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ABSTRACT 
NASA’s Lunar Flashlight (LF) and Near-Earth Asteroid (NEA) Scout CubeSat missions are planned to launch in 
2022. Lunar Flashlight is a low-cost secondary payload concept that will map the lunar South Pole for volatiles and 
demonstrate several technological firsts, including the first planetary CubeSat mission to use green propulsion, and 
the first mission to use lasers to look for water ice. NEA Scout is a low-cost concept that will map an asteroid and 
demonstrate several technological firsts, including being the first CubeSat to reach an asteroid.  

Flight software for both CubeSat missions is based on the open-source F Prime Flight Software Product Line 
developed by JPL. F Prime utilizes a reusable component-based architecture with typed ports that can be 
interconnected to form a topology. Also, F Prime includes a set of auto-coding tools used to generate components and 
topologies that can be deployed for various mission specific applications. Both CubeSats share a common set of 
avionics for command and data handling (C&DH), telecom and power. This commonality in hardware is translated to 
a shared deployment in software enabling concurrent flight software development for both CubeSats. The modularity 
and reusability in F Prime enable such concurrent flight software development for different applications given a 
common set of avionics. In particular, F Prime has been used successfully to develop a common software deployment 
for the Sphinx C&DH platform used on both CubeSats. The common F Prime deployment for Sphinx has also been 
made open source to provide a starting point for any future F Prime software deployments utilizing the Sphinx 
platform. This paper provides a comparison between the Lunar Flashlight and NEA Scout Flight Software 
deployments highlighting the use of a common shared set of F Prime components developed for the Sphinx platform 
along with general lessons learned for CubeSat flight software development with the F Prime Framework. 

INTRODUCTION 
Lunar Flashlight (LF) and Near-Earth Asteroid (NEA) 
Scout are two Class D NASA CubeSat missions using a 
common set of avionics for command and data handling 
(C&DH), telecom, and power; but, with very different 
mission objectives. Despite the differences in mission 
objectives, both missions’ flight software (FSW) is 
developed concurrently by a single team. The team took 
advantage of the missions’ overlapping requirements 
and of a highly modular, reusable, and adaptable FSW 
framework called F Prime to develop software for two 
separate missions with the cohesion of a single team. 

Lunar Flashlight 
Lunar Flashlight is a six-unit (6U) CubeSat that will be 
the first mission to use laser reflectometer to look for 
water ice and will be the first planetary spacecraft to use 
a “green” propellant called Advanced Spacecraft 
Energetic Non-Toxic (ASCENT).1 ASCENT has 
significantly better performance and lower toxicity 
compared to hydrazine, which is a common propellant 
used by spacecraft.2 The mission goals are to 
demonstrate the use of an active laser spectroscopy to 

distinguish between surface water ice and dry Moon soil, 
create a map of water ice found near the Moon’s South 
Pole, demonstrate the use of the “green” propellant 
ASCENT, and show that small spacecraft are capable of 
exploring the Moon at a lower cost and lower 
development time compared to missions with larger 
spacecraft.2 

 

Figure 1: Artist’s rendition of the Lunar Flashlight 
spacecraft. 
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Near-Earth Asteroid Scout 
Near-Earth Asteroid (NEA) Scout is a six-unit (6U) 
CubeSat selected as a secondary payload on Artemis I. It 
will be the first CubeSat to reach an asteroid.3 The 
CubeSat is equipped with a solar sail that will use 
sunlight to propel itself towards the asteroid. When 
flying by the target asteroid, NEA Scout will rely on its 
cold-gas propellant to maneuver itself to capture images 
of the asteroid.4 The mission goals include performing 
fly-by of a near-Earth asteroid and acquiring images that 
will allow scientist in determining the asteroid’s volume, 
spectral type, pole position, rotation period, and orbit. 
Additional mission objectives include understanding the 
asteroid’s shape model, meteorite analogs, debris/dust 
field in local environment, and the regolith 
characteristics.5 

 

Figure 2: Artist’s rendition of the NEA Scout 
spacecraft during its flyby of Asteroid 1991 VG. 

