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ABSTRACT 

Verification by analysis is a predicted compliance of a design to imposed requirements. The levels of performance 

specified by capability requirements can be related to Technical Performance Measures (TPM) in a Model-Based 

Systems Engineering (MBSE) environment, but discipline engineers performing verification by analysis are not 

commonly versed in professional Systems Engineering (SE) techniques or modeling languages such as SysML. As 

the formal application of Systems Engineering (SE) results in a diminution of time, effort, and money for large-scale 

projects, the enablement of discipline engineers to contribute MBSE-supported content while performing verification 

by analysis is financially incentivized. Ontologies applied to technical analysis methodologies are shown to improve 

the quality of verification by analysis activities while adhering to professional organization standards such as the 

International Council on Systems Engineering (INCOSE) SE Handbook and the National Aeronautics and Space 

Administration (NASA) standard 7009A: Standard for Models and Simulations. Organization strategies for 

information pertinent to verification by analysis are provided using object-oriented methods in both natural and formal 

languages, and software capabilities for creating the object-oriented relationships in diagram format are described 

specific to the Engineering Management Platform for Integration, Realization, and Execution (EMPIRE).  

 

NOMENCLATURE 

Variables 

𝐴  Area   [m2] 

𝑚  Mass   [kg] 

𝑃  Power   [W] 

�̇�  Heat   [W] 

𝑄"̇   Heat Flux   [W/m2] 

𝑡  Time   [s] 

�̅̂�𝑐𝑠,𝑋/𝑌/𝑍+/− Unit Vector Orthogonal to Spacecraft Face 

 

 

�̅�𝑒−𝑐𝑠  Earth to Satellite Vector [km] 

�̅�𝑠−𝑐𝑠  Sun to Satellite Vector [km] 

𝜀  Emissivity  [-] 

𝜃  Angle   [rad] 

𝜉  Solar Zenith angle  [rad] 

𝜌  Reflectivity  [-] 
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Recurring Subscripts 

alb  Denotes Radiative Albedo 

AOI  Denotes per Angle of Incidence 

cs  Denotes Whole-Satellite (CubeSat) 

CPH  Denotes Charged Particle Heating 

Earth  Denotes Earth as Source 

ems  Denotes Radiative Emission 

f, #f  Denotes per Face 

FMH  Denotes Free Molecular Heating 

GCR  Denotes Galactic Cosmic Rays 

in  Denotes Inward Directionality  

proj  Denotes Projection 

SEP  Denotes Solar Energetic Particles 

solar  Denotes Sun as Source 

#t  Denotes Parameter Size per Timestep 

TE  Denotes Trapped Electrons 

TES  Denotes per Thermal Environment State 

TP  Denotes Trapped Protons 

INTRODUCTION 

Analysis, demonstration, inspection, and test are the four 

verification techniques used to determine the compliance 

of a small satellite’s design to imposed requirements1. 

Verification by analysis, a predicted compliance to 

requirements via Modeling & Simulation (M&S)2, is 

advantageous when expected outcome precision is 

known, the risk of undiscovered problems can be 

tolerated, and testing cannot be done credibly or 

feasibly3. Because analysis is performed when desired 

requirements compliance data is not made available by 

vendors, cannot be visually acquired, and does not 

present during use of the system element, analysis is 

selected if all other verification methods are unviable3. 

Despite analysis being a last resort for verification, it is 

often the earliest task performed by discipline engineers, 

particularly students in university satellite programs4. 

Students are commonly asked to develop models, 

meaning physical, mathematical, or otherwise logical 

representations of a system, entity, phenomenon, or 

process5. When considered in the context of verification 

by analysis, models are either misleading, defined at an 

inappropriate level of abstraction, or misrepresentative 

of the system or environment, but some are useful6. If 

engineers develop a model that lacks utility, they have 

both wasted time and possibly delayed the project launch 

schedule. As M&S is often the earliest technical 

development responsibility and inexperienced engineers 

commonly perform M&S within the university-class 

satellite community, the automation of M&S should be a 

collective goal resulting in a diminution of time, effort, 

and money spent during early spacecraft development7. 

Methods for automating M&S using advanced Model-

Based Systems Engineering (MBSE) techniques are 

applied here to an updated version of the spacecraft 

thermal control strategy presented in Halvorson et al8. 

Ontologies are described first, followed by an overview 

of ontological parameter evaluation. Parameter 

evaluation techniques are visualized using natural 

language and ontological methods. Method realization in 

an open source software platform is then considered.  

