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ABSTRACT 

The number of telemetry parameters available in a typical spacecraft is constantly increasing. At the same time, the 

bandwidth available to download all that information is rather static. Operators must therefore make hard choices 

between which parameters to downlink or not, in which different situations, and at which sampling rates. This trade-

off is more problematic for missions with higher communication latency beyond LEO. Since 2009, The European 

Space Agency’s European Space Operations Center (ESA/ESOC) has been promoting the compression of 

housekeeping telemetry as a solution to this problem. Most spacecraft housekeeping telemetry parameters compress 

extremely well if they are pre-processed correctly. Unfortunately, most spacecraft record telemetry packets in flat 

packet stores so accessing different packets within them is too CPU and memory intensive for flight computers. Using 

traditional compression schemes such as zip or tar are not compatible with the traditional “fire and forget” mode of 

operation i.e., occasional packet losses are expected. This would render entire compressed files unusable. ESOC 

invented an algorithm called POCKET+ to solve this problem. It is implemented using very low-level processor 

instructions such as OR, XOR, AND, etc. This means that it can run with low CPU usage and, more importantly, with 

a short execution time. It is designed to run fast enough to compress a stream of incoming packets as they are generated 

by the on-board packetiser. The output is a smaller stream of packets. The compressed packets can be handled by the 

on-board system in an identical fashion to the original larger uncompressed packets. Robustness with respect to the 

occasional packet loss is built into the protocol and does not require a back channel. In 2018, POCKET+ was proposed 

to the CCSDS data compression working group and after extensive research by other agencies the core idea has been 
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incorporated into a proposed new standard for “Robust Compression of Fixed Length Housekeeping Data.” The 

second supporter for the mission is CNES, supported technically by the University of Barcelona (UAB). Both CNES 

and UAB have suggested changes that make POCKET+ even more powerful. POCKET+ is already flying on OPS-

SAT, a 3U CubeSat launched by the European Space Agency on December 18th, 2019. The mission has updated the 

Onboard Software (OBSW) and ground control software to be compliant with the latest POCKET+ standard. The 

standard is set to be available for an ESA review. This paper describes the latest algorithm and how it is implemented 

on OPS-SAT, including how the same core software has been successfully deployed in two completely different 

scenarios/environments. One compresses files offline and then uses a transport protocol with a completeness 

guarantee; the other compresses a packet stream in real-time and uses the classic transport protocol where 

completeness is not guaranteed. The results show that compression ratios between eight and ten are usual for the OPS-

SAT mission. Improvements made during the development of the planned CCSDS standard for “Robust Compression 

of Fixed Length Housekeeping Data” are also presented. 

INTRODUCTION 

The number of telemetry parameters available in a 

typical spacecraft is constantly increasing. At the same 

time, the bandwidth available to download all that 

information is usually bounded. Operators must make 

hard choices between which parameters to downlink or 

not, in which situations, and at which sampling rates. 

To provide context, this paper first outlines the POCKET 

history, then it provides the summary of the basic 

principles of POCKET+. An overview is presented on 

the decompression and compression mechanisms of the 

Consultative Committee for Space Data Systems 

(CCSDS) 124.0-B-1 algorithm which is based on 

POCKET+. The general details of the OPS-SAT mission 

are described after which the usage of CCSDS 124.0-B-

1 on-board OPS-SAT is outlined in three different 

environments. Future work is presented for the 

algorithm, followed by a conclusion. 