F Prime 
F Prime is an open-source embedded systems framework 
which has been successfully flown on the ISS-RapidScat 
instrument, ASTERIA (Arcsecond Space Telescope 
Enabling Research in Astrophysics) CubeSat, and Mars 
Helicopter (Ingenuity); and will be flown on both Lunar 
Flashlight and NEA Scout.6,7 Also, F Prime has been 
baselined for use on Mars Science Helicopter and Mars 
Sample Return Sample Retrieval Lander’s motor control 
software.  

 

Figure 3: Ingenuity’s shadow as it hovered on Mars. 

F Prime implements a component-based architecture that 
centers around the idea of “components” and “ports.” 
Components encapsulate specific behavior, and are 
unaware of other components – making components 
easily reusable. Components use strongly typed ports to 
interface with each other. These ports encapsulate typed 
interfaces and serve as the points of interconnection in 
the architecture. They are directional and can serve as an 
input or an output to a component. This eliminates code 
dependencies between components as data is shared 
using common port types across components. 
Components connected via ports form a topology, which 
illustrate the software deployment for a given set of 
components. These building blocks: ports, components, 
and topologies; were modelled using XML for the LF 
and NEA Scout deployments. However, this can now be 
performed using the newly developed and open-source 
modeling language F Prime Prime (FPP)12. Projects 
using the latest version of F Prime (v3.0.0) can now 
model their components and topologies in FPP in-place 
of XML as FPP is the standard modeling language for F 
Prime.12 

The F Prime Flight Software Product Line provides a 
framework and a code generator, which is referred to as 
the autocoder, that encapsulates thread management, 
inter-process communication (IPC), commanding, 
telemetry, and parameters. In addition, the autocoder 
uses the FPP models to autogenerate boilerplate code – 
component base classes, and stubbed functions for port 
and command handlers – allowing developers to focus 
on implementing component specific behaviors. The 
port and command handling interfaces of a target 
component are automatically executed by F Prime’s 
internal architecture upon invocation of the target 
component’s port interface. 

 

Figure 4: An F Prime topology containing 
components and their interconnections via ports. 
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The Sphinx C&DH Technology 
At the time of Lunar Flashlight and NEA Scout missions, 
there were no viable C&DH technologies meeting the 
avionics requirements for both missions. As a result, JPL 
funded an internal technology development project in 
2014 to develop a small-SWaP, low cost, and rad-hard 
avionics product, called Sphinx13, for a variety of future 
deep space missions. The first Sphinx incarnation 
integrated the avionics requirements from NEA Scout, 
Lunar Flashlight, and some other relevant flight 
missions.  
 
The Sphinx board fits within the standard CubeSat 1U 
(10 cm x 10 cm) footprint, with a mass of less than 250 
grams, and a power of 2.5W (average) to 7W (max) 
when operating. Figure 5 shows the top and bottom view 
of the Sphinx flight model (FM) board. 
  

 
Figure 5: Sphinx FM PCB View (Top and Bottom) 

Unlike the CubeSat standard PC104-pin connector, the 
board uses a 160-pin mezzanine connector for stack-up 
configuration of various CubeSat boards. The increased 
pin density and count allow for almost all of the Sphinx’s 
data interfaces to be brought out together with the 
avionics power bus. Other than this connector and a GSE 
connector, the Sphinx itself does not provide any 
harnessing capability for interfaces. Instead, the board 
has been designed with the philosophy that missions 
would create a custom interface board specific to the data 
needs for that spacecraft. 

 

Figure 6: Sphinx Board Block Diagram 

The Sphinx board as shown in Figure 6, is based on the 
rad-hard Aeroflex GR712 dual-core System-On-Chip 
(SOC) device. Each processor core is capable of 
supporting a clock frequency of up to 100 MHz with 
2x134 DMIPS (Dhrystone Million Instructions Per 
Second)14. A Microsemi ProASIC FPGA connects to 
GR712 via the memory I/O bus. It provides additional 
computation and control logic as needed for the 
spacecraft. The Sphinx board includes both 256MB 
SDRAM as volatile memory and 32 MB NOR flash and 
8 GB NAND flash as non-volatile memory, all protected 
by EDAC coding. The Sphinx board includes its own 
power regulators and all on-board voltage rails are 
monitored via current sensing and voltage monitoring. 

