benefit of preventing
unintentional downlinks. Other than beacon down-
links, no telemetry is transmitted without the ra-

dio first receiving an explicit telecommand from the
ground station.

Perhaps most importantly, the radio is versa-
tile. The with minor adjustments to the commu-
nication protocols and hardware/avionics libraries,
the library can be ported to any other operating sys-
tem or computer. Future iterations of the software
will support more communication protocols as well
as automatically configuring unique communication
protocols based on the contents of a configuration
text file. Upon initialization, the software will read
the contents of the text file and define both inbound
and outbound packet structures.

Ground Station Software

There two programs that must be actively run-
ning for telemetry to be exchanged- SatPC32 and
the D3 Ground Station program. SatPC32 is a
program developed by Erich Eichmann (callsign
DKI1TB) to compute the orbits of satellites. The
program has a graphic user interface (GUI) that
continually updates the map of the satellite being
tracked as it passes over the station. SatPC32 has
the added functionality of interfacing with the Yaesu
(GS-232B rotor computer interface, which allows for
satellites to be automatically tracked throughout a
pass. SatP(C32 also has automatic Doppler correc-
tion. SatPC32 runs on Windows.

The D3 Ground Station program is responsi-
ble for transmitting telecommands, awaiting on the
satellite’s response, and presenting the information
to the user in a digestible manner. The D3 Ground
Station software transmits and receives data through
the TNC using the KISS packet structure over a
COM port. Python was selected as the primary pro-

Carrasquillo

35t Annual Small Satellite Conference

-~

KISS packet
array

Radio/GUI

telemetry

Interpreter

Output Window

KISS RX P RX TNC
Module TX M€ X Library

KISS packet
string

N

telecommand
Input Window
(Buttons)

_/

Figure 8: The basic architecture of the D3 Ground Station program. The main GUI is always
running and all other processes are handled by threads.

gramming language for the ground station based on
the availability of GUI libraries.

The ground station software was specifically de-
signed to mirror the Onboard Radio software. It
consists of a TNC library, an Interpreter, Pack-
ager, and GUI nodes. Of these nodes, both the
Interpreter and the Packager imitate those found
in the onboard radio (requiring only lexical changes
from C++ to Python and protocol changes from
Simple Protocol to KISS). The TNC library also
mirrors the functionality of the onboard radio’s
UHF_Transceiver library.

The biggest difference between the onboard ra-
dio and the ground station radio is the command
data handling process. Unlike the CubeSat’s ra-
dio, which is a fully autonomous software loop, the
ground station radio was designed to require a user
to both select the outbound telecommand and inter-
pret the incoming telemetry (i.e., user-in-the-loop).
The user-in-the-loop requirement is responsible for
the majority of the differences between the two pro-
grams.

There are two layers of security between a user
and the CubeSat. The first is the Windows login,
and the second is the D3 Ground Station software
authentication window. Once a user has gained ac-
cess to the main GUI, they will be presented with
a list of buttons, each of which corresponds to a
telecommand. When one is selected, the user is
prompter to confirm their input (Fig. 9). The soft-
ware then switches to a listening state, where the
interpreter scans for an input from the TNC. When
the interpreter receives an input, all of the data is
presented in an output window. If no input is re-
ceived for a user-determined number of seconds, the
program times out and attempts to re-transmit. If
the re-transmit is unsuccessful, the program escapes

from the transmit/listen sequence and reports an er-
ror message.

If a file is to be transmitted, the user is pro-
vided with a file browser to find the file. The user
is then prompted to find the destination of the file
in a simulated directory of the onboard computer.
The file is then transmitted packet by packet. If an
acknowledge signal is not received after a packet, the
software retries sending the packet until it either re-
ceives an acknowledge signal or a timeout exception
is thrown. The file downlink procedure is identical
from the perspective of the CubeSat. All downlinked
data is also checked to ensure that it complies with
the Downlink File packet structure.

D3 Telecommands:

Toggle Debug LED

Figure 9: The D3 Ground Station Software in
use. A button was clicked, and the program
responded with a confirmation prompt.

Testing

The field tests documented below have been con-
ducted with the D3 mission’s hardware.
Ground Station

To test the transmission of a telecommand from
the ground station, a spectrum analyzer was con-

Carrasquillo

35t Annual Small Satellite Conference

nected to the output of the iCOM-910 transceiver.
The D3 Ground Station software was launched and
telecommands were sent through the TNC and to
the iCOM-9100 transceiver. The transmit test was
successful, and a power spike at the center frequency
of 437.08 MHz was observed (Fig. 10).

