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ABSTRACT

Cloud detection in satellite imagery is key for autonomously taking and downlinking cloud-free images of
a target region as well as studying cloud-climate interactions and calibrating microwave radiometers. We
propose a Cg-equivariant dense U-Net, a rotation-equivariant deep learning model, trained on visible-spectrum,
long-wave infrared (LWIR), and short-wave infrared (SWIR) imagery for on-orbit cloud detection. We train
this model on the SPARCSY dataset of Landsat 8 images and compare it to three related deep learning models,
two rule-based algorithms, and to the literature. Additionally, we compare a Cg-equivariant dense U-Net
trained on VIS, LWIR, and SWIR imagery to the same algorithm trained on only VIS and LWIR, on only
VIS and SWIR, and on only VIS imagery. We find that augmenting VIS imagery with SWIR imagery is most
useful for missions where false positives (non-cloud pixels misidentified as cloud) are extremely costly, and that
augmenting with LWIR imagery is most useful for missions where false negatives (cloud pixels misidentified as
non-cloud) are extremely costly. We demonstrate also that our Cg-equivariant dense U-Net achieves over 97%
accuracy (over 99.5% when evaluated with a 2 pixel buffer at the cloud boundaries) on cloud segmentation
on the SPARCS dataset, outperforming existing state-of-the-art algorithms as well as human operators, while
remaining computationally lightweight enough to be usable on resource-constrained missions such as CubeSats.

INTRODUCTION satellite multispectral data and physics-driven rule-
based methods. Examples of physics-driven rule
In this paper, we explore the application of  based methods still evaluated on the ground include

transformation-equivariant deep learning to on-orbit  Fmask, which detects clouds, clear land, clear water,

cloud segmentation. We develop a Cg-equivariant
dense U-Net, a rotation-equivariant deep learning
model, and train it on Landsat 8 imagery from the
SPARCS! dataset. We evaluate our Cs-equivariant
dense U-Net in three different ways. First, we com-
pare its performance to that of three other related
deep learning models and two rule-based models.
Second, we train it on data from four different combi-
nations of bands: visible-spectrum (VIS), long-wave
infrared (LWIR), and short-wave infrared (SWIR);
VIS and LWIR; VIS and SWIR; and VIS only. Fi-
nally, we compare its performance to that of the
state-of-the-art SPARCS CNN 1

Cloud Segmentation

Cloud detection is a critical capability for weather
and climate satellite missions and has historically
been performed on the ground using downlinked

and cloud shadow in Landsat and Sentinel-2 data,?
the continuity MODIS-VIIRS cloud mask, which de-
tects clouds in MODIS and VIIRS data,® the MODIS
cloud mask retrieved for the CERES mission, which
detects clouds in MODIS data? and the GOES cloud
mask, which detects clouds and probable clouds in
the GOES advanced baseline imager (ABI) data.”
All of these methods use physics-derived reflectance
and brightness temperature thresholds in different
bands of a multispectral data input to determine
whether a pixel is cloudy or clear. These methods
often rely on determining the surface terrain type
based on spectral properties of the inputted data,
and have different cloud thresholds depending on the
underlying terrain.

Other methods for cloud detection include rule-based
methods driven by statistics, like random tree and
random forest detection. The s2cloudless algo-
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rithm is a gradient-boosted tree-based algorithm for
Sentinel-2 imagery that improves upon Fmask by al-
most 10% — likely in part because Fmask is designed
to work for Landsat or Sentinel-2, while s2cloudless
is optimized for Sentinel-2/¢ On EO-1, Bayesian
thresholding (BT) and random forest algorithms were
tested for cloud detection on visible-spectrum and
short-wave infrared data? Rule-based methods have
also been applied to visible-spectrum imagery on-
board OPS-SAT for cloud detection® OPS-SAT
tested luminosity thresholding, a rule-based method
similar to the Bayesian thresholding algorithm used
aboard EO-1, and k-means segmentation onboard,
and additionally tested a random forest algorithm
on the OPS-SAT engineering model on the ground®
Deep learning is also used for cloud detection.
OPS-SAT evaluated a U-Net trained on visible-
spectrum Landsat imagery on-orbit for cloud de-
tection® The U-Net outperformed three rule-based
methods, achieving a balanced accuracy of 77-89%
over three test images® A similar model achieved
91.7% overall accuracy when trained and tested on
visible-spectrum and long-wave infrared Landsat im-
ages® Improved results can be achieved when mul-
tispectral input data is considered — Spatial Proce-
dures for Automated Removal of Cloud and Shadow
(SPARCS), a convolutional neural network (CNN)
trained on all Landsat 8 bands except the panchro-
matic band (B8), can discriminate between clear-sky,
cloud, cloud shadow, water, and snow/ice pixels with
97.1% accuracy, excluding areas within 2 px of cloud
boundaries