Table 1: The Sphinx C&DH Specification 
Category Design Features 
Memory 
(EDAC 

protected) 

256 MB SDRAM  
32 MB NOR Flash  
8GB NAND Flash 

Data 
Interfaces 

2x SpaceWire with RMAP 
7x UART (4x RS-422) 

2x UART RS232 for GSE 
4x SPI (10 available slaves) 

8x I2C (masters) 
2x 32-bit GPIOs 

2x JTAGs (processor and FPGA) 
1x Ethernet PHY RMIII (for GSE) 

8x analog channels 
System 
Features 

External watchdog with boot-bank swapping 
Supports up to 4 software image selections 

 

Table 1: The Sphinx C&DH Specification above lists 
the detailed technical capabilities of the Sphinx. 

To meet the radiation requirements, the Sphinx only uses 
space-grade parts that are able to perform to a minimum 
total dose of 30 Krads (Si), including the FPGA, 
memory, driver/receivers, and power regulators. The 
GR712 processor is tolerant up to 300 Krads (Si). These 
parts are also chosen to perform against SELs (Single 
Event Latch-ups), with each part hardened to LET 
(Linear Energy Transfer) up to 37 MeV-cm2/mg for 
destructive events.  

The Sphinx also implements different fault protection 
methodologies. All on-board memory, including L1 
caches, is protected by single-bit-correction-double-bit-
detection codes, which can be enabled as needed. A 
hierarchical robust watchdog methodology is 
implemented to prevent both hardware and software 
faults. The main processor runs a watchdog to prevent 
the main software executable from locking up. The 
FPGA is able to provide further protection by ‘watching 
the watchdog’. Externally, the Sphinx could be hard reset 
through a ground command through the Iris 
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Transponder. The Sphinx is also capable of carrying 
multiple copies of the flight software executable image. 
If a reset event does occur, the Sphinx is able to do a full 
scan of the onboard memory and load an uncorrupted 
version of the flight software. This same feature allows 
updated versions of the flight software to be uploaded 
from the ground while in flight. 

The Sphinx can potentially be used beyond its core CDH 
role. The board could act as a processor for reading high 
data rate instrument data and running algorithms. If 
volume and mass allow, multiple Sphinx boards could be 
used within a SmallSat to provide discrete processing 
capabilities to multiple instruments simultaneously. If 
this architecture is implemented, each Sphinx could have 
the capability to watch the other boards for faults and 
lockups – providing some redundancy.  

After delivery of the Sphinx to NEA Scout and Lunar 
Flashlight projects, JPL has licensed the Sphinx to 
Cobham to build it as an off-the-shelf product. It has 
been baselined in several upcoming flight missions. 

HARDWARE ARCHITECTURE 

Common Hardware Architecture 
To reduce the cost and the complexity of building 
SmallSats for deep space missions, JPL has developed a 
flexible and adaptive bus avionics architecture that 
shares a common form factor, mounting scheme, and 
board-to-board connector based on the Sphinx, such that 
the C&DH, the telecom, and the power subsystems are 
stacked together.  

With this baseline architecture, only a custom mission-
specific interface board is required as an adapter to 
external devices. Figure 7 depicts a reference spacecraft 
block diagram showing the common subsystems. Two 
CubeSat spacecraft for Lunar Flashlight and NEA Scout 
missions have been developed with this approach, based 
on the Sphinx’s flexibility and adaptability, at the 
hardware, firmware, and software levels. 

 

Figure 7: Sphinx-based Spacecraft Block Diagram 

The Telecommunication subsystem, called Iris15 has 
been developed at JPL. It is made up of several CubeSat 
1U hardware slices, allowing different slices to be 
attached to enable the radio to transmit and receive at 
different frequencies, and is fully compatible with the 
Sphinx. Similar to the Sphinx CDH, Iris uses radiation 
tolerant memory and a radiation tolerant processor to 
survive the deep space environment. All thermal 
management is done passively with a metal thermal 
enclosure.  

The Electrical Power Subsystem (EPS) has been 
designed to include a custom EPS (Electronical Power 
Subsystem) card that uses the same 160-pin stacking 
connector common between the Sphinx and Iris. As a 
result, it is capable of handling the large array generation 
and deliver the currents required by the avionics. 

