
Evans 1 36th Annual Small Satellite Conference

SSC22-XII-03

Implementing the New CCSDS Housekeeping Data Compression Standard 124.0-B-1

(based on POCKET+) on OPS-SAT-1

David Evans, Georges Labrèche, Dominik Marszk, Sam Bammens

European Space Operations Center (ESOC), European Space Agency (ESA)

Darmstadt, Germany; +49 6151 902720

david.evans@esa.int

Miguel Hernández-Cabronero

Department of Information and Communications Engineering (dEIC), Universitat Autònoma de Barcelona (UAB)

Bellaterra, Spain; +34 935 811 861

miguel.hernandez@uab.cat

Vladimir Zelenevskiy

Telespazio Germany GmbH

Darmstadt, Germany; +49 615 182 570

vladimir.zelenevskiy@telespazio.de

Vasundhara Shiradhonkar

Terma GmbH

Darmstadt, Germany; +49 6151 860050

vash@terma.com

Milenko Starcik

VisionSpace Technologies GmbH

Darmstadt, Germany; +49 6151 6292270

milenko.starcik@visionspace.com

Maximilian Henkel

Institute of Communication Networks and Satellite Communications, Graz University of Technology

Graz, Austria; +43 316 873 7437

henkel@tugraz.at

ABSTRACT

The number of telemetry parameters available in a typical spacecraft is constantly increasing. At the same time, the

bandwidth available to download all that information is rather static. Operators must therefore make hard choices

between which parameters to downlink or not, in which different situations, and at which sampling rates. This trade-

off is more problematic for missions with higher communication latency beyond LEO. Since 2009, The European

Space Agency’s European Space Operations Center (ESA/ESOC) has been promoting the compression of

housekeeping telemetry as a solution to this problem. Most spacecraft housekeeping telemetry parameters compress

extremely well if they are pre-processed correctly. Unfortunately, most spacecraft record telemetry packets in flat

packet stores so accessing different packets within them is too CPU and memory intensive for flight computers. Using

traditional compression schemes such as zip or tar are not compatible with the traditional “fire and forget” mode of

operation i.e., occasional packet losses are expected. This would render entire compressed files unusable. ESOC

invented an algorithm called POCKET+ to solve this problem. It is implemented using very low-level processor

instructions such as OR, XOR, AND, etc. This means that it can run with low CPU usage and, more importantly, with

a short execution time. It is designed to run fast enough to compress a stream of incoming packets as they are generated

by the on-board packetiser. The output is a smaller stream of packets. The compressed packets can be handled by the

on-board system in an identical fashion to the original larger uncompressed packets. Robustness with respect to the

occasional packet loss is built into the protocol and does not require a back channel. In 2018, POCKET+ was proposed

to the CCSDS data compression working group and after extensive research by other agencies the core idea has been

mailto:david.evans@esa.int
mailto:miguel.hernandez@uab.cat
mailto:vladimir.zelenevskiy@telespazio.de
mailto:vash@terma.com
mailto:milenko.starcik@visionspace.com
mailto:henkel@tugraz.at

Evans 2 36th Annual Small Satellite Conference

incorporated into a proposed new standard for “Robust Compression of Fixed Length Housekeeping Data.” The

second supporter for the mission is CNES, supported technically by the University of Barcelona (UAB). Both CNES

and UAB have suggested changes that make POCKET+ even more powerful. POCKET+ is already flying on OPS-

SAT, a 3U CubeSat launched by the European Space Agency on December 18th, 2019. The mission has updated the

Onboard Software (OBSW) and ground control software to be compliant with the latest POCKET+ standard. The

standard is set to be available for an ESA review. This paper describes the latest algorithm and how it is implemented

on OPS-SAT, including how the same core software has been successfully deployed in two completely different

scenarios/environments. One compresses files offline and then uses a transport protocol with a completeness

guarantee; the other compresses a packet stream in real-time and uses the classic transport protocol where

completeness is not guaranteed. The results show that compression ratios between eight and ten are usual for the OPS-

SAT mission. Improvements made during the development of the planned CCSDS standard for “Robust Compression

of Fixed Length Housekeeping Data” are also presented.

