

Rizvi 1 36th Annual Small Satellite Conference

SSC22-VIII-03

Developing Lunar Flashlight and Near-Earth Asteroid Scout Flight Software Concurrently
using Open-Source F Prime Flight Software Framework

Aadil Rizvi, Kevin F. Ortega, Yutao He

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr. Pasadena, CA - 91109

Aadil.Rizvi@jpl.nasa.gov, Kevin.F.Ortega@jpl.nasa.gov, Yutao.He@jpl.nasa.gov

ABSTRACT
NASA’s Lunar Flashlight (LF) and Near-Earth Asteroid (NEA) Scout CubeSat missions are planned to launch in
2022. Lunar Flashlight is a low-cost secondary payload concept that will map the lunar South Pole for volatiles and
demonstrate several technological firsts, including the first planetary CubeSat mission to use green propulsion, and
the first mission to use lasers to look for water ice. NEA Scout is a low-cost concept that will map an asteroid and
demonstrate several technological firsts, including being the first CubeSat to reach an asteroid.

Flight software for both CubeSat missions is based on the open-source F Prime Flight Software Product Line
developed by JPL. F Prime utilizes a reusable component-based architecture with typed ports that can be
interconnected to form a topology. Also, F Prime includes a set of auto-coding tools used to generate components and
topologies that can be deployed for various mission specific applications. Both CubeSats share a common set of
avionics for command and data handling (C&DH), telecom and power. This commonality in hardware is translated to
a shared deployment in software enabling concurrent flight software development for both CubeSats. The modularity
and reusability in F Prime enable such concurrent flight software development for different applications given a
common set of avionics. In particular, F Prime has been used successfully to develop a common software deployment
for the Sphinx C&DH platform used on both CubeSats. The common F Prime deployment for Sphinx has also been
made open source to provide a starting point for any future F Prime software deployments utilizing the Sphinx
platform. This paper provides a comparison between the Lunar Flashlight and NEA Scout Flight Software
deployments highlighting the use of a common shared set of F Prime components developed for the Sphinx platform
along with general lessons learned for CubeSat flight software development with the F Prime Framework.

INTRODUCTION
Lunar Flashlight (LF) and Near-Earth Asteroid (NEA)
Scout are two Class D NASA CubeSat missions using a
common set of avionics for command and data handling
(C&DH), telecom, and power; but, with very different
mission objectives. Despite the differences in mission
objectives, both missions’ flight software (FSW) is
developed concurrently by a single team. The team took
advantage of the missions’ overlapping requirements
and of a highly modular, reusable, and adaptable FSW
framework called F Prime to develop software for two
separate missions with the cohesion of a single team.

Lunar Flashlight
Lunar Flashlight is a six-unit (6U) CubeSat that will be
the first mission to use laser reflectometer to look for
water ice and will be the first planetary spacecraft to use
a “green” propellant called Advanced Spacecraft
Energetic Non-Toxic (ASCENT).1 ASCENT has
significantly better performance and lower toxicity
compared to hydrazine, which is a common propellant
used by spacecraft.2 The mission goals are to
demonstrate the use of an active laser spectroscopy to

distinguish between surface water ice and dry Moon soil,
create a map of water ice found near the Moon’s South
Pole, demonstrate the use of the “green” propellant
ASCENT, and show that small spacecraft are capable of
exploring the Moon at a lower cost and lower
development time compared to missions with larger
spacecraft.2

Figure 1: Artist’s rendition of the Lunar Flashlight
spacecraft.

Rizvi 2 36th Annual Small Satellite Conference

Near-Earth Asteroid Scout
Near-Earth Asteroid (NEA) Scout is a six-unit (6U)
CubeSat selected as a secondary payload on Artemis I. It
will be the first CubeSat to reach an asteroid.3 The
CubeSat is equipped with a solar sail that will use
sunlight to propel itself towards the asteroid. When
flying by the target asteroid, NEA Scout will rely on its
cold-gas propellant to maneuver itself to capture images
of the asteroid.4 The mission goals include performing
fly-by of a near-Earth asteroid and acquiring images that
will allow scientist in determining the asteroid’s volume,
spectral type, pole position, rotation period, and orbit.
Additional mission objectives include understanding the
asteroid’s shape model, meteorite analogs, debris/dust
field in local environment, and the regolith
characteristics.5

Figure 2: Artist’s rendition of the NEA Scout
spacecraft during its flyby of Asteroid 1991 VG.