Mission Specific Architecture 
The key differences between Lunar Flashlight and NEA 
Scout spacecraft lie in their respective scientific mission 
objectives that lead to different instrument payloads and 
the GNC subsystem design. 

The NEA Scout spacecraft instrument payload is a 
<0.5kg/0.5U visible imager camera that offers a ground 
sampling distance of 10 cm/pixel at <0.8 km from its 
target and is capable of detecting a 10-m NEA from 
<50,000 km. The Lunar Flashlight mission carries a 2U 
point infrared spectrometer focused on search for ice 
signature on the Moon between 1–2 micron. 

The NEA Scout Guidance Navigation Control (GNC) 
subsystem is a custom design composed of Sun sensors, 
a miniaturized star tracker, reaction wheels, in 
conjunction with a solar sail attitude control system. The 
Lunar Flashlight GNC subsystem on the other hand, uses 
Blue Canyon Technology’s XACT-50 Attitude Control 
System technology16. 

SOFTWARE ARCHITECTURE 
The Lunar Flashlight and NEA Scout CubeSats share 
significant commonalities in hardware configuration 
which is reflected in software by having a common 
software architecture developed using F Prime to 
facilitate any mission specific application utilizing the 
common Sphinx hardware configuration. 

Common Architecture 
The commonality in hardware for both Lunar Flashlight 
and NEA Scout CubeSats is reflected in a shared 
deployment in software leveraging the use of F Prime 
FSW Framework. The set of components shared across 
both CubeSats are contained in the Sphinx common 
deployment that can be executed on a Sphinx-based 

C&DH
(Sphinx)

Telecom
(IRIS)

ACS
Sensors/Actuators

Power 
Subsystem

GSE

Instrument
Payload

Engineering
Sensors
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avionics platform. Components comprising the common 
deployment are given in Figure 8: Sphinx Common 
Deployment Components. 

 
Figure 8: Sphinx Common Deployment Components 
Both CubeSats have several shared requirements for the 
C&DH, telecom and power sub-systems. This 
commonality in requirements at the sub-system level is 
reflected in the list of F Prime components shared 
between both CubeSats. Also, several data interfaces on 
the Sphinx platform are shared between the two 
CubeSats which is reflected in software by re-use of the 
same driver components such as SPI, GPIO, SpaceWire 
and others. In addition to hardware and data interfaces, 
both CubeSats use the same ground data system (GDS) 
namely AMMOS (Advanced Multi-Mission Operations 
System) Mission data Processing and Control System 
(AMPCS). This allows the same set of uplink, downlink 
and telemetry converter components, compatible with 
AMPCS, to be shared between the two CubeSats. 

An F Prime component is a C++ class which can be 
instantiated into several objects or instances of the same 
component. This pattern is leveraged in the Sphinx 
common deployment to instantiate a telemetry packet 
converter (AMPCS APID Conv.) for each custom 
telemetry packet generated in the system. Similarly, the 
logging (Com Logger) and buffer management (Buffer 
Mgr) components are instantiated numerous times 
within the deployment to provide logging and buffering 
services for different telemetry packets generated by the 
common deployment. 

The common topology is architected as a sub-subsystem 
which can be inherited by multiple deployments. 
However, due to F Prime limitations at the time of 
CubeSat development, the Lunar Flashlight and NEA 
Scout deployments each contain a copy of the common 
topology which is further augmented with additional 
components for mission specific use cases. 

Mission Specific Architecture 
Both Lunar Flashlight and NEA Scout leverage the 
Sphinx common deployment for executing on the Sphinx 
platform in addition to interfacing with Iris radio and 
electrical power subsystem (EPS) hardware. As such, all 
components included in the Sphinx common deployment 
are re-used on both CubeSats. In addition to components 
included in the Sphinx common deployment, both 
CubeSats include software components for managing 
their respective payload instruments and attitude control 
hardware. Also, mission specific fault protection and 
mode management is implemented in separate 
components respective to each CubeSat.  