Deep Learning

Deep learning is a type of machine learning that uses
multiple hidden layers in an artificial neural network
to train a model relating an input to an output. U-
Nets and dense U-Nets are two deep learning architec-
tures based on convolutional neural networks (CNNs)
which have demonstrated strong performance on im-
age segmentation? ¥ U-Nets downsample an input
to create a high-resolution encoding, then upsample
to create an output mask, and include feed-forward
connections between the downsampling and upsam-
pling path to better localize features? Dense models
replace convolutions in CNNs with “dense blocks”,
which contain multiple convolutions connected by
feed-forward operations, improving gradient and fea-
ture propagation throughout a network™ Dense
U-Nets have successfully outperformed U-Nets on
removing artifacts from biomedical images. 1"

Equivariance is a symmetric form of invariance: when
an input to a shift-equivariant deep learning model is

shifted, the output of the model will be equivalently
shifted. Although most operations in CNN-based
deep learning models are translationally equivariant,
many commonly used strided operations, including
max pooling, average pooling, and strided convolu-
tions, are subject to aliasing and do not preserve
translational equivariance 14 Translational equivari-
ance can be achieved by replacing strided opera-
tions with densely evaluated operations followed by
a strided blur, which effectively low-pass filters a sig-
nal before sampling, reducing aliasing and improving
translational equivariance .2

Furthermore, most layers in CNN-based deep learn-
ing architectures are not rotationally equivariant.
Partial rotational equivariance can be achieved using
group equivariant CNNs, which exploit symmetry
by generalizing convolution layers to “group convolu-
tions”. Although group equivariant CNNs are only
partially rotationally equivariant, these models have
shown good equivariance to arbitrary rotations in
practice™® Group convolutions are equivariant to
a specific group of transformations, often Cg (the
group of rotations by integer multiples of 45°) or
other cyclic groups. Group equivariance generally
improves performance and reduces the parameter
space of deep learning models. By directly encod-
ing symmetry in the model, the model only has to
learn to detect features of interest and does not have
to learn symmetry, speeding up training!4 Group
equivariant models are well-suited to domains where
images may be arbitrarily rotated about the camera
vector, such as satellite imagery®

DATASET, METRICS, & TRAINING

In all three experiments, we train our models on im-
ages from the same dataset: a modified version of the
Spatial Procedures for Automated Removal of Cloud
and Shadow (SPARCS) dataset of 80 Landsat 8 im-
ages representing 16 different biomesX’ We evaluate
each model’s image segmentation performance quali-
tatively and quantitatively. For our first experiment,
in which we compare the Cg-equivariant dense U-Net
to other rule-based and deep learning models, we also
evaluate computational resource consumption.

SPARCS Dataset

The SPARCS dataset contains high-accuracy segmen-
tation masks created by human operators, classifying
each pixel as cloud, cloud shadow, cloud shadow over
water, water, ice/snow, land, or flooded’ We post-
process the SPARCS dataset to create binary masks
where each pixel is classified as cloud or background.
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Table 1: Summary of multispectral data avail-
able from Landsat 8; bands we use (2-4, 6, 10)
are bolded. Adapted from Acharya & Yang/l6

Band Name Wavelength Resolution
(um) (m)
1 Coastal 0.433-0.453 30
Aerosol
2 Blue 0.450-0.515 30
3 Green 0.525-0.600 30
4 Red 0.630-0.680 30
5 Near infrared  0.845-0.885 30
6 Short-wave 1.560-1.660 30
infrared
(SWIR) 1
7 SWIR 2 2.100-2.300 30
8 Panchromatic 0.500-0.680 15
9 Cirrus 1.360-1.390 30
10 Long-wave 10.30-11.30 100
infrared
(LWIR) 1
11 LWIR 2 11.50-12.50 100

Landsat 8 has eleven spectral bands (see Table [,
and the SPARCS dataset includes data from Landsat
B1-10. We chose to focus on visible-spectrum, long-
wave infrared, and short-wave infrared imagery, and

so we only use data from Landsat B2-4 (blue, green,
and red), B6 (SWIR 1), and B10 (LWIR 1).