F Prime
F Prime is an open-source embedded systems framework
which has been successfully flown on the ISS-RapidScat
instrument, ASTERIA (Arcsecond Space Telescope
Enabling Research in Astrophysics) CubeSat, and Mars
Helicopter (Ingenuity); and will be flown on both Lunar
Flashlight and NEA Scout.6,7 Also, F Prime has been
baselined for use on Mars Science Helicopter and Mars
Sample Return Sample Retrieval Lander’s motor control
software.

Figure 3: Ingenuity’s shadow as it hovered on Mars.

F Prime implements a component-based architecture that
centers around the idea of “components” and “ports.”
Components encapsulate specific behavior, and are
unaware of other components – making components
easily reusable. Components use strongly typed ports to
interface with each other. These ports encapsulate typed
interfaces and serve as the points of interconnection in
the architecture. They are directional and can serve as an
input or an output to a component. This eliminates code
dependencies between components as data is shared
using common port types across components.
Components connected via ports form a topology, which
illustrate the software deployment for a given set of
components. These building blocks: ports, components,
and topologies; were modelled using XML for the LF
and NEA Scout deployments. However, this can now be
performed using the newly developed and open-source
modeling language F Prime Prime (FPP)12. Projects
using the latest version of F Prime (v3.0.0) can now
model their components and topologies in FPP in-place
of XML as FPP is the standard modeling language for F
Prime.12

The F Prime Flight Software Product Line provides a
framework and a code generator, which is referred to as
the autocoder, that encapsulates thread management,
inter-process communication (IPC), commanding,
telemetry, and parameters. In addition, the autocoder
uses the FPP models to autogenerate boilerplate code –
component base classes, and stubbed functions for port
and command handlers – allowing developers to focus
on implementing component specific behaviors. The
port and command handling interfaces of a target
component are automatically executed by F Prime’s
internal architecture upon invocation of the target
component’s port interface.

Figure 4: An F Prime topology containing
components and their interconnections via ports.

Rizvi 3 36th Annual Small Satellite Conference

The Sphinx C&DH Technology
At the time of Lunar Flashlight and NEA Scout missions,
there were no viable C&DH technologies meeting the
avionics requirements for both missions. As a result, JPL
funded an internal technology development project in
2014 to develop a small-SWaP, low cost, and rad-hard
avionics product, called Sphinx13, for a variety of future
deep space missions. The first Sphinx incarnation
integrated the avionics requirements from NEA Scout,
Lunar Flashlight, and some other relevant flight
missions.

The Sphinx board fits within the standard CubeSat 1U
(10 cm x 10 cm) footprint, with a mass of less than 250
grams, and a power of 2.5W (average) to 7W (max)
when operating. Figure 5 shows the top and bottom view
of the Sphinx flight model (FM) board.

Figure 5: Sphinx FM PCB View (Top and Bottom)

Unlike the CubeSat standard PC104-pin connector, the
board uses a 160-pin mezzanine connector for stack-up
configuration of various CubeSat boards. The increased
pin density and count allow for almost all of the Sphinx’s
data interfaces to be brought out together with the
avionics power bus. Other than this connector and a GSE
connector, the Sphinx itself does not provide any
harnessing capability for interfaces. Instead, the board
has been designed with the philosophy that missions
would create a custom interface board specific to the data
needs for that spacecraft.

Figure 6: Sphinx Board Block Diagram

The Sphinx board as shown in Figure 6, is based on the
rad-hard Aeroflex GR712 dual-core System-On-Chip
(SOC) device. Each processor core is capable of
supporting a clock frequency of up to 100 MHz with
2x134 DMIPS (Dhrystone Million Instructions Per
Second)14. A Microsemi ProASIC FPGA connects to
GR712 via the memory I/O bus. It provides additional
computation and control logic as needed for the
spacecraft. The Sphinx board includes both 256MB
SDRAM as volatile memory and 32 MB NOR flash and
8 GB NAND flash as non-volatile memory, all protected
by EDAC coding. The Sphinx board includes its own
power regulators and all on-board voltage rails are
monitored via current sensing and voltage monitoring.

Table 1: The Sphinx C&DH Specification
Category Design Features
Memory
(EDAC

protected)

256 MB SDRAM
32 MB NOR Flash
8GB NAND Flash

Data
Interfaces

2x SpaceWire with RMAP
7x UART (4x RS-422)

2x UART RS232 for GSE
4x SPI (10 available slaves)

8x I2C (masters)
2x 32-bit GPIOs

2x JTAGs (processor and FPGA)
1x Ethernet PHY RMIII (for GSE)

8x analog channels
System
Features

External watchdog with boot-bank swapping
Supports up to 4 software image selections

Table 1: The Sphinx C&DH Specification above lists
the detailed technical capabilities of the Sphinx.