Relevant MBSE Theory 

The four pillars of applied MBSE are architecture 

frameworks, process frameworks, modeling languages, 

and ontologies9,10. Applying architecture and process 

frameworks to verification by analysis is outside the 

scope of this work, but applying modeling languages and 

ontologies is fundamental to M&S automation. Any 

professional M&S automation paradigm must align with 

and logically build upon existing theory to provide utility 

without a need for systematic reinvention; relevant M&S 

theory is recently described by the Hatley-Pirbhai (H-P) 

method11,12,13, the International Council for Systems 

Engineering (INCOSE) Systems Engineering (SE) 

Handbook14, National Aeronautics and Space 

Administration (NASA) standard 7009A: Standard for 

Models and Simulations15, and International 

Organization for Standardization (ISO) 42010:2022, 

Software, Systems, and Enterprise – Architecture 

Description16. MBSE theory is contextualized here for 

M&S prior to ontological M&S exemplification to 

ensure automated verification by analysis relates 

performance measures to requirements verified by 

analysis, the validated purpose of M&S1.  

ONTOLOGY PURPOSE AND STRUCTURE 

Ontologies, one of the four pillars of MBSE9,10, are 

models of reality that taxonomically describe concepts 

and relations with increasing levels of specificity17,18,19. 

Top-Level Ontologies (TLO) are domain neutral in that 

they describe a maximally broad range of concepts; they 

facilitate interoperability of lower-level ontologies 

specific to a given subject or domain17,18,19. Mid-Level 

Ontologies (MLO) are supported by a TLO but are not 

domain-neutral. MLOs describe physics-based, 

mathematical, or equally generic concepts applicable to 

a broad range of domains to facilitate interoperability of 

Domain Ontologies (DO)18,19. DOs describe concepts 

specific to a given domain and are supported by one or 

more MLOs.  
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The use of ontologies to model object-oriented data has 

exploded in recent years, garnering interest from 

academic, industrial, and government entities to 

organize and populate relational databases, automate 

data processing, and train artificial intelligence models 

such as large language models20. While there is little 

agreement in the MBSE community on the best way to 

build and use ontologies, the combination of advanced 

M&S techniques, ontologies, and the burgeoning field of 

Model-Based Project Management (MBPM) offers a 

promising means to fast-track technology development.  

The application of ontological methodologies to 

verification by analysis is contingent on rigorously 

defined data structures and standardized rule sets that 

enable determination of the ontology’s logical 

consistency, inference of implicit relationships among 

taxonomized concepts, and methodical querying of the 

knowledge represented in an ontology. Inferences and 

detection of logical inconsistencies are made possible via 

the use of semantic reasoners that evaluate the assertions 

made in an ontology21. Querying for information stored 

in an ontology can be performed by using a compatible 

query engine with a corresponding query language22,23 or 

by directly accessing the contents of an ontology using 

an Application Programming Interface (API) designed 

for Object-Oriented Programming (OOP)24. Ontology 

APIs designed for OOP allow for automated execution 

of complex interdependent reasoning tasks and querying 

of information, capabilities critical to the automation of 

M&S.     

Formal Languages 

Ontologies bear a machine-readable structure authored 

using an ontology language, a formal language designed 

for ontological modeling. The machine-readability of 

concepts described using a formal language is dependent 

upon the language syntax, the structure of an expression 

in a given language25, and semantics, the ascription of 

meaning to syntactic elements of a language25,26, but 

syntax is colloquially a conflation of the terms abstract 

syntax, concrete syntax, and grammar, related terms that 

carry distinct implications for language use25. Abstract 

syntax refers to a metamodel representation of the 

conceptual components of a language in terms of a 

vocabulary27 independent of any encoding scheme26. 

Concrete syntax refers to a set of terminal symbols, the 

most primitive elements of a language, and non-terminal 

symbols, primitive constructs of a language26,27. 

Grammar refers to a set of rules for a language that 

recursively define all valid combinations of terminal and 

non-terminal symbols27. Formal languages may have 

more than one concrete syntax mapped to its abstract 

syntax25,26. 

Foundational Data Model 

The Resource Description Framework (RDF) facilitates 

the relation and machine-readable representation of 

abstract and physical concepts, declared as resources in 

RDF parlance28,29. The RDF abstract syntax defines a 

data structure called a RDF triple or a semantic triple that 

allows for the assertion of a relationship from a subject 

to an object via a predicate. A visualization of the 

structure of a RDF graph containing two nodes is shown 

in Figure 1. 

 

Figure 1: RDF Graph Structure 

Resources cannot directly assume any position in a RDF 

graph and must be denoted by one of the following: an 

Internationalized Resource Identifier (IRI), a RDF 

literal, or a blank node29. IRIs can assume any position, 

RDF literals can only assume the object position, and 

blank nodes can only assume the subject or object 

positions. 