POCKET AND POCKET+ DEVELOPMENT 

ESA/ESOC started promoting the compression of 

housekeeping telemetry in 2009. This is because they 

found that most spacecraft housekeeping telemetry 

packets compressed extremely well if they were pre-

processed correctly. Several patented algorithms were 

produced that reached average compression ratios 

between 5 and 20 when tested with real stored 

housekeeping data (depending on the mission). One of 

those algorithms, called POCKET, can compress 

individual packets in only a few microseconds on 

representative flight hardware. This made it suitable for 

compressing real-time telemetry streams. A packet is 

generated, compressed into a smaller packet, and then 

either transmitted or stored for later transmission. On the 

ground segment, the small packet is intercepted, 

expanded back into the original packet, and passed to the 

mission control system with zero impact on the existing 

infrastructure. In 2012, the complete end-to-end chain 

was built and tested in an ESA contract with Spacebel 

SA of Belgium (this was flight tested on PROBA-2 in 

2017 by QinetiQ Space Belgium). Also in 2012, the 

algorithm evolved into POCKET+ which has the 

advantage of being self-adapting i.e., it reacts to changes 

in the data behavior (e.g., change of system mode 

without ground intervention). In 2018, POCKET+ was 

proposed to the CCSDS data compression working 

group and after extensive research by other agencies the 

core idea has been incorporated into a proposed new 

standard for “Robust Compression of Fixed Length 

Housekeeping Data” [1, 2, 3, 4]. This greatly simplifies 

the ground processing required. It has been baselined for 

ESA’s PROBA-3 mission currently in Phase D. 

RECAP OF BASIC PRINCIPLES 

To explain the advances, it is better to revisit the original 

POCKET algorithm as this shows the mechanism in its 

simplest form. This section provides a recap on the basic 

principles of POCKET and POCKET+. 

POCKET 

In POCKET, the ground employs statistical analysis of 

stored data to classify each bit position of each fixed-

length housekeeping packet type into those bits that have 

a good chance of having the same value as the bit in the 

same position in the previous packet of that type and 

those that do not. The former are called predictable bits, 

the latter unpredictable bits. For each packet type the 

ground then loads a mask which defines which bits are 

predictable and unpredictable. 

The compression process is described in Figure 1: (a) A 

mask is loaded which classifies all predictable bit 

positions with a zero value and all unpredictable 

positions with a one; (b) Input the new packet; (c) Check 

that each predictable bit has the same value as the 

previous packet and if not mark the position; (d) Record 

the positions of the predictable bits that changed value as 

a series of counters compressed using Run Length 

Coding (RLE); (e) Read all the values of the bits in 

unpredictable bit positions and append them; (f) Modify 

the original header indicating the original packet 

identifier and the length of the new variable length 

packet. 
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Figure 1: Basic principles of the POCKET method. 

Once the ground has the first two pieces of information 

below, the decompressor is initialised. It is then 

relatively easy and quick to decompress the following 

compressed packets: 

1. The last successfully decompressed packet of 

this type (can be past or future). 

2. The mask used to compress this packet. 

3. All the unpredictable bit values associated with 

this packet. 

It can make a copy of the last successfully decompressed 

packet and by using the mask information, copy the 

current unpredictable bit values provided in the 

compressed packet into their correct positions. 

This method provides effective compression when a 

subset of the bits in the packet tends to be unchanged 

from one packet to the next. This is often the case for 

housekeeping telemetry and some spacecraft payload 

data. The scheme works well on spacecraft housekeeping 

data and average compression ratios of 10 are achieved 

for many ESOC controlled spacecraft, e.g., ROSETTA 

or VENUS EXPRESS. Note that more complicated 

compression schemes can achieve better compression 

ratios but they require more CPU/memory to compress 

each packet or need a significant number of packets to 

be compressed together i.e. they cannot work on a real-

time data flow. 

POCKET+ 

Although POCKET performs well in a quasi-static 

situation, its performance deteriorates if the behaviors of 

the bits change with time, i.e., many bits that were 

predictable become unpredictable and vice versa. This 

results in a static mask not being optimal. To address 

this, the algorithm evolved into POCKET+ which 

updates the on-board mask automatically in the 

following way. If a bit in a predictable position changes 

value its position is immediately classified as 

unpredictable and if any bit in an unpredictable position 

has a value that remains constant during a certain number 

of input packets (called a tracking period) its position is 

classified as predictable. 