To meet the radiation requirements, the Sphinx only uses
space-grade parts that are able to perform to a minimum
total dose of 30 Krads (Si), including the FPGA,
memory, driver/receivers, and power regulators. The
GR712 processor is tolerant up to 300 Krads (Si). These
parts are also chosen to perform against SELs (Single
Event Latch-ups), with each part hardened to LET
(Linear Energy Transfer) up to 37 MeV-cm2/mg for
destructive events.

The Sphinx also implements different fault protection
methodologies. All on-board memory, including L1
caches, is protected by single-bit-correction-double-bit-
detection codes, which can be enabled as needed. A
hierarchical robust watchdog methodology is
implemented to prevent both hardware and software
faults. The main processor runs a watchdog to prevent
the main software executable from locking up. The
FPGA is able to provide further protection by ‘watching
the watchdog’. Externally, the Sphinx could be hard reset
through a ground command through the Iris

Rizvi 4 36th Annual Small Satellite Conference

Transponder. The Sphinx is also capable of carrying
multiple copies of the flight software executable image.
If a reset event does occur, the Sphinx is able to do a full
scan of the onboard memory and load an uncorrupted
version of the flight software. This same feature allows
updated versions of the flight software to be uploaded
from the ground while in flight.

The Sphinx can potentially be used beyond its core CDH
role. The board could act as a processor for reading high
data rate instrument data and running algorithms. If
volume and mass allow, multiple Sphinx boards could be
used within a SmallSat to provide discrete processing
capabilities to multiple instruments simultaneously. If
this architecture is implemented, each Sphinx could have
the capability to watch the other boards for faults and
lockups – providing some redundancy.

After delivery of the Sphinx to NEA Scout and Lunar
Flashlight projects, JPL has licensed the Sphinx to
Cobham to build it as an off-the-shelf product. It has
been baselined in several upcoming flight missions.

HARDWARE ARCHITECTURE

Common Hardware Architecture
To reduce the cost and the complexity of building
SmallSats for deep space missions, JPL has developed a
flexible and adaptive bus avionics architecture that
shares a common form factor, mounting scheme, and
board-to-board connector based on the Sphinx, such that
the C&DH, the telecom, and the power subsystems are
stacked together.

With this baseline architecture, only a custom mission-
specific interface board is required as an adapter to
external devices. Figure 7 depicts a reference spacecraft
block diagram showing the common subsystems. Two
CubeSat spacecraft for Lunar Flashlight and NEA Scout
missions have been developed with this approach, based
on the Sphinx’s flexibility and adaptability, at the
hardware, firmware, and software levels.

Figure 7: Sphinx-based Spacecraft Block Diagram

The Telecommunication subsystem, called Iris15 has
been developed at JPL. It is made up of several CubeSat
1U hardware slices, allowing different slices to be
attached to enable the radio to transmit and receive at
different frequencies, and is fully compatible with the
Sphinx. Similar to the Sphinx CDH, Iris uses radiation
tolerant memory and a radiation tolerant processor to
survive the deep space environment. All thermal
management is done passively with a metal thermal
enclosure.

The Electrical Power Subsystem (EPS) has been
designed to include a custom EPS (Electronical Power
Subsystem) card that uses the same 160-pin stacking
connector common between the Sphinx and Iris. As a
result, it is capable of handling the large array generation
and deliver the currents required by the avionics.

Mission Specific Architecture
The key differences between Lunar Flashlight and NEA
Scout spacecraft lie in their respective scientific mission
objectives that lead to different instrument payloads and
the GNC subsystem design.

The NEA Scout spacecraft instrument payload is a
<0.5kg/0.5U visible imager camera that offers a ground
sampling distance of 10 cm/pixel at <0.8 km from its
target and is capable of detecting a 10-m NEA from
<50,000 km. The Lunar Flashlight mission carries a 2U
point infrared spectrometer focused on search for ice
signature on the Moon between 1–2 micron.

The NEA Scout Guidance Navigation Control (GNC)
subsystem is a custom design composed of Sun sensors,
a miniaturized star tracker, reaction wheels, in
conjunction with a solar sail attitude control system. The
Lunar Flashlight GNC subsystem on the other hand, uses
Blue Canyon Technology’s XACT-50 Attitude Control
System technology16.

SOFTWARE ARCHITECTURE
The Lunar Flashlight and NEA Scout CubeSats share
significant commonalities in hardware configuration
which is reflected in software by having a common
software architecture developed using F Prime to
facilitate any mission specific application utilizing the
common Sphinx hardware configuration.