An IRI is a uniquely identifying string in a global context 

known as a global identifier that denotes a specific 

resource. In contrast, a blank node is a local identifier 

that RDF enforces no internal representation of29, merely 

denoting the existence of an unnamed resource. A RDF 

literal is a RDF graph that relates a lexical representation 

of a value to a data type denoted by an IRI and, if 

required by the data type, a language tag29. A RDF data 

type consists of a lexical space mapped to a value space 

such that one or more elements in the lexical space map 

to a single element in the value space as defined by the 

Extensible Markup Language (XML) schema30. To 

elaborate, consider the literals “+1.0” and “1.00” defined 

with a data type of decimal, a concrete numeric data type 

in XML with a lexical space consisting of any real 

number representable in base-1030. Despite the differing 

representation of these literals in the lexical space, both 

map to an identical value of “1” in the associated value 

space. 

Ontology Languages 

The RDF abstract syntax is combined with a data-

modeling vocabulary and semantics framework from the 

RDF Schema (RDFS) to serve as the foundation for the 

Web Ontology Language (OWL)31. RDFS is a general-

purpose language that can be used as an ontology 

language to facilitate the representation of RDF 

concepts32. RDFS expands on the concept of a RDF 
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resource by defining a class as an instantiable and 

potentially hierarchical categorization of RDF resources 

such that the members of a class are its subclasses, 

instances, and instances of its subclasses. RDFS also 

allows for the attribution of domain restrictions, a 

specification of allowed classes of subjects, and range 

restrictions, a specification of allowed classes of objects, 

directly to a RDF property to enforce the intended usage 

of a given property. RDFS can be used to define the 

structure of an ontology but on its own lacks sufficiently 

rigorous semantics necessary to support complex 

reasoning tasks31,32. 

OWL is an ontology language developed as an extension 

of RDFS that provides a richer data-modeling 

vocabulary and corresponding semantics necessary to 

facilitate enhanced machine-readability for complex 

reasoning tasks31. OWL expansively extends the 

expressivity of RDFS and is subdivided into three 

increasingly expressive profiles: OWL Lite, OWL 

Description Logic (DL), and OWL Full. OWL Lite 

defines the core vocabulary and semantic extensions for 

both OWL DL and OWL Full. OWL Full allows for 

augmentations to the predefined RDFS and OWL 

vocabulary thereby creating potential for reasoning tasks 

to produce indeterminate results. OWL DL disallows 

modifications to the predefined RDFS and OWL 

vocabulary, among other less notable restrictions, to 

support deterministic reasoning of ontological 

structures33,34. OWL is superseded by OWL 2, a further 

extension of the data-modeling vocabulary and 

associated semantics of RDFS that remains backward 

compatible with the original version of OWL33,35. 

Despite OWL 2 remaining backward compatible, certain 

features introduced by OWL have been deprecated and 

replaced in OWL 236; only relevant, non-deprecated 

OWL 2 DL features are discussed for the sake of brevity. 

OWL 2 expands upon the concept of a RDFS property 

by adding annotation property, object property, and data 

property as specializations. An annotation property is 

used to ascribe metadata, meaning data about data, to a 

class, individual, or property to facilitate human-

readability rather than machine-readability such that 

metadata is to be ignored by a semantic reasoner36. An 

object property is used to assert a semantic relationship 

between two individuals in the form of an object 

property expression, and a data property is used to assert 

a semantic relationship between an individual and a RDF 

literal in the form of a data property expression. A class 

expression must be used to assert a semantic relationship 

at the class level rather than at the individual level such 

that all individuals of involved classes are bound by said 

assertion36. Usage of a class expression allows for a 

restriction to be placed on an object property expression 

or a data property expression relating to existential 

quantification, universal quantification, or cardinality of 

the object in a semantic triple. An existential class 

expression is used to relate a class of subjects “A” to a 

class of objects “B” and assert that an instance of “A” 

must be related via a specific object property to a 

minimum of one instance of “B”. An existential class 

expression is used to relate a class of subjects “A” to a 

class of objects “B” and assert that an instance of “A” 

cannot be related via a specific object property to an 

instance of a class other than “B”. A class expression 

containing a minimum, exact, or maximum cardinality 

restriction is used to relate a class of subjects “A” to a 

class of objects “B” and assert that an instance of “A” 

must be related via a specific object property to greater 

than or equal to, exactly, or less than equal to a specific 

number of instances of “B” respectively. A more 

complex form of class expression is often necessary to 

enhance inference capabilities and can be formulated 

using the herein described concepts and the Boolean 

connectives “and”, “or”, and “not”, referred to as 

conjunction, disjunction, and negation respectively in 

the parlance of logisticians35. Specific examples of class 

expressions are provided later in this work. 