INTRODUCTION

The number of telemetry parameters available in a

typical spacecraft is constantly increasing. At the same

time, the bandwidth available to download all that

information is usually bounded. Operators must make

hard choices between which parameters to downlink or

not, in which situations, and at which sampling rates.

To provide context, this paper first outlines the POCKET

history, then it provides the summary of the basic

principles of POCKET+. An overview is presented on

the decompression and compression mechanisms of the

Consultative Committee for Space Data Systems

(CCSDS) 124.0-B-1 algorithm which is based on

POCKET+. The general details of the OPS-SAT mission

are described after which the usage of CCSDS 124.0-B-

1 on-board OPS-SAT is outlined in three different

environments. Future work is presented for the

algorithm, followed by a conclusion.

POCKET AND POCKET+ DEVELOPMENT

ESA/ESOC started promoting the compression of

housekeeping telemetry in 2009. This is because they

found that most spacecraft housekeeping telemetry

packets compressed extremely well if they were pre-

processed correctly. Several patented algorithms were

produced that reached average compression ratios

between 5 and 20 when tested with real stored

housekeeping data (depending on the mission). One of

those algorithms, called POCKET, can compress

individual packets in only a few microseconds on

representative flight hardware. This made it suitable for

compressing real-time telemetry streams. A packet is

generated, compressed into a smaller packet, and then

either transmitted or stored for later transmission. On the

ground segment, the small packet is intercepted,

expanded back into the original packet, and passed to the

mission control system with zero impact on the existing

infrastructure. In 2012, the complete end-to-end chain

was built and tested in an ESA contract with Spacebel

SA of Belgium (this was flight tested on PROBA-2 in

2017 by QinetiQ Space Belgium). Also in 2012, the

algorithm evolved into POCKET+ which has the

advantage of being self-adapting i.e., it reacts to changes

in the data behavior (e.g., change of system mode

without ground intervention). In 2018, POCKET+ was

proposed to the CCSDS data compression working

group and after extensive research by other agencies the

core idea has been incorporated into a proposed new

standard for “Robust Compression of Fixed Length

Housekeeping Data” [1, 2, 3, 4]. This greatly simplifies

the ground processing required. It has been baselined for

ESA’s PROBA-3 mission currently in Phase D.

RECAP OF BASIC PRINCIPLES

To explain the advances, it is better to revisit the original

POCKET algorithm as this shows the mechanism in its

simplest form. This section provides a recap on the basic

principles of POCKET and POCKET+.

POCKET

In POCKET, the ground employs statistical analysis of

stored data to classify each bit position of each fixed-

length housekeeping packet type into those bits that have

a good chance of having the same value as the bit in the

same position in the previous packet of that type and

those that do not. The former are called predictable bits,

the latter unpredictable bits. For each packet type the

ground then loads a mask which defines which bits are

predictable and unpredictable.

The compression process is described in Figure 1: (a) A

mask is loaded which classifies all predictable bit

positions with a zero value and all unpredictable

positions with a one; (b) Input the new packet; (c) Check

that each predictable bit has the same value as the

previous packet and if not mark the position; (d) Record

the positions of the predictable bits that changed value as

a series of counters compressed using Run Length

Coding (RLE); (e) Read all the values of the bits in

unpredictable bit positions and append them; (f) Modify

the original header indicating the original packet

identifier and the length of the new variable length

packet.

Evans 3 36th Annual Small Satellite Conference

Figure 1: Basic principles of the POCKET method.

Once the ground has the first two pieces of information

below, the decompressor is initialised. It is then

relatively easy and quick to decompress the following

compressed packets:

1. The last successfully decompressed packet of

this type (can be past or future).

2. The mask used to compress this packet.

3. All the unpredictable bit values associated with

this packet.

It can make a copy of the last successfully decompressed

packet and by using the mask information, copy the

current unpredictable bit values provided in the

compressed packet into their correct positions.