Segmentation Metrics

We calculate accuracy, precision, recall, and F} score
for each model-generated cloud mask. These metrics
are given by the following equations, with T'P repre-
senting the number of true positives, T'N representing
the number of true negatives, F'P representing the
number of false positives, and F'N representing the
number of false negatives:

A TP+ TN (1)
T =
Y = TPYTN + FP+ FN
TP
Precision = m (2)

TP
Recall = m (3)
F, Score = 2 - Precision - Recall ()

Precision + Recall

In addition to the classification metrics in Equa-
tions we plot the receiver operating characteris-
tic (ROC) curve for each model. We also calculate
AUC (area under the ROC curve), approximating
AUC using midpoint Riemann sums.

Buffered Evaluation

“Buffered evaluation” is a common practice for evalu-
ating segmentation performance when object bound-
aries are fuzzy or truth masks are inconsistent in
quality. When buffered evaluation is used, any pix-
els within a fixed distance (or buffer) of a boundary
between two classes can be classified as either of
the classes on the boundary and still be considered
correct. Hughes & Kennedy used a 2 pixel buffer
on cloud and cloud shadow boundaries when eval-
uating the original SPARCS CNN to capture the
inherent fuzziness of cloud boundaries* Accord-
ingly, we compute and report each classification both
without a buffer and with a 2 px buffer at cloud
boundaries.

Resource Consumption Metrics

We evaluate the complexity of each model based on
the number of trainable parameters, the total
number of parameters, and the size of the fully
trained model. We also consider the inference
time to classify a single image and the peak
memory allocated when classifying a single
image, using both a CPU backend (Intel Xeon pro-
cessor) and GPU backend (Nvidia K80 GPU) via
Google Colab.

Implementation and Training

We train our models using the Adam optimizer with
the default parameters™ We train each model with
a learning rate of 0.002 and a batch size of 40 images.
The U-Net shows an uncharacteristic spike in test
error at 500 epochs, so we train the U-Net and Cg-
equivariant U-Net for 505 epochs in order to make
fair performance comparisons between models. We
train our models using weighted focal loss with v = 2
and agong = 0.8148

We train our deep learning models on the MIT
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Engaging distributed computing cluster ™  For
more information about implementation and train-
ing, see Meredith2? Our code is freely avail-
able at https://github.com/alexmeredith8299/
masters-thesis.

ALGORITHMS

Luminosity Thresholding

Luminosity thresholding is a simple cloud detection
algorithm which classifies each pixel individually. For
a multi-band image, one luminosity threshold is found
for each band. Each pixel is classified based on its
luminosity in each band, resulting in a probabilistic
cloud mask with the contribution from each band
weighted equally. Figure [T]shows a luminosity thresh-
olding architecture which classifies pixels based on
luminosity in the red, green, blue, LWIR, and SWIR
bands of an image.

5 trees

depth 2

Votes summed from each tree

Figure 1: Classification of a single pixel using
luminosity thresholding on an image with red,
green, blue, LWIR, and SWIR bands.

Random Forest

Random forest classification is an ensemble learning
method where multiple trees are trained individually
on separate random samples of the training data.
During training, each tree solves for the splits that
will maximize the decrease in “impurity”, which is
roughly equivalent to the likelihood of eventual mis-
classification of a data point2X' Our random forest is
trained using Gini impurity.

As in Wagstaff et al.[” we use a kernel-based random
forest classifier, which considers pixel luminosities in
a k x k kernel centered on the pixel of interest when
classifying a pixel. As shown in Figure 2] we use a
3 x 3 kernel around each pixel.
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RGB + LWIR + SWIR Votes summed

from each tree
Figure 2: Classification of a single pixel by

a kernel-based random forest with n trees of
depth d and a k x k kernel.

U-Net
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Figure 3: U-Net architecture diagram. See
Figure [4] for details of specific operations.

We adapted the original U-Net architecturé? to work
for a 144 x 144 pixel image rather than a 512 x 512
pixel image (see Figure . We replaced max-pooling
operations in the original U-Net with max-blur-
pooling, which greatly reduces the aliasing caused by
max-pooling and thus improves translational equiv-
ariance T2 We also added batch normalization prior
to each rectified linear unit (ReLU) to reduce internal
covariate shift and speed up training2?