The capabilities for deterministic semantic inference 

enabled by OWL 2 DL are extensive but limited in that 

minimum cardinality restrictions, including those 

explicitly asserted in a class expression or implicitly 

asserted in an existential class expression, are ignored by 

reasoners compliant with the open-world semantics of 

language36. During the reasoning process, the application 

of open-world semantics results in the assumption that 

information not declared is simply considered to be 

unknown rather than indicative of a logical 

inconsistency36. If asserted minimum cardinality 

restrictions are to be relied upon for detecting logical 

inconsistencies due to missing information in 

ontological structures pertinent to M&S, a reasoner that 

applies closed-world semantics must be used. 

The Problem with Purposeful Ontologies 

Ontologies and analysis models have a similar, ironic 

problem. Despite ontologies being designed for reuse, 

there are few reported examples of existing ontologies 

being used by groups who did not build them37,38. A 

diversity of domain-specific content representation 

styles with incompatible levels of abstraction and 

narrowly prescribed purposes limit the utility of both 

models and ontologies. Maier notes a substantial 

challenge to modern Digital Engineering (DE) is, “the 

sheer diversity of models, notations, tools, and methods, 

many of them overlapping and redundant13.” As an 

example, a hierarchy of ontologies including the Basic 

Formal Ontology (BFO) as the TLO39 and the Common 

Core Ontologies (CCO) as a suite of MLOs40 were used 

as the basis for a set of Space Domain Ontologies 
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(SDO)41 describing outer space, space events, space 

objects, spacecrafts41, and spacecraft missions. The 

Marshall Space Flight Center (MSFC) Advanced 

Concepts Office (ACO) evaluated the BFO, CCO, and 

SDO for inclusion in an upcoming set of space-focused, 

NASA-centric DOs called the Common Space Systems 

Ontology (CSSO) and determined the relation formality 

and level of abstraction in the BFO, CCO, and SDO did 

not fully meet the ACO’s needs, though this work is 

ongoing43. Separately, the BFO and Information Artifact 

Ontology (IAO) were evaluated as a basis for a DO 

concerning Prognostic Health Management (PHM) in 

spacecraft avionics by Halvorson, Moyers, and 

Thomas42, but the BFO independent continuant division 

of material versus immaterial entities does not coincide 

with how the standard model of physics organizes 

relations between matter and energy, making it difficult 

to represent interactions of spacecraft electronics with 

subatomic particles. The BFO 2.0 User’s Guide44 states,  

Matter is intended to encompass both mass and 

energy (we will address the ontological 

treatments of portions of energy in a later version 

of the BFO).] 

Informally, the BFO has difficulty describing physics in 

a realistic, machine-readable way, and changing the BFO 

to suit MSFC ACO’s needs is akin to defining a 

completely new TLO, perpetuating the problem of 

ontologies designed for reuse not being re-used. The 

IAO fails to distinguish between data, entities that 

individually carry no intrinsic meaning, and information, 

entities that carry intrinsic meaning after being 

contextualized such that information is dependent upon 

data but data is not dependent upon information45. The 

distinction between data and information is necessary to 

support an accurate representation of knowledge in the 

software domain specific to M&S or otherwise. 

If ontologies are to be used as the foundation for 

automated verification by analysis, both challenges of 

model reuse and ontology reuse must be addressed. A 

consistently reusable ontology must feature a broadly 

applicable content representation style, a robustness of 

purpose, and a level of abstraction highly aligned to 

engineering reality wherein both meticulously detailed 

and intentionally vague representations are possible. 

Engineers using the ontology to create models must have 

the ability to represent domain-specific model content 

and execute orders of operations using ontologically 

supported M&S techniques. To this end, the Alabama 

CubeSat Initiative (ACSI) is developing the Unified 

Ontological Foundry (UOF) as a basis for ontologically 

foundational work in spacecraft engineering, including 

the NASA ACO CSSO. A software platform for 

ontologically supported MBSE, MBPM, and M&S is 

being developed in lockstep with the UOF. This platform 

is called the Engineering Management Platform for 

Integration, Realization, and Execution (EMPIRE); 

EMPIRE version alpha will be released open source by 

2024. Additional discussion of the UOF and EMPIRE is 

provided later in this work.  