The ground must apply these rules to update its mask 

every time it receives a compressed packet. Once done it 

can decompress the packet as before. However, this is 

effectively a delta update of the ground mask and is 

therefore not robust to data loss. To mitigate this, a 

mechanism to send a mask update which covers several 

previous updates as well as the last one was added. The 

number of mask updates included in each packet is 

referred to as the robustness level which specifies the 

maximum number of consecutive packets that can be lost 

without impacting the decompression. For instance, a 

robustness level of two means the mask update covers 

the last three iterations and so the decompressor can 

successfully decompress the packet if any of the previous 

three packets were correctly decoded. Of course, now 

there is a balance between an increase in robustness level 

and a corresponding decrease in compression 

performance. This must be decided on a case-by-case 

basis, but the robustness level can be altered for each 

iteration by setting the first of the following 

configuration parameters:  

1. The requested robustness level, i.e., the 

maximum number of consecutive packets that 

can be lost without impacting the ability of the 

ground to decompress the next packet. 

2. A request to start a new tracking period. This 

enables bit positions to change from 

unpredictable to predictable if they have not 

changed value since the last request to start a 

tracking period was received. 

3. A request to include the uncompressed packet 

in the output rather than just the values of those 

bits that are classified as unpredictable. 

4. A request to include the entire mask 

information in the output as well as the delta 

mask information. This is pre-processed and 

compressed using RLE beforehand. 

Note that the configuration parameters 3) and 4) are only 

there to cover the case when the number of sequential 

compressed packets lost or corrupted is higher than the 

robustness level. In this case, ground mask 

synchronisation is lost, and the initialisation process 

must be repeated, i.e., the entire mask information must 

be sent to the ground and in some cases an uncompressed 

packet as well. It is also worth noting that any 
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compressed packets that have been received between the 

loss of ground mask synchronisation and initialisation 

can then be decompressed, i.e., decompression can work 

forwards and backwards in a time series of compressed 

packets. 

CCSDS 124.0-B-1 

The CCSDS standardisation process successfully 

generalised the POCKET+ method described in the 

previous section into CCSDS 124.0-B-1. The standard 

refers to a method for losslessly compressing a sequence 

of fixed-length input binary vectors into a sequence of 

variable-length output binary vectors rather than 

specifying they must be CCSDS packets. The standard 

imposes no requirements on the format of the input data 

except that the input vectors must be of fixed-length. 

Even the requirement that the bit length must be an 

integer number of bytes has been removed making it 

very generic. Thus, this paper will henceforth refer to 

vectors rather than packets. 

Robust compression of fixed-length housekeeping data 

Another improvement is that CCSDS 124.0-B-1 

telemeters the effective robustness level achieved in each 

output binary vector. Note that this can be significantly 

higher than the requested robustness level as it considers 

the cases when the mask did not change during an 

iteration. CCSDS 124.0-B-1 limits the requested 

robustness level to a maximum of 7 while the effective 

robustness level has a maximum of 15. This comes at no 

extra coding cost apart from adding an extra bit to 

telemeter the larger value. The advantage of sending this 

information is that a decompressor can now check that 

any gaps in the output binary sequence are less than the 

effective robustness level and determine whether 

decompression can be reliably performed. 

The working group’s changes successfully allowed the 

decompressor on the ground to work only using the 

information in the compressed packets, i.e., there is no 

requirement for the ground to be configured beforehand. 

For example, the bit length of the input binary vector is 

included in each output binary vector that includes a 

copy of the input vector. This ensures that the 

compressed data is self-contained, and the decompressor 

does not need to manage this value externally. Finally, 

most user constraints on updating the configuration 

parameters have been removed so the user can update 

these parameters at any time except during initialisation. 

The final compression mechanism is described in Figure 

2. The generated output binary vector is made up of three 

parts: 1) the run-length encoded mask change position 

and value information; 2) the entire mask pre-processed 

and run length encoded (only if requested for re-

initialisation); and 3) either a copy of the input binary 

vector preceded by its bit length or just the bit values of 

the unpredictable bits in the input binary vector. 