Common Architecture
The commonality in hardware for both Lunar Flashlight
and NEA Scout CubeSats is reflected in a shared
deployment in software leveraging the use of F Prime
FSW Framework. The set of components shared across
both CubeSats are contained in the Sphinx common
deployment that can be executed on a Sphinx-based

C&DH
(Sphinx)

Telecom
(IRIS)

ACS
Sensors/Actuators

Power
Subsystem

GSE

Instrument
Payload

Engineering
Sensors

Rizvi 5 36th Annual Small Satellite Conference

avionics platform. Components comprising the common
deployment are given in Figure 8: Sphinx Common
Deployment Components.

Figure 8: Sphinx Common Deployment Components
Both CubeSats have several shared requirements for the
C&DH, telecom and power sub-systems. This
commonality in requirements at the sub-system level is
reflected in the list of F Prime components shared
between both CubeSats. Also, several data interfaces on
the Sphinx platform are shared between the two
CubeSats which is reflected in software by re-use of the
same driver components such as SPI, GPIO, SpaceWire
and others. In addition to hardware and data interfaces,
both CubeSats use the same ground data system (GDS)
namely AMMOS (Advanced Multi-Mission Operations
System) Mission data Processing and Control System
(AMPCS). This allows the same set of uplink, downlink
and telemetry converter components, compatible with
AMPCS, to be shared between the two CubeSats.

An F Prime component is a C++ class which can be
instantiated into several objects or instances of the same
component. This pattern is leveraged in the Sphinx
common deployment to instantiate a telemetry packet
converter (AMPCS APID Conv.) for each custom
telemetry packet generated in the system. Similarly, the
logging (Com Logger) and buffer management (Buffer
Mgr) components are instantiated numerous times
within the deployment to provide logging and buffering
services for different telemetry packets generated by the
common deployment.

The common topology is architected as a sub-subsystem
which can be inherited by multiple deployments.
However, due to F Prime limitations at the time of
CubeSat development, the Lunar Flashlight and NEA
Scout deployments each contain a copy of the common
topology which is further augmented with additional
components for mission specific use cases.

Mission Specific Architecture
Both Lunar Flashlight and NEA Scout leverage the
Sphinx common deployment for executing on the Sphinx
platform in addition to interfacing with Iris radio and
electrical power subsystem (EPS) hardware. As such, all
components included in the Sphinx common deployment
are re-used on both CubeSats. In addition to components
included in the Sphinx common deployment, both
CubeSats include software components for managing
their respective payload instruments and attitude control
hardware. Also, mission specific fault protection and
mode management is implemented in separate
components respective to each CubeSat.

The Lunar Flashlight deployment includes a Payload
manager component for interfacing with the laser
instrument used to conduct experiments on-orbit. Also,
components are developed to manage the attitude control
unit (Blue Canyon Technologies XACT) and propulsion
system developed specifically for Lunar Flashlight. Fault
responses and spacecraft modes implemented for the
Lunar Flashlight deployment are defined in separate
Lunar Flashlight specific fault response and mode
management components. Components comprising the
Lunar Flashlight deployment are given below in Figure
9: Lunar Flashlight Deployment Components.

Sphinx Common Deployment

Cmd Tlm Events Seq Prm

AMPCS
File Up

AMPCS
File

Down

Poly Rate
Grp

Health File
Mgr

File
System

AMPCS
EVR

Conv.

AMPCS
EHA

Conv.

AMPCS
APID
Conv.

Com
Logger

Buffer
Mgr

Sphinx
Time

File
Worker

FPGA
Driver

SPI
Driver

GPIO
Driver

NOR
Driver

FPGA
SPI

Driver

FPGA
GPIO
Driver

NOR
Mgr

NOR
Mgr

Worker

Space
Wire

Driver

Space
Wire
Mgr

Buffer
Writer

FSW
Image
Mgr

ADC UART
Driver

IFB
ADC

Eng.
Unit
Conv

FSW
Info

Fatal
Handler

Gen
Monitor

Util Patch

Iris
Radio

Key
Tlm

Idle
Task

EPS
Mgr

Power
Switch

Mgr

Space
Packet

Fault
Protection

Mgr

F Prime
Common

Sphinx
Shared

FP
State
Mgr

Rizvi 6 36th Annual Small Satellite Conference

Figure 9: Lunar Flashlight Deployment Components
The NEA Scout deployment includes a camera manager
component for interfacing with the payload camera used
to capture images of the asteroid during fly-by. Also,
components are developed to manage the mission
specific attitude control unit (XACT), IMU and
propulsion system for NEA Scout. The solar sail is
deployed using the motor control board (MCB) and a
separate component is developed to manage interaction
with MCB. Fault protection and mode management
implemented for the NEA Scout deployment are defined
in separate NEA Scout specific fault response and mode
management components. Moreover, algorithm software
for guidance and control (G&C) is wrapped into an F
Prime component and executed on-board interfacing
with various G&C peripheral hardware manager
components for executing closed loop control. Finally,
science software for on-board image processing is
wrapped into an F Prime component as well.
Components comprising the NEA Scout deployment are
given below in Figure 10: NEA Scout Deployment
Components.