Dense U-Net

Dense deep learning models replace convolution lay-
ers with “dense” blocks, which are composed of mul-
tiple convolution layers with feed-forward operations
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BatchNorm2D

ReduceChannels ReLU -
Conv2D (1,1) C8BatchNorm2D
- C8ReduceChannels | C8RelLU
C8Conv2D (1, 1)
BatchNorm2D
ReLU
Conv2D (3,3 —
ConvBlock (3, 3) (ng, C8BatchNorm2D
ReLU 33225.320 (3.3)
| Conv2D (3,3) c8ConvBlock (3, 3) hNorm2D
C8ReLU

— C8Conv2D (3, 3)
Conv2D (1,1) o
BatchNorm2D
LeakyReLU (0.1)
Sigmoid

Activation

Figure 4: Details of operations used in our
deep learning models.

that connect the inputs of each of the convolutions ™
The four primary design parameters for dense blocks

n=4 convolution layers

—_— 'm + ReLU + Conv2D (1, 1)
BatchNorm + ReLU + Conv2D (3, 3)

Figure 5: “Dense block” architecture, with
n = 4 convolution layers and c,,+ = ¢;,/4 output
channels for the convolutional layers.

are n, the number of convolution layers per dense
block, k1, the size of the kernel used in the first con-
volution in each layer, ko, the size of the kernel used
in the second convolution in each layer, and cyyy,
the number of output channels of each convolution
layer. The output of a dense block with ¢;, input
channels has ¢;;, + ncyy channels. As in the original
DenseNet M we use a 1 x 1 kernel in the first convo-
lution and a 3 x 3 kernel in the second convolution of
each convolution layer. A typical dense block from
our dense U-Net is shown in Figure |5, with n = 4
convolution layers, k; = 1, ka = 3, cour = cin/4,
where ¢;,, is the number of channels in the input to
the dense block, and 2¢;, channels in the final dense
block output.
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Figure 6: Dense U-Net architecture diagram.
See Figures [4] and [5] for details of specific op-
erations.

Cs-FEquivariant U-Net

The Cs-equivariant U-Net is very similar to the U-
Net, but with nearly all operations replaced with
Cs-equivariant equivalents. Because the regular rep-
resentation of Cg supports pointwise nonlinearities,
many operations, including batch normalization and
ReLU, can simply be applied to each orientation rep-
resentation in Cg-equivariant deep learning models
while preserving equivariance23 €, -equivariant con-
volutions (where C,, is the group of % rotations),
however, differ fairly significantly from regular con-
volutions. A Cy-equivariant convolution is shown
in Figure[7] along with an “input convolution” that
transforms an input image on R? to a function on
R2 x C, and an “orientation pooling” layer that takes
the orientation-wise maximum to generate a final out-
put map on R2. See Meredith?? for a more detailed
tutorial on C)-equivariant convolutions.

The main exceptions to the idea that the Cgs-

(1) input image

(3) function

24
@R>Rowc,  OMRC

[/
filter |7 (4) single rep. on R?

of a g-filter, maps
R2XCs»> R?

(a) Input convolution  (b) Cs-equivariant group luti (c) Ori ion p

Figure 7: Input convolution, group con-
volution, and orientation pooling in a (-
equivariant network.
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equivariant U-Net is just a U-Net with Cs-equivariant
operations occur in the first “input” and final “out-
put” convolution steps. The input convolution step
involves a non-equivariant batch normalization and
ReLU followed by a convolution that “lifts” the input
from an image on R? to a feature map on R? x Cs.
The output convolution step involves “orientation

pooling”, which projects a feature map on R? x Cg
back to R? by taking the pixel-wise maximum or
average across the orientation dimension, followed by
the same activation block used in the U-Net.

(144,144, 8, 8)

(72 72,16,8)
(36 36,32, 8)
_, ' (18, 18,64, 8)

49. 128, 8)
<—'<—l18, 18,128, 8)

(72,72, 32, 8) (36:36,64.8)

(144,144, 5)
RGB+LWIR + SWIR

sM

(‘I 44,144,1)
Grayscale [0, 1]

(144,144, 16, 8)

<+— No operations

C8MaxBlurPool (2, 2)
C8ConvBlock (3, 3) C8ReduceChannels
BatchNorm c8ConvBlock (3, 3)
«— ReLU <«— C8ReduceChannels
Conv2D ((1,1), None, C8) MaxGroupPool (C8)
C8ConvBlock (3, 3) Activation

C8Upsample (2x)

Legend
C8ReduceChannels

C8ReduceChannels
« C8ConvBlock (3, 3)

C8Upsample (2x)

C8ReduceChannels

(@« Concatenation

Figure 8: (Cs-equivariant U-Net architecture.
At each layer, (x, y, ¢, n) represents the image
dimensions (z x y), number of channels per
orientation ¢, and number of orientations n,
with n = 8 representing Cs-equivariance. See
Figure [4| for details of specific operations.