This method provides effective compression when a

subset of the bits in the packet tends to be unchanged

from one packet to the next. This is often the case for

housekeeping telemetry and some spacecraft payload

data. The scheme works well on spacecraft housekeeping

data and average compression ratios of 10 are achieved

for many ESOC controlled spacecraft, e.g., ROSETTA

or VENUS EXPRESS. Note that more complicated

compression schemes can achieve better compression

ratios but they require more CPU/memory to compress

each packet or need a significant number of packets to

be compressed together i.e. they cannot work on a real-

time data flow.

POCKET+

Although POCKET performs well in a quasi-static

situation, its performance deteriorates if the behaviors of

the bits change with time, i.e., many bits that were

predictable become unpredictable and vice versa. This

results in a static mask not being optimal. To address

this, the algorithm evolved into POCKET+ which

updates the on-board mask automatically in the

following way. If a bit in a predictable position changes

value its position is immediately classified as

unpredictable and if any bit in an unpredictable position

has a value that remains constant during a certain number

of input packets (called a tracking period) its position is

classified as predictable.

The ground must apply these rules to update its mask

every time it receives a compressed packet. Once done it

can decompress the packet as before. However, this is

effectively a delta update of the ground mask and is

therefore not robust to data loss. To mitigate this, a

mechanism to send a mask update which covers several

previous updates as well as the last one was added. The

number of mask updates included in each packet is

referred to as the robustness level which specifies the

maximum number of consecutive packets that can be lost

without impacting the decompression. For instance, a

robustness level of two means the mask update covers

the last three iterations and so the decompressor can

successfully decompress the packet if any of the previous

three packets were correctly decoded. Of course, now

there is a balance between an increase in robustness level

and a corresponding decrease in compression

performance. This must be decided on a case-by-case

basis, but the robustness level can be altered for each

iteration by setting the first of the following

configuration parameters:

1. The requested robustness level, i.e., the

maximum number of consecutive packets that

can be lost without impacting the ability of the

ground to decompress the next packet.

2. A request to start a new tracking period. This

enables bit positions to change from

unpredictable to predictable if they have not

changed value since the last request to start a

tracking period was received.

3. A request to include the uncompressed packet

in the output rather than just the values of those

bits that are classified as unpredictable.

4. A request to include the entire mask

information in the output as well as the delta

mask information. This is pre-processed and

compressed using RLE beforehand.

Note that the configuration parameters 3) and 4) are only

there to cover the case when the number of sequential

compressed packets lost or corrupted is higher than the

robustness level. In this case, ground mask

synchronisation is lost, and the initialisation process

must be repeated, i.e., the entire mask information must

be sent to the ground and in some cases an uncompressed

packet as well. It is also worth noting that any

Evans 4 36th Annual Small Satellite Conference

compressed packets that have been received between the

loss of ground mask synchronisation and initialisation

can then be decompressed, i.e., decompression can work

forwards and backwards in a time series of compressed

packets.

CCSDS 124.0-B-1

The CCSDS standardisation process successfully

generalised the POCKET+ method described in the

previous section into CCSDS 124.0-B-1. The standard

refers to a method for losslessly compressing a sequence

of fixed-length input binary vectors into a sequence of

variable-length output binary vectors rather than

specifying they must be CCSDS packets. The standard

imposes no requirements on the format of the input data

except that the input vectors must be of fixed-length.

Even the requirement that the bit length must be an

integer number of bytes has been removed making it

very generic. Thus, this paper will henceforth refer to

vectors rather than packets.

Robust compression of fixed-length housekeeping data

Another improvement is that CCSDS 124.0-B-1

telemeters the effective robustness level achieved in each

output binary vector. Note that this can be significantly

higher than the requested robustness level as it considers

the cases when the mask did not change during an

iteration. CCSDS 124.0-B-1 limits the requested

robustness level to a maximum of 7 while the effective

robustness level has a maximum of 15. This comes at no

extra coding cost apart from adding an extra bit to

telemeter the larger value. The advantage of sending this

information is that a decompressor can now check that

any gaps in the output binary sequence are less than the

effective robustness level and determine whether

decompression can be reliably performed.