Each mission specific application uses the Sphinx
common deployment as a starting point and
incrementally adds additional functionality as needed to
support different applications.

Figure 10: NEA Scout Deployment Components
DEVELOPING CONCURRENTLY FOR TWO
PROJECTS
The F Prime componentized architecture enables
construction of interconnected topologies that can be
inherited and augmented for varying applications
utilizing common underlying platforms as described for
Lunar Flashlight and NEA Scout use cases. This modular
approach maximizes code re-use by sharing a set of
components common across similar platforms and
facilitates concurrent software development for two very
different mission applications. The benefits of code re-
use facilitated by F Prime are reflected in a comparison
of source lines of code (SLOC) for F Prime common (i.e.
inherited), Sphinx common, Lunar Flashlight and NEA
Scout specific components.

The Sphinx common deployment component SLOC
metrics are comprised of the F Prime Common and
Sphinx Common components. The Lunar Flashlight
deployment component SLOC metrics are comprised of
the Sphinx common deployment and LF specific
components. Similarly, the NEA Scout deployment
component SLOC metrics are comprised of the Sphinx
common deployment and NEASc specific components.
Therefore, the LF and NEASc deployment SLOC
metrics can be represented as a percentage of SLOC
shared with Sphinx common deployment components
and mission specific (LF or NEASc) deployment
components as given below in Table 2: Deployment

Lunar Flashlight Deployment

Cmd Tlm Events Seq Prm

AMPCS
File Up

AMPCS
File

Down

Poly Rate
Grp

Health File
Mgr

File
System

AMPCS
EVR

Conv.

AMPCS
EHA

Conv.

AMPCS
APID
Conv.

Com
Logger

Buffer
Mgr

Sphinx
Time

File
Worker

FPGA
Driver

SPI
Driver

GPIO
Driver

NOR
Driver

FPGA
SPI

Driver

FPGA
GPIO
Driver

NOR
Mgr

NOR
Mgr

Worker

Space
Wire

Driver

Space
Wire
Mgr

Buffer
Writer

FSW
Image
Mgr

ADC UART
Driver

IFB
ADC

Eng.
Unit
Conv

FSW
Info

Fatal
Handler

Gen
Monitor

Util Patch

Iris
Radio

Key
Tlm

Idle
Task

EPS
Mgr

Power
Switch

Mgr

Space
Packet

Fault
Protection

Mgr

F Prime
Common

Sphinx
Shared

XACT

RCS
Mgr

LF FP
State
Mgr

Payload
Mgr

LF Specific

FP
State
Mgr

Mode
Mgr

NEA Scout Deployment

Cmd Tlm Events Seq Prm

AMPCS
File Up

AMPCS
File

Down

Poly Rate
Grp

Health File
Mgr

File
System

AMPCS
EVR

Conv.

AMPCS
EHA

Conv.

AMPCS
APID
Conv.