Cs-Equivariant Dense U-Net

The Cg-equivariant dense U-Net has the same archi-
tecture as the Cs-equivariant U-Net (see Figures
and E[), except for the use of Cg-equivariant dense
blocks in place of Cg-equivariant convolution blocks.
The Cg-equivariant dense U-Net is able to leverage
the natural rotational symmetry of satellite imagery
and benefit from the improved gradient propagation
of dense deep learning networks24

ALGORITHM STUDY

Qualitative Results

We apply each model to an “easy” cloud segmenta-
tion example with no snow, ice, cold water, or bright
land pixels, and to a “hard” image with overlapping
snow and cloud (see Figure [10). The luminosity
thresholding and random forest algorithms perform
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(144,144,1)

(144, 144, 16, 8)
Grayscale [0, 1]
Legend <«— No operations C8Upsample (2x)

C8MaxBlurPool (2, 2) C8ReduceChannels

“~Cc8DenseBlock (4, (3, 3))

BatchNorm

“— RelLU
Conv2D ((1,1), None, C8)
C8DenseBlock (4, (3,3))

C8ReduceChannels
+«—C8DenseBlock (4, (3, 3))

C8Upsample (2x)

C8ReduceChannels

C8ReduceChannels
C8DenseBlock (4, (3, 3))

<«+— C8ReduceChannels
MaxGroupPool (C8)
Activation

(@« Concatenation

Figure 9: Cg-equivariant dense U-Net archi-
tecture. At each layer, the (x, y, ¢, n) tuple
represents the image dimensions (z x y), the
number of channels per orientation ¢, and the
number of orientations n.

much better on the “easy” image than on the “hard”
image, but the deep learning algorithms perform well
on both images, highlighting the limitations of rule-
based algorithms that only consider limited spatial
context.

However, the luminosity thresholding and random
forest algorithms still miss the optically thin cloud
patch boxed in green in the “easy” image. This cloud
patch is difficult to see in the SWIR input and invis-
ible in the VIS and LWIR inputs. Still, all four deep
learning algorithms capture this optically thin cloud
patch to some degree. The two Cg-equivariant mod-
els classify the optically thin cloud most accurately,
while the other deep learning models overestimate
the size of this cloud patch.

In the “hard” image, no models correctly classify
the optically thin cloud patch boxed in green. This
patch is not bright in either the VIS or SWIR image
input, nor is it cold in the LWIR image input. As
such, this cloud patch, which is only perceptible in
Landsat B8 and B9, is essentially invisible to the
cloud segmentation models.

Quantitative Results

The performance metrics for each of our models, eval-
uated without a buffer, are given in Table [2| with
the best performance on each metric bolded. Figure
shows the receiver-operating characteristic (ROC)
curve for each of our models, evaluated without a
buffer. The curve representing the Cg-equivariant
dense U-Net is consistently closest to the (0,1) point

Meredith

37th Annual Small Satellite Conference




100

(e)

0 50 100
(h)

0 50 100

(i) Evaluation on “easy” image, with optically
thin cloud boxed in green.

(ii) Evaluation on “hard” image, with optically
thin cloud boxed in green.

Figure 10: Models evaluated on two images.
Subfigures include (a) VIS input, (b) LWIR
input, (c) SWIR input, (d) “Truth” mask, (e)
Luminosity thresholding output, (f) Random
forest output, (g) U-Net output, (h) Dense U-
Net output, (i) Cs-equivariant U-Net output,
(j) Cs-equivariant dense U-Net output.

representing perfect classification, demonstrating its
superior performance. The next closest curve repre-
sents the dense U-Net, then the Cs-equivariant U-Net,
then the U-Net, then the random forest algorithm,
and finally the curve furthest from (0, 1) represents
the luminosity thresholding algorithm. This order is
consistent with the order of the F; scores presented
in Table [2] except that the ROC curve representing
the dense U-Net is closer to (0, 1) than the curve rep-
resenting the Cg-equivariant U-Net. So, with a cloud

threshold other than 0.5, the dense U-Net would
likely outperform the Cg-equivariant U-Net.

Table 2: Performance metrics, evaluated with
no buffer at cloud boundaries.

Model Acc. Prec. Recall F;
Luminosity 89.19% 55.40% 31.45% 0.4013
Threshold-

ing

Random For- 95.60% 79.16% 83.80% 0.8141
est

U-Net 96.59% 84.88% 85.62% 0.8525
Dense U-Net  96.77% 84.31% 88.36% 0.8629
Cs-Eq. U- 96.87% 87.01% 85.64% 0.8632
Net

Cs-Eq. 97.01% 86.15% 88.17% 0.8715
Dense U-Net

The performance metrics for all models (with a 2
px buffer) are given in Table [3] with the best per-
formance on each metric bolded. The F} scores for
the four deep learning algorithms are notably closer
with a 2 px buffer at cloud boundaries than with no
buffer. So, some of the performance gains made by
the Cg-equivariant dense U-Net can be attributed to
better discrimination between cloud and non-cloud
pixels at or within 2 pixels of cloud boundaries. Still,
the Cg-equivariant dense U-Net demonstrates the
best cloud segmentation performance even when a 2
px buffer is used, outperforming all other models on
every quantitative metric evaluated.