SIGEENE 5303532

Figure 10: station

Testing the
transceiver at a secondary ground station.
The ground station used for testing utilizes
an iCOM-910 (the previous generation).

ground

The ground station software also logs all of the
outbound telecommands, which were used to test
the onboard radio.

Onboard Radio

To test interpreting and transmitting data from
the onboard radio, the output of the URTX
Transceiver was connected to a spectrum analyzer.
A 25 dB attenuator was connected in series between
the transceiver and the spectrum analyzer to reduce
the power of the signal. The telecommands from the
ground station output log were fed into the Inter-
preter class. Both file uploads and standard telecom-
mands commands were tested. The onboard radio
was able to accurately perform all of the required

Conclusion

By segmenting the radio into Interpreter, Han-
dler, and Packager classes, the onboard radio li-
brary can be easily ported to other CubeSat mis-
sions with minor architectural and simple protocol
changes. This architecture allows the functionality
of the radio to be invoked using a single command
and operate independently from all other satellite
functions. Implementing the radio as a separate soft-
ware module also has the added benefit of reducing
the development time of, testing time of, and risk
to CubeSats that utilize it. The deliberate encap-
sulation of the radio framework also pervents un-
intended downlinks. If successful, this radio open-
source framework has the potential to make Cube-
Sats more accessible to a larger audience.

Acknowledgements

The author acknowledges the contributions of all
members of ADAMUS Laboratory towards the D3
CubeSat mission. The contributions of Riccardo
Bevilacqua, Ph.D.; and Camilo Riano-Rios, Ph.D.
in particular have been essential to the development
of the radio.

References

[1] Martin Langer and Jasper Bouwmeester. Relia-
bility of cubesats-statistical data, developers’ be-
liefs and the way forward. 2016.

Catherine Venturini, Barbara Braun, David
Hinkley, and Greg Berg. Improving mission suc-
cess of cubesats. 2018.

David Guglielmo, Sanny Omar, Riccardo
Bevilacqua, Laurence Fineberg, Justin Treptow,
Bradley Poffenberger, and Yusef Johnson. Drag
deorbit device: a new standard reentry actuator
for cubesats. Journal of Spacecraft and Rockets,
56(1):129-145, 2019.

functionality and transmit the response (as evident [4] Samuel Buckner, Carlos Carrasquillo, Marcus
by the power spike at the center frequency of 437.08 Elosegui, and Riccardo Bevilacqua. A novel ap-
MHz). proach to cubesat flight software development
Future steps for testing include testing the com- using robot operating system (ros). 2020.
Plete radio loop Wlth,thei gro'u'nd station. Test— [5] Alexander Kleinschrodt, Andreas Freimann,
ing the URTX Transceiver’s ability to communicate . R
: . . Steffen Christall, Maximilian Lankl, and Klaus
with the ground station can be accomplished by e . .
. . Schilling. Advances in modulation and commu-
(1) connecting the turnstile antenna system to the . .
.) nication protocols for small satellite ground sta-
transceiver and deploying the antennas, (2) trans- tions. 09 2017
mitting a telecommand from the ground station ’ '
computer, and (3) interpreting the onboard com- [6] Cape Peninsula University of Technology,
puter’s response on the ground station computer. F'SATI. User Manual, 2020. Rev. C.
Carrasquillo 10 35" Annual Small Satellite Conference

Appendix

Radio::Radio Radio.scan()

Y
Initialize Objects:

UHF_Transceiver UHF_Transceiver Yes

Interpreter Configuration

Handler Changed?

-
v No
Configure UHF_Transceiver: Configure UHF_Transceiver
setModemConfig(GMSK)
setPAPower(33dB)
setRxTxFreq(437.08) /—‘f—\
setMode(AX25)
incoming =
interpreter.getCommand()
Y .~ U
Configure UHF_Transceiver
Beacon:
Y
updateBeacon(health) 4 N
enableBeacon() status =
> handler.process(incoming)

TX and RX Frequency
Lock Achieved?

Figure 11: A simplified flowchart of the Onboard Radio’s Radio class.

Carrasquillo 11 35" Annual Small Satellite Conference

Program
Launched

Password
Prompt

Wait for
Button Press

h 4

Y

Press?

telecommand

Fetch Health

telecommand

Upload Guidance

N

telecommand

Restart Computer

k

Compese Packet

L

Transmit Packet

A

Show Load Screen

Received
Packet?

Process Data

Wait for
Button Press

Figure 12: A simplified flowchart for the D3 Ground Station software.

Carrasquillo

12

35 Annual Small Satellite Conference