The Lunar Flashlight deployment includes a Payload 
manager component for interfacing with the laser 
instrument used to conduct experiments on-orbit. Also, 
components are developed to manage the attitude control 
unit (Blue Canyon Technologies XACT) and propulsion 
system developed specifically for Lunar Flashlight. Fault 
responses and spacecraft modes implemented for the 
Lunar Flashlight deployment are defined in separate 
Lunar Flashlight specific fault response and mode 
management components. Components comprising the 
Lunar Flashlight deployment are given below in Figure 
9: Lunar Flashlight Deployment Components. 
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Figure 9: Lunar Flashlight Deployment Components 
The NEA Scout deployment includes a camera manager 
component for interfacing with the payload camera used 
to capture images of the asteroid during fly-by. Also, 
components are developed to manage the mission 
specific attitude control unit (XACT), IMU and 
propulsion system for NEA Scout. The solar sail is 
deployed using the motor control board (MCB) and a 
separate component is developed to manage interaction 
with MCB. Fault protection and mode management 
implemented for the NEA Scout deployment are defined 
in separate NEA Scout specific fault response and mode 
management components. Moreover, algorithm software 
for guidance and control (G&C) is wrapped into an F 
Prime component and executed on-board interfacing 
with various G&C peripheral hardware manager 
components for executing closed loop control. Finally, 
science software for on-board image processing is 
wrapped into an F Prime component as well. 
Components comprising the NEA Scout deployment are 
given below in Figure 10: NEA Scout Deployment 
Components. 

Each mission specific application uses the Sphinx 
common deployment as a starting point and 
incrementally adds additional functionality as needed to 
support different applications. 

 

 

Figure 10: NEA Scout Deployment Components 
DEVELOPING CONCURRENTLY FOR TWO 
PROJECTS 
The F Prime componentized architecture enables 
construction of interconnected topologies that can be 
inherited and augmented for varying applications 
utilizing common underlying platforms as described for 
Lunar Flashlight and NEA Scout use cases. This modular 
approach maximizes code re-use by sharing a set of 
components common across similar platforms and 
facilitates concurrent software development for two very 
different mission applications. The benefits of code re-
use facilitated by F Prime are reflected in a comparison 
of source lines of code (SLOC) for F Prime common (i.e. 
inherited), Sphinx common, Lunar Flashlight and NEA 
Scout specific components.  

The Sphinx common deployment component SLOC 
metrics are comprised of the F Prime Common and 
Sphinx Common components. The Lunar Flashlight 
deployment component SLOC metrics are comprised of 
the Sphinx common deployment and LF specific 
components. Similarly, the NEA Scout deployment 
component SLOC metrics are comprised of the Sphinx 
common deployment and NEASc specific components. 
Therefore, the LF and NEASc deployment SLOC 
metrics can be represented as a percentage of SLOC 
shared with Sphinx common deployment components 
and mission specific (LF or NEASc) deployment 
components as given below in Table 2: Deployment 
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SLOC Metrics Comparison. Also, the benefit of using F 
Prime Product Line’s auto-coding tools is realized upon 
comparing auto-coded versus hand-coded SLOC 
metrics. The ability to auto-code component base 
classes, including commands, telemetry, parameters and 
port interfaces along with topology interconnections 
results in a significant portion of the software being auto-
coded allowing developers to focus on component 
specific implementation behaviors. The use of F Prime 
Product Line, in conjunction with the Sphinx common 
deployment, enables developers to focus on mission 
specific component development for Lunar Flashlight 
and NEA Scout. The mission specific development 
comprises 6% and 11% of the total SLOC metrics 
respectively for Lunar Flashlight and NEA Scout as 
given below in Table 2: Deployment SLOC Metrics 
Comparison.          

Table 2: Deployment SLOC Metrics Comparison 

 

Concurrent software development for different missions 
is achieved with the use of F Prime Product Line, in 
conjunction with Sphinx common deployment, as it 
provides significant code re-use and auto-coding in a 
manner where software for different missions can be 
developed as separate deployments of the same core 
software.  

TESTING 
We leveraged the auto-coding tools, provided by the F 
Prime Product Line, to generate the unit test stubs and 
boilerplate unit test files. This allowed the team to 
rapidly develop unit tests for their components. We also 
took advantage of the common software architecture 
among LF and NEASc to develop common functional 
and integrated test scripts. 