The working group’s changes successfully allowed the

decompressor on the ground to work only using the

information in the compressed packets, i.e., there is no

requirement for the ground to be configured beforehand.

For example, the bit length of the input binary vector is

included in each output binary vector that includes a

copy of the input vector. This ensures that the

compressed data is self-contained, and the decompressor

does not need to manage this value externally. Finally,

most user constraints on updating the configuration

parameters have been removed so the user can update

these parameters at any time except during initialisation.

The final compression mechanism is described in Figure

2. The generated output binary vector is made up of three

parts: 1) the run-length encoded mask change position

and value information; 2) the entire mask pre-processed

and run length encoded (only if requested for re-

initialisation); and 3) either a copy of the input binary

vector preceded by its bit length or just the bit values of

the unpredictable bits in the input binary vector.

Figure 2: Compression mechanism of CCSDS 124.0-

B-1

Decompression

One of the requirements of CCSDS standardisation is to

perform a cross validation with another independent

implementer from a different agency. This was achieved

in partnership with the Universitat Autònoma de

Barcelona (UAB), sponsored by CNES. This was

relatively easy on the compression side but turned out to

be challenging when cross validating the decompression

process. Both UAB and ESA were surprised with the

number of validity checks that could be applied to ensure

that the compressed packets adhered to the CCSDS

124.0-B-1 compression standard or whether the

decompressed packets could be trusted. If these checks

failed then the compressed packet must be declared as

invalid. The following checks were identified:

1. The effective robustness level is not high

enough to guarantee correct decompression,

i.e., the last successfully decoded vector was

received too long ago.

2. The initialisation process has not completed,

i.e., the decompressor has not yet successfully

decompressed a compressed vector or received

a valid mask vector.

3. The decompression process does not terminate

before the end of the compressed vector is

reached, implying a corrupted or truncated

vector.

4. There is a conflict between the mask

information given in the delta mask counters

and the absolute mask, implying a corrupted

vector.

5. The absolute mask length or the delta mask

length is longer than the bit length of the

uncompressed packet, implying a corrupted

vector.

6. The bit length of the uncompressed packet is

outside the standardised limits (1 to 2¹⁶-1).

7. The bit length of the uncompressed packet has

changed. It is expected to remain the same.

8. The bit stuffing rules have not been respected.

These rules are not stated in the standard but are

extra fields that can be checked if used.

Evans 5 36th Annual Small Satellite Conference

Even if a decompressed packet passes all these checks, it

is not 100% guaranteed that the compressed vector is not

corrupt. However, the number of possible checks give

some measure of assurance. For instance, the checks

cannot check the part of the compressed vector carrying

the bit values of the unpredictable bits but on the other

hand these values will be replaced in the subsequent

vector. Another valid approach is to calculate a

checksum on the original uncompressed vector and send

this as part of the compressed vector. Then one could

simply decompress the vector and then compare the

checksum to check validity. In this case, the checks

detailed above could be dropped.

OPS-SAT IMPLEMENTS CCSDS 124.0-B-1

The spacecraft was launched with Arianespace on a

Soyuz from Kourou on December 18, 2019, following a

one-day launch delay. OPS-SAT can be viewed as two

satellites in one. A CubeSat satellite along with an ESA

satellite flying an advanced communications module and

a very powerful on-board computer. There are various

peripherals (camera, GPS, advanced ADCS subsystem,

etc.) and two payloads of opportunity. The CubeSat bus

consists of an on-board computer called the NanoMind,

a power subsystem, a UHF communications subsystem,

and a basic ADCS subsystem. The mechanical

architecture of the OPS-SAT is a 3U CubeSat structure

with double folded deployable solar panels. It has a size

of 10x10x30 cm (not including deployable) and a mass

of approximately 4.8 kg. Two deployable solar array

panels generate 30 W of electrical (peak) power. The

Satellite Experimental Processing Platform (SEPP) is the

heart of the OPS-SAT [5]. It is a powerful ALTERA

Cyclone V system-on-chip (SoC) module with sufficient

on-board memory to carry out advanced software and

hardware experiments [6, 7, 8, 9]. It is the reconfigurable

platform required on OPS-SAT on which all major

experiments are processed. Both NanoMind and the

SEPP communicate with the ground via the CCSDS

engine which is effectively a CCSDS compliant packet

and frame decoder/encoder. The space segment diagram

is shown in Figure 4 of the Appendix.