 

Figure 2: Compression mechanism of CCSDS 124.0-

B-1 

Decompression 

One of the requirements of CCSDS standardisation is to 

perform a cross validation with another independent 

implementer from a different agency. This was achieved 

in partnership with the Universitat Autònoma de 

Barcelona (UAB), sponsored by CNES. This was 

relatively easy on the compression side but turned out to 

be challenging when cross validating the decompression 

process. Both UAB and ESA were surprised with the 

number of validity checks that could be applied to ensure 

that the compressed packets adhered to the CCSDS 

124.0-B-1 compression standard or whether the 

decompressed packets could be trusted. If these checks 

failed then the compressed packet must be declared as 

invalid. The following checks were identified: 

1. The effective robustness level is not high 

enough to guarantee correct decompression, 

i.e., the last successfully decoded vector was 

received too long ago. 

2. The initialisation process has not completed, 

i.e., the decompressor has not yet successfully 

decompressed a compressed vector or received 

a valid mask vector. 

3. The decompression process does not terminate 

before the end of the compressed vector is 

reached, implying a corrupted or truncated 

vector. 

4. There is a conflict between the mask 

information given in the delta mask counters 

and the absolute mask, implying a corrupted 

vector. 

5. The absolute mask length or the delta mask 

length is longer than the bit length of the 

uncompressed packet, implying a corrupted 

vector. 

6. The bit length of the uncompressed packet is 

outside the standardised limits (1 to 2¹⁶-1). 

7. The bit length of the uncompressed packet has 

changed. It is expected to remain the same. 

8. The bit stuffing rules have not been respected. 

These rules are not stated in the standard but are 

extra fields that can be checked if used. 
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Even if a decompressed packet passes all these checks, it 

is not 100% guaranteed that the compressed vector is not 

corrupt. However, the number of possible checks give 

some measure of assurance. For instance, the checks 

cannot check the part of the compressed vector carrying 

the bit values of the unpredictable bits but on the other 

hand these values will be replaced in the subsequent 

vector. Another valid approach is to calculate a 

checksum on the original uncompressed vector and send 

this as part of the compressed vector. Then one could 

simply decompress the vector and then compare the 

checksum to check validity. In this case, the checks 

detailed above could be dropped. 

OPS-SAT IMPLEMENTS CCSDS 124.0-B-1 

The spacecraft was launched with Arianespace on a 

Soyuz from Kourou on December 18, 2019, following a 

one-day launch delay. OPS-SAT can be viewed as two 

satellites in one. A CubeSat satellite along with an ESA 

satellite flying an advanced communications module and 

a very powerful on-board computer. There are various 

peripherals (camera, GPS, advanced ADCS subsystem, 

etc.) and two payloads of opportunity. The CubeSat bus 

consists of an on-board computer called the NanoMind, 

a power subsystem, a UHF communications subsystem, 

and a basic ADCS subsystem. The mechanical 

architecture of the OPS-SAT is a 3U CubeSat structure 

with double folded deployable solar panels. It has a size 

of 10x10x30 cm (not including deployable) and a mass 

of approximately 4.8 kg. Two deployable solar array 

panels generate 30 W of electrical (peak) power. The 

Satellite Experimental Processing Platform (SEPP) is the 

heart of the OPS-SAT [5]. It is a powerful ALTERA 

Cyclone V system-on-chip (SoC) module with sufficient 

on-board memory to carry out advanced software and 

hardware experiments [6, 7, 8, 9]. It is the reconfigurable 

platform required on OPS-SAT on which all major 

experiments are processed. Both NanoMind and the 

SEPP communicate with the ground via the CCSDS 

engine which is effectively a CCSDS compliant packet 

and frame decoder/encoder. The space segment diagram 

is shown in Figure 4 of the Appendix. 

 

Figure 3: Interactions between ground and space 

systems. 

The ground segment is centered around the European 

Mission Control Software, SCOS-2000, which has been 

modified to handle the new application-level interface 

CCSDS MO Services [10] and packets as well as CCSDS 

124.0-B-1 compressed packets. File transfer based on 

CCSDS File Delivery Protocol (CFDP) is available to 

communicate with the SEPP. The interactions between 

space and ground segments are shown in Figure 3. 