Unit Tests 

F Prime comes with its own unit test framework, which 
we leveraged on all components in LF and NEASc. 
When developing unit tests for a component C, the 
framework autogenerates the test component T and 
automatically connects T with C. T has knowledge of C’s 
ports, commands, telemetry, helper functions, and 
internal state. This allows developers to augment T with 
C++ functions to exercise C’s port and command 

handlers, and verify various component behaviors, use 
cases, expected telemetry output or state changes. 

For each component in the Sphinx Common 
deployment, we autogenerated the unit test stubs. The 
stubs were implemented with the necessary checks to 
verify the component behaved as expected. Bugs 
discovered during the unit test implementation were 
immediately addressed. Any reproducible bug found 
while running FSW on the Sphinx was reproduced in a 
unit test. This unit test allowed us to understand the 
source of the bug, develop a fix, and verify the bug was 
fixed. 

The F Prime Product Line also provides a tool to measure 
a unit test’s code coverage. This was a useful metric 
during peer reviews for a particular component reflecting 
the extent of unit testing performed. 

Functional and Integrated Testing 
Functional and integration test scripts are developed for 
LF and NEA Scout using a Python-based framework 
leveraging AMPCS’s command-line interface. Thanks 
to an overlap in LF and NEA Scout’s software 
architecture, several integration test scripts are used and 
shared between both projects. Each project maintains a 
separate testbed providing a venue for integrated testing 
in FlatSat configuration. Each project has their own and 
separate integration and operation teams, external to the 
FSW team, utilizing the testbed for additional system-
level testing. This tests several of the common core 
software functionality from Sphinx common deployment 
in the LF and NEA Scout deployment in different 
environments, scenarios, and by separate integration and 
test teams which lead to a more resilient, reliable, and 
highly tested software. Benefits of this approach are 
reflected in an example test case performed on LF when 
a test discovered a concurrency issue within the UART-
Driver component’s write port. The issue occasionally 
occurred on LF and was not noticed on NEA Scout. The 
XACT component would command the XACT 
hardware, via UART, to retrieve telemetry. The UART’s 
write port was being preempted by a component higher 
in priority relative to the XACT component. This led to 
XACT executing a partial and invalid telemetry request, 
and resulted in FSW reporting failure to read XACT 
telemetry. The fix involved disabling task context 
switching at the start of the UART-Driver’s write port 
and enabling it at the end of the write port. Another 
example was when a test in NEA Scout revealed a 
Sphinx firmware issue where NAND flash file system 
activities interfered with NOR flash memory writes. The 
firmware issue required a fix in software to the NOR-
Driver component’s write port. Both issues were fixed in 
the Sphinx common deployment, which resulted in the 

Common 
Shared

Mission 
Specific

Auto Coded Hand Coded Mission 
Specific 

Hand Coded

Common 
Deployment 100% 0% 72% 28% 0%

LF 
Deployment 76% 24% 72% 28% 6%

NEASc 
Deployment* 68% 32% 70% 30% 11%

*NOTE: SLOC metrics exclude NEA Scout G&C algorithm software developed externally
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resolution being available to both LF and NEA Scout in 
a streamline manner. 

MAINTAINING AND SUPPORTING TWO 
MISSIONS 
LF, NEA Scout, and the Sphinx common deployment 
components are each maintained in separate repositories. 
The LF repository references both the Sphinx common 
deployment and the F Prime repository via Git 
Submodules. Similarly, the NEA Scout uses Git 
Submodules to reference the Sphinx common 
deployment and the F Prime repositories. Bugfixes and 
updates in the Sphinx common deployment and F Prime 
repositories are made available for both LF and NEA 
Scout projects concurrently allowing each individual 
project to choose when certain updates are to be inherited 
by the project. 

OPEN SOURCING SPHINX COMMON 
DEPLOYMENT 
The Sphinx common deployment has been released open 
source under the name F Prime Sphinx Reference 
Deployment.17 This release includes the VxWorks 
Operating System Abstraction Layer (OSAL) used on 
LF and NEA Scout, and many of the LF and NEA Scout 
Sphinx-shared components accompanied with their 
XML model files, unit tests, and documentation. In 
addition, the deployment provides a reference topology 
with all the components connected including a demo 
component that exercises the SPI, GPIO, and UART 
interfaces on the Sphinx. Projects using the Sphinx 
platform would be able to use the F Prime Sphinx 
Reference Deployment as a starting point for their 
development. 