Figure 3: Interactions between ground and space

systems.

The ground segment is centered around the European

Mission Control Software, SCOS-2000, which has been

modified to handle the new application-level interface

CCSDS MO Services [10] and packets as well as CCSDS

124.0-B-1 compressed packets. File transfer based on

CCSDS File Delivery Protocol (CFDP) is available to

communicate with the SEPP. The interactions between

space and ground segments are shown in Figure 3.

The implementation of POCKET+ on OPS-SAT is a

great example of the flexibility of the CCSDS 124.0-B-1

as it is deployed in three different places in totally

different environments.

1. The input is a stream of just generated packets

and the transport link assumes one-way

communication only.

2. The input is a file of recorded packets and the

transport uses two way communication to

guarantee completeness.

3. The input is a file of recorded packets and the

transport link assumes one-way communication

only.

Classic packet stream-based implementation of CCSDS

124.0-B-1 in OBSW

The first implementation is within the On-Board

Software (OBSW) running on the NanoMind computer.

An embedded POCKET+ library API is called by the

OBSW whenever one of a set of pre-specified

housekeeping packet types is generated. The entire

content of such a packet, including its CCSDS space

packet header, is copied into an input buffer. This

triggers the CCSDS 124.0-B-1 on-board algorithm

which compresses the whole input buffer. The library

adds a new 6-byte CCSDS space header with a specific

Application Identifier (APID), the new packet length, a

source sequence counter and finally a POCKET+ byte

indicating which of one of the pre-specified

housekeeping packet types was in the input buffer. The

output is therefore a valid CCSDS space packet

(according to CCSDS 133.0-B-2) and thus processed by

the OBSW communication stack in an identical fashion

to the uncompressed packets. SCOS then monitors the

incoming packet stream and recognises compressed

packets via their unique APID. These are then filtered off

to a dedicated decompression module which recognises

the original packet type from the POCKET+ byte value.

The decompression module then reverses the CCSDS

124.0-B-1 compression using the associated mask and

last decompressed packet saved for that packet type. It

then runs a series of checks on the decompressed packet,

see the section on CCSDS 124.0-B-1 decompression,

and if these pass it reinserts the packet back into SCOS

and processed as normal.

Evans 6 36th Annual Small Satellite Conference

In this implementation, CCSDS 124.0-B-1 is

compressing a stream of packets as they are generated.

The output is a stream of smaller packets that are then

dealt with by the OBSW in the classical manner, i.e., sent

in real-time or written to the packet store for later

transmission. Note that the transport protocol used for

transporting these packets to the ground assumes one-

way communication. Error detection and correction is

carried out at frame level so occasional transport frame

and therefore packet loss, is expected. The CCSDS

124.0-B-1 algorithm is therefore configured with

different robustness levels to deal with this, depending

on the scenario. Furthermore, counters are set which

periodically send absolute mask information and/or

uncompressed packets, refer to the section recapping the

basic principles of POCKET+. Should the number of

sequentially lost packets exceed the effective robustness

level at any point then this periodic information is used

to re-initialise the SCOS decompression module. Note

that these counters are configured to send absolute mask

information more frequently than uncompressed

packets. This is because re-initialisation of the mask is

always required if the number of sequentially lost

packets exceeds the effective robustness level. However,

a new uncompressed packet is not required if the period

between it and the new compressed packet contains a

maximum of one request to start a new tracking period,

see the section recapping the basic principles of

POCKET+. This is because the values of all the bits

declared as predictable in the new compressed packet

will not have changed value during that period.