The implementation of POCKET+ on OPS-SAT is a 

great example of the flexibility of the CCSDS 124.0-B-1 

as it is deployed in three different places in totally 

different environments. 

1. The input is a stream of just generated packets 

and the transport link assumes one-way 

communication only. 

2. The input is a file of recorded packets and the 

transport uses two way communication to 

guarantee completeness. 

3. The input is a file of recorded packets and the 

transport link assumes one-way communication 

only. 

Classic packet stream-based implementation of CCSDS 

124.0-B-1 in OBSW 

The first implementation is within the On-Board 

Software (OBSW) running on the NanoMind computer. 

An embedded POCKET+ library API is called by the 

OBSW whenever one of a set of pre-specified 

housekeeping packet types is generated. The entire 

content of such a packet, including its CCSDS space 

packet header, is copied into an input buffer. This 

triggers the CCSDS 124.0-B-1 on-board algorithm 

which compresses the whole input buffer. The library 

adds a new 6-byte CCSDS space header with a specific 

Application Identifier (APID), the new packet length, a 

source sequence counter and finally a POCKET+ byte 

indicating which of one of the pre-specified 

housekeeping packet types was in the input buffer. The 

output is therefore a valid CCSDS space packet 

(according to CCSDS 133.0-B-2) and thus processed by 

the OBSW communication stack in an identical fashion 

to the uncompressed packets. SCOS then monitors the 

incoming packet stream and recognises compressed 

packets via their unique APID. These are then filtered off 

to a dedicated decompression module which recognises 

the original packet type from the POCKET+ byte value. 

The decompression module then reverses the CCSDS 

124.0-B-1 compression using the associated mask and 

last decompressed packet saved for that packet type. It 

then runs a series of checks on the decompressed packet, 

see the section on CCSDS 124.0-B-1 decompression, 

and if these pass it reinserts the packet back into SCOS 

and processed as normal. 
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In this implementation, CCSDS 124.0-B-1 is 

compressing a stream of packets as they are generated. 

The output is a stream of smaller packets that are then 

dealt with by the OBSW in the classical manner, i.e., sent 

in real-time or written to the packet store for later 

transmission. Note that the transport protocol used for 

transporting these packets to the ground assumes one-

way communication. Error detection and correction is 

carried out at frame level so occasional transport frame 

and therefore packet loss, is expected. The CCSDS 

124.0-B-1 algorithm is therefore configured with 

different robustness levels to deal with this, depending 

on the scenario. Furthermore, counters are set which 

periodically send absolute mask information and/or 

uncompressed packets, refer to the section recapping the 

basic principles of POCKET+. Should the number of 

sequentially lost packets exceed the effective robustness 

level at any point then this periodic information is used 

to re-initialise the SCOS decompression module. Note 

that these counters are configured to send absolute mask 

information more frequently than uncompressed 

packets. This is because re-initialisation of the mask is 

always required if the number of sequentially lost 

packets exceeds the effective robustness level. However, 

a new uncompressed packet is not required if the period 

between it and the new compressed packet contains a 

maximum of one request to start a new tracking period, 

see the section recapping the basic principles of 

POCKET+. This is because the values of all the bits 

declared as predictable in the new compressed packet 

will not have changed value during that period. 

File based implementation of CCSDS 124.0-B-1 in 

combination with CFDP transport 

The second implementation is written as part of the on-

board software running on the SEPP. In this case CCSDS 

packets are stored in files and the CCSDS 124.0-B-1 

algorithm is used to compress them. Note that processing 

files has certain advantages, for example there is no need 

for pre-specifying housekeeping packet types. The file 

processing ensures that all the packets in the file with a 

specific type are compressed together and that the first 

packet of that type is used to initialise the decompressor. 

In this case, the files are transported to the ground using 

the CFDP file transfer protocol which uses two-way 

communication to retransmit lost data blocks. Hence 

packet loss is not expected once a file is successfully 

downloaded. This has the advantage of less overheads 

e.g., no need for the additional information needed by 

CCSDS 124.0-B-1 to guarantee resiliency against data 

loss events. The requested robustness is always set to 

zero and there is no need to send absolute mask 

information and/or uncompressed packets periodically, 

see the section recapping the basic principles of 

POCKET+. 