BASELINING OPEN-SOURCE F PRIME SPHINX 
REFERENCE DEPLOYMENT FOR COYOTE 

As of now, JPL has partnered with Cobham to 
commercialize the Sphinx as a standard product. In 
particular, the Sphinx single board for Class D missions 
can be ordered directly from Cobham. In the meantime, 
the Sphinx Class B technology, newly named as Coyote, 
a upgrade of the Sphinx, is under development by JPL in 
partnership with Cobham, which are baselined as the 
flight computer for the Mars Ascent Vehicle and the 
Sample Return Lander Motor Controller. 

LESSONS LEARNED 

There are several important lessons learned with our 
approach of concurrent software development for LF and 
NEA Scout missions. One of the key takeaways include 
having a common avionics hardware platform to 
facilitate software development for both missions and 
architecting the software in a manner that provides a 

common shared deployment that can be augmented for 
mission specific use cases. The use of F Prime Product 
Line was key in enabling such a modular and reusable 
architecture. However, there were a few hurdles in our 
approach of using a Sphinx common deployment shared 
across both LF and NEA Scout missions.     

On one occasion, the LF project requested a feature 
update in a component part of the Sphinx common 
deployment and shared with NEA Scout. However, the 
NEA Scout project did not want the feature updates as 
part of their software deployment. This conflict and lack 
of consensus in the implementation of the shared 
component resulted in that specific component being 
maintained separately for NEA Scout in its respective 
deployment namespace. This was achieved by copying 
and pasting the component from Sphinx common 
components’ repository to the NEA Scout repository. 
This was the fastest solution given tight schedule 
deadlines; however, a better approach is to leverage the 
use of inheritance in using the component’s model and 
the base class with varying underlying implementation 
behaviors for different deployments. 

Topologies for both LF and NEA Scout were developed 
using a custom MagicDraw plugin, part of the initial F 
Prime version used on both CubeSats, which did not 
support use of subsystem topologies. This led to separate 
topologies being generated independently for LF and 
NEA Scout each containing a copy of the Sphinx 
common deployment. As a result, the full benefits of F 
Prime topology architecture could not be leveraged as 
several established patterns were repeated for LF and 
NEA Scout individually rather than shared as part of the 
Sphinx common deployment. The latest version of F 
Prime (v3.0.0), along with FPP, provides support for 
subsystem topologies which is recommended in-place of 
duplicating topologies. 

The reusability and modularity of F Prime components 
enables them to accrue high mileage across multiple use 
cases on various projects. The benefit of using the 
Sphinx common components in LF and NEA Scout 
allowed the two projects to independently use and test 
components in different configurations leading to 
higher-quality components.  

Another important lesson learned is that when a problem 
is encountered while performing integrated software 
testing on hardware, it’s very beneficial to reproduce the 
bug in a unit test. This allows the developer to isolate the 
bug in software, test and verify the fix before it can be 
validated successfully on hardware. This pattern was 
highly useful on LF and NEA Scout. 
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FUTURE WORK 

The current version of the open-source F Prime Sphinx 
Reference Deployment uses F Prime 2.1.0 and VxWorks 
6.7. There is a desire to update the deployment to use the 
latest version of F Prime and VxWorks, and to have it 
support bare-metal.  

The Coyote Standard Deployment is internal to JPL but 
work can be done, similar to the open-source F Prime 
Sphinx Reference Deployment, to make it open source. 

CONCLUSION 

Lunar Flashlight and NEA Scout are two mission use 
cases that demonstrate the potential of the F Prime 
Product Line. The reusability and modularity of F Prime 
has proven indispensable to saving cost and schedule 
with the development of the Sphinx common 
deployment. Also, this deployment combined with the 
flexible and adaptable Sphinx platform has served as a 
reference to other deployments like the open-source F 
Prime Sphinx Reference Deployment, and the Coyote 
Standard Deployment. Both of which are baselined for 
future projects. 
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