Figure shows the ROC curves for each model
when evaluated with a 2 px buffer at the cloud bound-
aries. The curves representing the deep learning mod-
els are clustered much more closely than when no
buffer is considered. Still, the AUC for each model
reflects the same relative performance seen in Figure
Although the Cg-equivariant dense U-Net and
the dense U-Net are tied for the highest AUC, the
Cs-equivariant dense U-Net outperforms the dense
U-Net except for a small region where sensitivity is
high and specificity is low, and gets closer to (0, 1)
than any other classifier, reflecting its superior per-
formance.

Resource Consumption

Table ] shows the resource utilization of all models
when classifying a single image. As expected, the
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Figure 11: Receiver-operating characteristic
(ROC) curves for all models, evaluated with
no buffer at cloud boundaries.

Table 3: Performance metrics for all models,
evaluated using a 2 px buffer at cloud bound-
aries.

Model Acc. Prec. Recall F;
Luminosity 92.22% 60.20% 43.18% 0.5029
Threshold-

ing

Random For- 98.68% 92.11% 96.91% 0.9445
est

U-Net 99.41% 98.46% 96.54% 0.9749
Dense U-Net  99.43% 98.47% 96.89% 0.9768
Cs-Eq. U- 99.54% 98.78% 97.18% 0.9797
Net

Cs-Eq. 99.54% 98.82% 97.32% 0.9806

Dense U-Net
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—— Luminosity (AUC = 0.86570)
Random Forest (AUC = 0.99773)

—— U-Net (AUC = 0.99850)

—— Dense U-Net (AUC = 0.99952)
Cg-Equivariant U-Net (AUC = 0.99948)
Cg-Equivariant Dense U-Net (AUC = 0.99952)
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Figure 12: ROC curves for all models, evalu-
ated with a 2 px buffer at cloud boundaries
(zoomed-in view).

luminosity thresholding algorithm is fastest with a
CPU backend, followed by the random forest algo-
rithm. The dense deep learning models are faster
than their non-dense equivalents with a CPU back-
end, but slower and more memory-intensive with a
GPU backend. This is likely because the dense mod-
els have fewer parameters but more concatenations,
reducing the number of opportunities to combine
tensor operations when using a GPU.

Finally, the Cg-equivariant models classify images
more slowly than their non-equivariant equivalents,
despite using less GPU memory and having fewer
parameters overall. These models are 2 to 3 times
slower than their non-equivariant equivalents with a
GPU backend, and are 1.1-1.3 times slower with a
CPU backend. This may be due to overhead related
to checking group representations.

Table [f] shows the size and number of parameters
for different models. The random forest algorithm
requires the most storage by far — this is one typical
and major drawback of data-driven methods. Also,
the Cg-equivariant dense U-Net has fewer parameters
and a smaller total model size than all the other deep
learning models.

SPECTRAL BAND STUDY

Qualitative Results

Figure [13| evaluates the Cs-equivariant dense U-Net
trained on four different combinations of Landsat 8
bands on an “easy” image with no snow, cold water,
or bright non-cloud pixels and on a “hard” image
with overlapping snow and cloud. For the “easy” im-
age, all four model-generated masks look very similar
to the “truth” mask, except for slight differences
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Table 4: Peak memory usage and average
inference time for single-image classification.

Model GPU CPU GPU CPU
Mem. Mem. Time Time
(MiB) (KiB) (s) (s)

Luminosity — 3449  — 0.0003

Thresh-

olding

Random - 1445.8 - 0.1136

Forest

U-Net 464.9 127.0 0.0092 0.3698

Dense U- 5174 103.6 0.0150 0.1801

Net

Cs-Eq. U- 448.3 101.2 0.0185 0.3926

Net

Cs-Eq. 503.5 144.8 0.0484 0.2281

Dense

U-Net

Table 5: Saved model size and complexity.