Com
Logger

Buffer
Mgr

Sphinx
Time

File
Worker

FPGA
Driver

SPI
Driver

GPIO
Driver

NOR
Driver

FPGA
SPI

Driver

FPGA
GPIO
Driver

NOR
Mgr

NOR
Mgr

Worker

Space
Wire

Driver

Space
Wire
Mgr

Buffer
Writer

FSW
Image
Mgr

ADC
UART
Driver

IFB
ADC

Eng.
Unit
Conv

FSW
Info

Fatal
Handler

Gen
Monitor

Util Patch

Iris
Radio

Key
Tlm

Idle
Task

EPS
Mgr

Power
Switch

Mgr

Space
Packet

Fault
Protection

Mgr

F Prime
Common

Sphinx
Shared

XACT

RCS
Mgr

NEA FP
State
Mgr

IMU
Mgr

NEASc
Specific

SS-AMT
Mgr

G&C
Mgr ScienceCam

Mgr

FP
State
Mgr

Mode
Mgr

Rizvi 7 36th Annual Small Satellite Conference

SLOC Metrics Comparison. Also, the benefit of using F
Prime Product Line’s auto-coding tools is realized upon
comparing auto-coded versus hand-coded SLOC
metrics. The ability to auto-code component base
classes, including commands, telemetry, parameters and
port interfaces along with topology interconnections
results in a significant portion of the software being auto-
coded allowing developers to focus on component
specific implementation behaviors. The use of F Prime
Product Line, in conjunction with the Sphinx common
deployment, enables developers to focus on mission
specific component development for Lunar Flashlight
and NEA Scout. The mission specific development
comprises 6% and 11% of the total SLOC metrics
respectively for Lunar Flashlight and NEA Scout as
given below in Table 2: Deployment SLOC Metrics
Comparison.

Table 2: Deployment SLOC Metrics Comparison

Concurrent software development for different missions
is achieved with the use of F Prime Product Line, in
conjunction with Sphinx common deployment, as it
provides significant code re-use and auto-coding in a
manner where software for different missions can be
developed as separate deployments of the same core
software.

TESTING
We leveraged the auto-coding tools, provided by the F
Prime Product Line, to generate the unit test stubs and
boilerplate unit test files. This allowed the team to
rapidly develop unit tests for their components. We also
took advantage of the common software architecture
among LF and NEASc to develop common functional
and integrated test scripts.

Unit Tests

F Prime comes with its own unit test framework, which
we leveraged on all components in LF and NEASc.
When developing unit tests for a component C, the
framework autogenerates the test component T and
automatically connects T with C. T has knowledge of C’s
ports, commands, telemetry, helper functions, and
internal state. This allows developers to augment T with
C++ functions to exercise C’s port and command

handlers, and verify various component behaviors, use
cases, expected telemetry output or state changes.

For each component in the Sphinx Common
deployment, we autogenerated the unit test stubs. The
stubs were implemented with the necessary checks to
verify the component behaved as expected. Bugs
discovered during the unit test implementation were
immediately addressed. Any reproducible bug found
while running FSW on the Sphinx was reproduced in a
unit test. This unit test allowed us to understand the
source of the bug, develop a fix, and verify the bug was
fixed.

The F Prime Product Line also provides a tool to measure
a unit test’s code coverage. This was a useful metric
during peer reviews for a particular component reflecting
the extent of unit testing performed.

Functional and Integrated Testing
Functional and integration test scripts are developed for
LF and NEA Scout using a Python-based framework
leveraging AMPCS’s command-line interface. Thanks
to an overlap in LF and NEA Scout’s software
architecture, several integration test scripts are used and
shared between both projects. Each project maintains a
separate testbed providing a venue for integrated testing
in FlatSat configuration. Each project has their own and
separate integration and operation teams, external to the
FSW team, utilizing the testbed for additional system-
level testing. This tests several of the common core
software functionality from Sphinx common deployment
in the LF and NEA Scout deployment in different
environments, scenarios, and by separate integration and
test teams which lead to a more resilient, reliable, and
highly tested software. Benefits of this approach are
reflected in an example test case performed on LF when
a test discovered a concurrency issue within the UART-
Driver component’s write port. The issue occasionally
occurred on LF and was not noticed on NEA Scout. The
XACT component would command the XACT
hardware, via UART, to retrieve telemetry. The UART’s
write port was being preempted by a component higher
in priority relative to the XACT component. This led to
XACT executing a partial and invalid telemetry request,
and resulted in FSW reporting failure to read XACT
telemetry. The fix involved disabling task context
switching at the start of the UART-Driver’s write port
and enabling it at the end of the write port. Another
example was when a test in NEA Scout revealed a
Sphinx firmware issue where NAND flash file system
activities interfered with NOR flash memory writes. The
firmware issue required a fix in software to the NOR-
Driver component’s write port. Both issues were fixed in
the Sphinx common deployment, which resulted in the

Common
Shared

Mission
Specific

Auto Coded Hand Coded Mission
Specific

Hand Coded

Common
Deployment 100% 0% 72% 28% 0%

LF
Deployment 76% 24% 72% 28% 6%

NEASc
Deployment* 68% 32% 70% 30% 11%

*NOTE: SLOC metrics exclude NEA Scout G&C algorithm software developed externally

Rizvi 8 36th Annual Small Satellite Conference

resolution being available to both LF and NEA Scout in
a streamline manner.