File based implementation of CCSDS 124.0-B-1 in

combination with CFDP transport

The second implementation is written as part of the on-

board software running on the SEPP. In this case CCSDS

packets are stored in files and the CCSDS 124.0-B-1

algorithm is used to compress them. Note that processing

files has certain advantages, for example there is no need

for pre-specifying housekeeping packet types. The file

processing ensures that all the packets in the file with a

specific type are compressed together and that the first

packet of that type is used to initialise the decompressor.

In this case, the files are transported to the ground using

the CFDP file transfer protocol which uses two-way

communication to retransmit lost data blocks. Hence

packet loss is not expected once a file is successfully

downloaded. This has the advantage of less overheads

e.g., no need for the additional information needed by

CCSDS 124.0-B-1 to guarantee resiliency against data

loss events. The requested robustness is always set to

zero and there is no need to send absolute mask

information and/or uncompressed packets periodically,

see the section recapping the basic principles of

POCKET+.

On the ground, another application processes the file and

reverses the CCSDS 124.0-B-1 compression, resulting in

the original packets. These are then played back into

SCOS as if they were packets which had been stored at

the ground station during a high-speed dump. Using

CCSDS 124.0-B-1 in combination with a file-based

approach — as opposed to a packet streaming approach

— has the advantage of less complication, e.g., no need

to pre-specify packet types or identify them in real-time.

In fact, the OPS-SAT flight control team (FCT) now uses

this mechanism as a more convenient alternative to using

the classic NanoMind packet store and dump approach.

The FCT lets the OBSW transmit packets across the

Controller Area Network (CAN) bus even outside

ground coverage and have implemented an application

on the SEPP that records all the CAN traffic in a file.

This contains all the housekeeping packets and so it can

easily be processed into the input files for the CCSDS

124.0-B-1 compression described above.

The average compression ratios achieved on the file data

and on the streamed data are 10.18 and 8.22 respectively.

What is important is that the exact same core software is

used in these two completely different environments.

The user defined parameters within the algorithm itself

entirely handle the difference.

File based implementation of CCSDS 124.0-B-1 in

combination with UDP transport

The third implementation is identical to the previous

section, but the file is transported to the ground using

UDP rather than CFDP i.e., the completeness of the file

cannot be guaranteed. This set-up exploits the

advantages of file processing outlined above but it can

be used in situations where only one way communication

is available or practical e.g., long two-way light time

delays, operations where uplink is not possible or desired

etc. Due to the use of UDP, occasional file blocks losses

are expected but the inbuilt robustness of the CCSDS

124.0-B-1 compression algorithm means this will only

result in a partial loss of the information in the file. In

order to ensure this, the CCSDS 124.0-B-1 algorithm

must be configured with a non-zero robustness level and

counters must be set to send absolute mask information

and/or uncompressed packets periodically, so there is a

performance cost.

FUTURE WORK

An area of interest for future work is that it should be

possible to retrieve partial but significant information

from lost packets thanks to the CCSDS 124.0-B-1

algorithm. As stated in the “Classic packet stream-based

implementation of CCSDS 124.0-B-1 in OBSW” section,

re-initialisation after gaps does not require a new

uncompressed packet to be sent if the period between the

Evans 7 36th Annual Small Satellite Conference

last decoded packet and the new compressed packet

contains a maximum of one request to start a new

tracking period, refer to the section recapping the basic

principles of POCKET+. This is because the values of all

the bits declared as predictable in the new compressed

packet cannot have changed value during that period.

That information can be used because when parameters

are encoded as integers the lowest significant bits of the

parameter are much more likely to be declared as

unpredictable compared to the most significant bits.

Therefore, in some cases, it should be possible to derive

a range of possible values that those parameters had in

those lost packets. This range might be completely

acceptable for most housekeeping data uses e.g., limit

checking, trend analysis, and reporting. This idea will be

tested in a future OPS-SAT experiment.