Model Model Total Trainable
Size Params Params

Luminosity 4 KB - -

Thresh-

olding

Random 1.3 GB - -

Forest

U-Net 295.9 MB  2.46 x 107  2.46 x 107

Dense U- 32.2MB  2.64x10% 2.64x 108

Net

Cs-Eq. U- 1239MB 2.10x 105 2.10 x 10°

Net

Cs-Eq. 14.6 MB 2.93 x 10° 2.90 x 10°

Dense

U-Net

identifying the optically thin clouds (boxed in green).
For the “hard” image, the model trained on only VIS
imagery and the model trained on VIS and LWIR im-
agery have difficulty distinguishing snow and cloud
in the region boxed in green. The model trained
on VIS imagery only also has trouble correctly clas-
sifying optically thin cloud boxed in pink, as does
the model trained on VIS and SWIR data. The
model trained on VIS, LWIR, and SWIR data is able

to correctly classify clouds in both the green-boxed
region and the pink-boxed region. These results qual-
itatively demonstrate the challenges distinguishing
snow and clouds without SWIR data, and the diffi-
culty identifying optically thin clouds without LWIR,
or cirrus-band data.

(i) Evaluation on “easy” image, with optically
thin cloud boxed in green.

(@)

77

" o

(ii) Evaluation on “hard” image, with cloud
patch over snow boxed in green and optically
thin cloud boxed in pink.

Figure 13: (Cs-equivariant dense U-Net eval-
uated on two images. Subfigures include (a)
VIS input, (b) LWIR input, (¢) SWIR in-
put, (d) “Truth” mask, (e¢) VIS-trained model
output, (f) VIS+LWIR-trained model out-
put, (g) VIS+SWIR-trained model output,
(h) VIS+LWIR+SWIR-trained model output.

Quantitative Results

Table [6] summarizes the results of the Cg-equivariant
dense U-Net trained on four different combinations
of bands. Figure plots the receiver-operating
characteristic (ROC) curve for the Cs-equivariant
dense U-Net trained on four different combinations
of bands. The ROC curve for the model trained
on VIS, LWIR, and SWIR bands consistently has
the highest true positive rate, and the ROC curve
for the model trained on VIS data has the lowest
true positive rate, with the false positive rate held
constant. Without a buffer, the model trained on VIS
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and LWIR data consistently has a slightly higher true
positive rate than the model trained on VIS SWIR
data, with the false positive rate held constant.
However, with a 2 px buffer at the cloud boundaries,
the curves representing the model trained on VIS
and LWIR data and the model trained on VIS and
SWIR data cross. The model trained on VIS and
SWIR data has a higher true positive rate when the
false positive rate is low (specificity is high), and the
model trained on VIS and LWIR data has a higher
true positive rate when sensitivity is more important
than specificity.

1.00

—— VIS (AUC = 0.97775)
VIS + LWIR (AUC = 0.98375)
—— VIS + SWIR (AUC = 0.98121)
0.98 4 —— VIS + LWIR + SWIR (AUC = 0.98984)
——- Reference

0.96 1

True Positive Rate

0.94 1

0.90 T T T T
0.00 0.02 0.04 0.06 0.08 0.10

False Positive Rate

(i) With no buffer at cloud boundaries.

100

0.98 4

True Positive Rate

—— VIS (AUC = 0.99876)

0.92 1 VIS + LWIR (AUC = 0.99901)

— VIS + SWIR (AUC = 0.99896)

— VIS + LWIR + SWIR (AUC = 0.99940)
-—- Reference

0.90 T T T T
0.00 0.02 0.04 0.06 0.08 0.10

False Positive Rate

(ii) With 2 px buffer at cloud boundaries.

Figure 14: ROC curves for the Cg-equivariant
dense U-Net trained on different bands.

COMPARISON TO LITERATURE

The SPARCS dataset was originally created for the
SPARCS CNN Y The SPARCS CNN, unlike our mod-
els, relies on a ten-band input and predicts several
different terrain classes. Additionally, our cloud de-
tection models classify 144 x 144 pixel patches of

Table 6: Performance metrics for the Cg-
equivariant dense U-Net trained on different
bands.

(i) With no buffer at cloud boundaries.

Model Acc. Prec. Recall F,
VIS 96.53% 86.86% 82.29% 0.8451
VIS + LWIR  96.76% 86.65% 84.91% 0.8577
VIS + SWIR  96.89% 90.10% 82.04% 0.8588
VIS + LWIR 97.01% 86.15% 88.17% 0.8715
+ SWIR

(ii) With 2 px buffer at cloud boundaries.
Model Acc. Prec. Recall F;
VIS 99.11% 98.70% 93.54% 0.9605
VIS + LWIR  99.29% 97.78% 95.98% 0.9687
VIS + SWIR  99.21% 99.50% 93.39% 0.9635
VIS + LWIR 99.54% 98.82% 97.32% 0.9806
+ SWIR

input images and the SPARCS CNN classifies 256 x
256 pixel patches!! Nevertheless, we use the same
dataset, so we can compare the different models. Ta-
ble |7 summarizes our results alongside the results
found by Hughes and Kennedy ™ Only metrics cal-
culated with a 2 px buffer at cloud boundaries are
available for the SPARCS CNN, so we present all
metrics using a 2 px buffer at cloud boundaries.