MAINTAINING AND SUPPORTING TWO
MISSIONS
LF, NEA Scout, and the Sphinx common deployment
components are each maintained in separate repositories.
The LF repository references both the Sphinx common
deployment and the F Prime repository via Git
Submodules. Similarly, the NEA Scout uses Git
Submodules to reference the Sphinx common
deployment and the F Prime repositories. Bugfixes and
updates in the Sphinx common deployment and F Prime
repositories are made available for both LF and NEA
Scout projects concurrently allowing each individual
project to choose when certain updates are to be inherited
by the project.

OPEN SOURCING SPHINX COMMON
DEPLOYMENT
The Sphinx common deployment has been released open
source under the name F Prime Sphinx Reference
Deployment.17 This release includes the VxWorks
Operating System Abstraction Layer (OSAL) used on
LF and NEA Scout, and many of the LF and NEA Scout
Sphinx-shared components accompanied with their
XML model files, unit tests, and documentation. In
addition, the deployment provides a reference topology
with all the components connected including a demo
component that exercises the SPI, GPIO, and UART
interfaces on the Sphinx. Projects using the Sphinx
platform would be able to use the F Prime Sphinx
Reference Deployment as a starting point for their
development.

BASELINING OPEN-SOURCE F PRIME SPHINX
REFERENCE DEPLOYMENT FOR COYOTE

As of now, JPL has partnered with Cobham to
commercialize the Sphinx as a standard product. In
particular, the Sphinx single board for Class D missions
can be ordered directly from Cobham. In the meantime,
the Sphinx Class B technology, newly named as Coyote,
a upgrade of the Sphinx, is under development by JPL in
partnership with Cobham, which are baselined as the
flight computer for the Mars Ascent Vehicle and the
Sample Return Lander Motor Controller.

LESSONS LEARNED

There are several important lessons learned with our
approach of concurrent software development for LF and
NEA Scout missions. One of the key takeaways include
having a common avionics hardware platform to
facilitate software development for both missions and
architecting the software in a manner that provides a

common shared deployment that can be augmented for
mission specific use cases. The use of F Prime Product
Line was key in enabling such a modular and reusable
architecture. However, there were a few hurdles in our
approach of using a Sphinx common deployment shared
across both LF and NEA Scout missions.

On one occasion, the LF project requested a feature
update in a component part of the Sphinx common
deployment and shared with NEA Scout. However, the
NEA Scout project did not want the feature updates as
part of their software deployment. This conflict and lack
of consensus in the implementation of the shared
component resulted in that specific component being
maintained separately for NEA Scout in its respective
deployment namespace. This was achieved by copying
and pasting the component from Sphinx common
components’ repository to the NEA Scout repository.
This was the fastest solution given tight schedule
deadlines; however, a better approach is to leverage the
use of inheritance in using the component’s model and
the base class with varying underlying implementation
behaviors for different deployments.

Topologies for both LF and NEA Scout were developed
using a custom MagicDraw plugin, part of the initial F
Prime version used on both CubeSats, which did not
support use of subsystem topologies. This led to separate
topologies being generated independently for LF and
NEA Scout each containing a copy of the Sphinx
common deployment. As a result, the full benefits of F
Prime topology architecture could not be leveraged as
several established patterns were repeated for LF and
NEA Scout individually rather than shared as part of the
Sphinx common deployment. The latest version of F
Prime (v3.0.0), along with FPP, provides support for
subsystem topologies which is recommended in-place of
duplicating topologies.

The reusability and modularity of F Prime components
enables them to accrue high mileage across multiple use
cases on various projects. The benefit of using the
Sphinx common components in LF and NEA Scout
allowed the two projects to independently use and test
components in different configurations leading to
higher-quality components.

Another important lesson learned is that when a problem
is encountered while performing integrated software
testing on hardware, it’s very beneficial to reproduce the
bug in a unit test. This allows the developer to isolate the
bug in software, test and verify the fix before it can be
validated successfully on hardware. This pattern was
highly useful on LF and NEA Scout.

Rizvi 9 36th Annual Small Satellite Conference

FUTURE WORK

The current version of the open-source F Prime Sphinx
Reference Deployment uses F Prime 2.1.0 and VxWorks
6.7. There is a desire to update the deployment to use the
latest version of F Prime and VxWorks, and to have it
support bare-metal.

The Coyote Standard Deployment is internal to JPL but
work can be done, similar to the open-source F Prime
Sphinx Reference Deployment, to make it open source.

CONCLUSION

Lunar Flashlight and NEA Scout are two mission use
cases that demonstrate the potential of the F Prime
Product Line. The reusability and modularity of F Prime
has proven indispensable to saving cost and schedule
with the development of the Sphinx common
deployment. Also, this deployment combined with the
flexible and adaptable Sphinx platform has served as a
reference to other deployments like the open-source F
Prime Sphinx Reference Deployment, and the Coyote
Standard Deployment. Both of which are baselined for
future projects.