On the ground, another application processes the file and 

reverses the CCSDS 124.0-B-1 compression, resulting in 

the original packets. These are then played back into 

SCOS as if they were packets which had been stored at 

the ground station during a high-speed dump. Using 

CCSDS 124.0-B-1 in combination with a file-based 

approach — as opposed to a packet streaming approach 

— has the advantage of less complication, e.g., no need 

to pre-specify packet types or identify them in real-time. 

In fact, the OPS-SAT flight control team (FCT) now uses 

this mechanism as a more convenient alternative to using 

the classic NanoMind packet store and dump approach. 

The FCT lets the OBSW transmit packets across the 

Controller Area Network (CAN) bus even outside 

ground coverage and have implemented an application 

on the SEPP that records all the CAN traffic in a file. 

This contains all the housekeeping packets and so it can 

easily be processed into the input files for the CCSDS 

124.0-B-1 compression described above. 

The average compression ratios achieved on the file data 

and on the streamed data are 10.18 and 8.22 respectively. 

What is important is that the exact same core software is 

used in these two completely different environments. 

The user defined parameters within the algorithm itself 

entirely handle the difference. 

File based implementation of CCSDS 124.0-B-1 in 

combination with UDP transport 

The third implementation is identical to the previous 

section, but the file is transported to the ground using 

UDP rather than CFDP i.e., the completeness of the file 

cannot be guaranteed. This set-up exploits the 

advantages of file processing outlined above but it can 

be used in situations where only one way communication 

is available or practical e.g., long two-way light time 

delays, operations where uplink is not possible or desired 

etc. Due to the use of UDP, occasional file blocks losses 

are expected but the inbuilt robustness of the CCSDS 

124.0-B-1 compression algorithm means this will only 

result in a partial loss of the information in the file. In 

order to ensure this, the CCSDS 124.0-B-1 algorithm 

must be configured with a non-zero robustness level and 

counters must be set to send absolute mask information 

and/or uncompressed packets periodically, so there is a 

performance cost. 

FUTURE WORK 

An area of interest for future work is that it should be 

possible to retrieve partial but significant information 

from lost packets thanks to the CCSDS 124.0-B-1 

algorithm. As stated in the “Classic packet stream-based 

implementation of CCSDS 124.0-B-1 in OBSW” section, 

re-initialisation after gaps does not require a new 

uncompressed packet to be sent if the period between the 
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last decoded packet and the new compressed packet 

contains a maximum of one request to start a new 

tracking period, refer to the section recapping the basic 

principles of POCKET+. This is because the values of all 

the bits declared as predictable in the new compressed 

packet cannot have changed value during that period. 

That information can be used because when parameters 

are encoded as integers the lowest significant bits of the 

parameter are much more likely to be declared as 

unpredictable compared to the most significant bits. 

Therefore, in some cases, it should be possible to derive 

a range of possible values that those parameters had in 

those lost packets. This range might be completely 

acceptable for most housekeeping data uses e.g., limit 

checking, trend analysis, and reporting. This idea will be 

tested in a future OPS-SAT experiment. 

CONCLUSIONS 

The latest developments for the POCKET+ algorithm 

have been described including the improvements made 

during the development of the related CCSDS 124.0-B-1 

standard for “Robust Compression of Fixed-Length 

Housekeeping Data.” The implementation on-board the 

ESA OPS-SAT mission has been described and the 

flexibility of the standard demonstrated, in that the same 

core software has been successfully deployed in three 

different scenarios/environments. One compresses files 

offline and then uses a transport protocol guaranteeing 

completeness; another compresses a packet stream in 

real-time and uses a transport protocol where 

completeness is not guaranteed, and the final 

implementation combines file processing on-board with 

a transport protocol where completeness is not 

guaranteed. Average compression ratios between eight 

and ten are usual for the OPS-SAT mission, depending 

on the data and method chosen. 
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Figure 4: Space Segment System Diagram. 
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