CONCLUSIONS

The latest developments for the POCKET+ algorithm

have been described including the improvements made

during the development of the related CCSDS 124.0-B-1

standard for “Robust Compression of Fixed-Length

Housekeeping Data.” The implementation on-board the

ESA OPS-SAT mission has been described and the

flexibility of the standard demonstrated, in that the same

core software has been successfully deployed in three

different scenarios/environments. One compresses files

offline and then uses a transport protocol guaranteeing

completeness; another compresses a packet stream in

real-time and uses a transport protocol where

completeness is not guaranteed, and the final

implementation combines file processing on-board with

a transport protocol where completeness is not

guaranteed. Average compression ratios between eight

and ten are usual for the OPS-SAT mission, depending

on the data and method chosen.

REFERENCES

1. Evans, D., Martinez-Heras, J. A., & Timm, R.

(2010). Housekeeping Data: Can You Afford Not

to Compress It?. In SpaceOps 2010 Conference

Delivering on the Dream Hosted by NASA

Marshall Space Flight Center and Organized by

AIAA (p. 2208).

2. Evans, D. (2012). Ten Times more information

in your Real-Time TM. In SpaceOps 2012 (p.

1275117).

3. Evans, D., Chattlain, O., & Vitulli, R (2014).

Pocket Housekeeping Telemetry Compression

Algorithm Successfully Passes End to End Tests.

On-Board Payload Data Compression Workshop.

4. Evans, D. J. (2016). Ops-sat: Operational

concept for ESA’s first mission dedicated to

operational technology. In 14th International

Conference on Space Operations (p. 2354).

5. Evans, D., Labrèche, G., Mladenov, T., Marszk,

D., Shiradhonkar, V., & Zelenevskiy, V. (2022).

Agile Development and Rapid Prototyping in a

Flying Mission with Open-Source Software Reuse

On-Board the OPS-SAT Spacecraft. AIAA

SciTech Forum 2022.

https://doi.org/10.2514/6.2022-0648

6. Evans, D., Labrèche, G., Mladenov, T.,

Zelenevskiy, V., Marszk, D., & Shiradhonkar, V.

(2022). OPS-SAT LEOP and Commissioning:

Running a Nanosatellite Project in a Space

Agency Context. 36th Annual Small Satellite

Conference.

7. Kacker, S., Meredith, A., Cahoy, K., &

Labrèche, G. (2022). Machine Learning Image

Processing Algorithms onboard OPS-SAT. 36th

Annual Small Satellite Conference.

8. Labrèche, G., Evans, D., Marszk, D.,

Mladenov, T., Shiradhonkar, V., Soto, T., &

Zelenevskiy, V. (2022). OPS-SAT Spacecraft

Autonomy with TensorFlow Lite, Unsupervised

Learning, and Online Machine Learning. 2022

IEEE Aerospace Conference.

9. Mladenov, T., Evans, D., & Zelenevskiy, V.

(2022). Implementation of a GNU Radio-Based

Search and Rescue Receiver on ESA's OPS-SAT

Space Lab. IEEE Aerospace and Electronic

Systems Magazine, vol. 37, no. 5, pp. 4-12, 1 May

2022.

https://www.doi.org/10.1109/MAES.2022.31438

75

10. Marszk, D., Evans, D., Mladenov, T., Labrèche,

G., Zelenevskiy, V., & Shiradhonkar, V. (2022).

MO Services and CFDP in Action on OPS-SAT.

36th Annual Small Satellite Conference.

https://doi.org/10.2514/6.2022-0648
https://www.doi.org/10.1109/MAES.2022.3143875
https://www.doi.org/10.1109/MAES.2022.3143875

Evans 8 36th Annual Small Satellite Conference

APPENDIX

Figure 4: Space Segment System Diagram.

	Introduction
	POCKET And POCKET+ Development
	Recap of Basic Principles
	POCKET
	POCKET+

	CCSDS 124.0-B-1
	Robust compression of fixed-length housekeeping data
	Decompression

	OPS-SAT Implements CCSDS 124.0-B-1
	Classic packet stream-based implementation of CCSDS 124.0-B-1 in OBSW
	File based implementation of CCSDS 124.0-B-1 in combination with CFDP transport
	File based implementation of CCSDS 124.0-B-1 in combination with UDP transport

	Future Work
	Conclusions
	References
	Appendix