ACKNOWLEDGEMENTS

The authors thank members of the CubeSat community
at JPL including John Baker, Calina Seybold, Jeffrey
Levison, Anne Marinan, Philippe Adell and many others
part of the Lunar Flashlight and NEA Scout projects.

This work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

References
1. Lunar Flashlight. (n.d.). NASA Jet Propulsion

Laboratory (JPL). Retrieved May 15, 2022, from
https://www.jpl.nasa.gov/missions/lunar-
flashlight

2. Hall, Loura. “What is Lunar Flashlight?” NASA.
April 26, 2022.
https://www.nasa.gov/directorates/spacetech/sma
ll_spacecraft/What_is_Lunar_Flashlight

3. Near Earth Asteroid Scout (NEAScout). (n.d.).
NASA Jet Propulsion Laboratory (JPL). Retrieved
May 15, 2022, from
https://www.jpl.nasa.gov/missions/near-earth-
asteroid-scout-neascout

4. SETI Live: Sailing Toward a Near-Earth Asteroid:
NEA Scout. (2022, February 17). [Video].
YouTube.

https://www.youtube.com/watch?v=2DO3uY21f
mk

5. NASA. (n.d.). NEA Scout. Retrieved May 15,
2022, from https://www.nasa.gov/content/nea-
scout/

6. Jet Propulsion Laboratory. (2018, January 18). F´
Software Framework A Small Scale Component
Framework for Space [PowerPoint slides]. NASA
GitHub.
https://nasa.github.io/fprime/Architecture/FPrime
ArchitectureShort.pdf

7. Jet Propulsion Laboratory. (2020, October 3). F´
Software Framework A Small Scale Component
Framework for Space [PowerPoint slides].
GitHub.
https://github.com/nasa/fprime/blob/devel/docs/A
rchitecture/FPrimeSoftwareArchitecture.pdf

8. Potter, N. (2020). A Mars helicopter preps for
launch: The first drone to fly on another planet will
hitch a ride on NASA’s Perseverance rover -
[News]. IEEE Spectrum, 57(7), 06–07.
https://doi.org/10.1109/mspec.2020.9126096

9. Rizvi, A., & Ortega, K. (2019, December 9–12).
Applying F Prime Flight Software Framework for
Lunar Flashlight and Near-Earth Asteroid (NEA)
Scout CubeSats [Presentation]. Flight Software
Workshop, Huntsville, Alabama.
https://www.youtube.com/watch?v=TqzkKEbkV
qs

10. Ortega, K., & Roche, M. (2021, February 8–11).
Sphinx CDH and the open-source F´ Sphinx
Reference Deployment [Presentation]. Flight
Software Workshop, Virtual, Virtual.
https://www.youtube.com/watch?v=oUn-Q1ro-vI

11. Starch, M. (2022, February 8–11). Leveraging
Open Source Development to enhance the F Prime
Flight Software Framework [Presentation]. Flight
Software Workshop, Virtual, Virtual.
https://www.youtube.com/watch?v=c8oy3j0Gkv
0

12. Bocchino, R. (2021, August 9). F Prime Prime
(FPP). GitHub. Retrieved May 15, 2022, from
https://github.com/fprime-community/fpp

13. Imken, T., Castillo-Rogez, J., He, Y., Baker, J., &
Marinan, A. (2017, March). CubeSat flight system
development for enabling deep space science.
2017 IEEE Aerospace Conference. 2017 IEEE
Aerospace Conference, Big Sky, Montana.
https://doi.org/10.1109/aero.2017.7943885

14. Aeroflex Gaisler. (n.d.). GR712RC Dual Core
Leon3-FT. Retrieved May 2022, from

Rizvi 10 36th Annual Small Satellite Conference

https://www.gaisler.com/doc/gr712rc-
productsheet.pdf

15. NASA Jet Propulsion Laboratory. (2015, July).
Iris V2 CubeSat Deep Space Transponder. NASA.
Retrieved May 16, 2022, from
https://www.nasa.gov/sites/default/files/atoms/fil
es/brochure_irisv2_201507.pdf

16. Klesh, A. (2015, April 22–24). INSPIRE and
Beyond: Deep Space CubeSats at JPL
[Presentation]. CubeSat Developers Workshop,
San Luis Obispo, California.

17. Ortega, K. (2020, September 14). fprime-sphinx.
GitHub. Retrieved May 15, 2022, from
https://github.com/fprime-community/fprime-
sphinx