As shown in Table[7] the SPARCS CNN has a higher

F1 score than our luminosity thresholding algorithm,
random forest algorithm, and Cg-equivariant dense
U-Net trained on VIS data, but a lower Fj score
than all of our other models. This may be because
SPARCS CNN is designed to distinguish clear-sky,
water, snow/ice, cloud, and cloud shadow classes,
while our models only perform cloud segmentation.
However, the SPARCS CNN has significantly more
parameters than most of our models, and should have
enough parameters for multi-class segmentation.
It is more likely that most of our deep learning models
outperform the SPARCS CNN because of differences
in architecture. The SPARCS CNN uses max pooling,
which leads to aliasing and inhibit translation equiv-
ariancel?d Our models use blur convolutions before
max pooling and thus are less susceptible to alias-
ing? Additionally, our Cg-equivariant and dense
models make further performance gains by leveraging
rotational equivariance and the improved gradient
flow through dense networks=+/23
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Table 7: Performance metrics calculated for
the SPARCS CNNY and for our models, using
a 2 px buffer at the cloud boundaries.

Model Prec. Rec. F; Trainable
Params

SPARCS 95.73% 96.42% 0.9607 2.05 x 107

CNNL

Luminosity 60.20% 43.18% 0.5029 —

Threshold-

ing

Random For- 92.11% 96.91% 0.9445 —

est

U-Net 98.46% 96.54% 0.9749 2.46 x107
Dense U-Net  98.47% 96.89% 0.9768 2.64 x106
Cs-Eq. U- 98.78% 97.18% 0.9797 2.10 x106
Net

Cs-Eq. 98.82% 97.32% 0.9806 2.90 x10°
Dense U-Net

Cs-Eq. 98.70% 93.54% 0.9605 2.90 x 10°
Dense U-Net

(VIS-only)

Cs-Eq. 97.78% 95.98% 0.9687 2.90 x 10°
Dense U-

Net (VIS +

LWIR)

Cs-Eq. 99.50% 93.39% 0.9635 2.90 x 105
Dense U-

Net (VIS +

SWIR)

CONCLUSION

We present four different machine learning algo-
rithms, including two Cg-equivariant machine learn-
ing models, and two rule-based algorithms, all for
identifying clouds in satellite imagery. We also eval-
uate the performance of the Cg-equivariant dense
U-Net on cloud segmentation when trained on visible-
spectrum (VIS) data only, VIS and LWIR data, VIS
and SWIR data, and VIS, LWIR and SWIR data.

Of all six models, the Cg-equivariant dense U-Net pro-
duces the most accurate segmentation maps, achiev-
ing an Fy score of 0.9806 and accuracy of 99.54%
on the SPARCS dataset when evaluated with a 2 px
buffer at the cloud boundaries, outperforming hu-
man operators (96% self-consistency) as well as the
state-of-the-art SPARCS CNN Y The Cs-equivariant

dense U-Net also has only around 290,000 trainable
parameters — the fewest of our deep learning models.
The Cg-equivariant dense U-Net is a strong fit for
deployment on resource-constrained platforms. It
takes only 0.2281 seconds to classify an image us-
ing a CPU backend, and requires under 15 MB of
memory, making it a good fit for missions without on-
board GPUs. When trained on visible-spectrum data
only it has an Fj score of 0.9605, when trained on
VIS and LWIR data it achieves an F score of 0.9687,
and when trained on VIS and SWIR data it achieves
an F score of 0.9635, demonstrating suitability for
missions without multispectral instruments.

FUTURE WORK & APPLICATIONS

Our models were trained on a high-performance com-
puting cluster and evaluated on a laptop; these mod-
els are not yet ready to be deployed to real-time
operating systems (RTOS) and flight hardware. In
preparation for deployment, we plan to translate our
models to TorchScript, which can be run directly
from C++ on embedded hardware. Also, before
deployment, we plan to create a new dataset with
images collected directly from target regions and to
retrain the models on the mission-specific dataset.
This will help optimize model performance and is
especially important for identifying clouds over wa-
ter; because our training data is from Landsat, all
training images were taken over or near land.

A future application of rotation-equivariant machine
learning is learning on time-series data in order to
track the movement of clouds over time. Another
application is learning cloud morphology. If these
two applications are combined, the ability to identify
the movement and morphology of clouds would be
useful for near-term weather prediction.
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