ONTOLOGICAL VERIFICATION 

Requirements development is described with historical 

context as foundational material concerning M&S 

validation. Requirements verified by analysis are 

coupled with object-oriented technical performance 

measurement methods in preparation for ontological 

exemplification. Readers may find certain phrasing 

unnatural, such as “numeric parameters may assume the 

role of Technical Performance Measures (TPM)” instead 

of “numeric parameters can be TPMs,” but this phrasing 

is intentional and supports machine-readability in an 

ontological context. Without delving deeply into BFO 

theory and justification, the attribution and loss of a BFO 

role such as TPM does not fundamentally change the 

structure of a numeric parameter. The attribution instead 

sets an expectation for how the role of TPM must be 

acquired and subsequently used44.  

Hatley-Pirbhai: Requirements and Functions 

The H-P method is a MBSE method originating in the 

1980s that separated any system specification into two 

models: requirements and architecture13,46. The first 

stage of the H-P method built the requirements model as 

a functional decomposition of the system’s purpose; 

context diagrams translated stakeholder needs into 

customer and system specifications13. Parallel to the 

functional requirements model was a physical 

decomposition model with system architecture flow and 

connection diagrams. Viewpoints, a system organization 

tool used in SE methods such as NASA-STD-1005: the 

Space Mission Architecture Framework47, were first 

conceptualized within the H-P method, though the 

authors did not refer to requirements and architecture 

models as viewpoints outright. The requirements and 

architecture models later became known as the logical or 

functional viewpoint and the physical viewpoint, 

respectively. There are needlessly restrictive ways to 

build viewpoints into applied SE methods10, but relating 

system requirements to system function using diagrams 

was established as a useful MBSE practice by the H-P 

method. Maier provides a thorough overview of the H-P 

method and its impact on modern digital engineering13, 

an especially useful perspective considering Maier also 

wrote parts of ISO 42010. Modern system modeling 

languages such as SysML48 offer additional diagram 

types such as parametric and use case diagrams for 

system characterization outside requirements and 

architecture.  
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Verifying Requirements Compliance 

Building upon the H-P method, a Requirements 

Verification and Traceability Matrix (RVTM)1,3 is 

developed as part of a requirements specification. 

SysML or bespoke requirement development tools are 

useful when allocating verification methods to 

requirements and tracing requirement verification across 

multiple requirements levels48. Requirements can be 

verified using a verification case, meaning the 

application of analysis, demonstration, inspection, or 

test, by tracing an upper-level requirement to one or 

more lower-level requirements and verifying the lower-

level requirements49, or a combination of both 

techniques. The allocation of verification methods and 

lower-level requirements to upper-level requirements is 

tabulated in the RVTM and graphically depicted in an 

Operational Compliance Assessment (OCA). Upper-

level requirements are often verified by the compliance 

of several lower-level requirements, and lower-level 

requirements, termed specifications, are often verified 

by a verification case.  

Parameter Evaluation  

When defining machine-readable syntax and semantics 

for automated M&S, ambiguity must be removed from 

terms often used colloquially in engineering settings. 

Rigorous definition specificity facilitates the translation 

of definitions to mathematical axioms, which enable a 

computer to infer what quantities, equations, and 

evaluation units are related to a model developed for 

verification by analysis, ontologically relating 

verification methods in the RVTM to the evaluation of 

parameters. Ontological class definitions concerning 

parameter evaluation are provided here as preface 

materials for automated technical performance 

measurement. These definitions are part of the UOF and 

were created specifically to assist engineers in 

automating spacecraft M&S. While the BFO50 is not 

perfect, some classes in the BFO hierarchy are well-

formed, included in the UOF TLO, and referenced here. 

Mathematical axiom development is ongoing and will be 

published as future work relating to the present work, but 

semantics are defined for maximal flexibility in all cases 

to support domain interoperability. Parameter evaluation 

begins by distinguishing data versus information, a 

distinction the IAO fails to make.   

Data Entity: A data entity is a generically dependent 

continuant50 that carries no intrinsic meaning until 

contextualized as information. 

Information Entity: An information entity is a 

generically dependent continuant50 that carries intrinsic 

meaning for a period of time by virtue of contextualized 

data. 

Reasonable minds may disagree on the distinctions 

between a parameter, quantity, and value, but the 

semantics of an expression containing these terms must 

be strictly defined for automatable M&S. Values are first 

split into numeric and non-numeric values.  

Value: A value is a data entity that is ascribed a literal 

from the lexical space of a data type. 

Numeric Value: A numeric value is a value that is 

ascribed a literal from the lexical space of a numeric data 

type. 

Non-Numeric Value: A non-numeric value is a value that 

is ascribed a literal from the lexical space of a non-

numeric data type. 

Formally defining value as a class may appear redundant 

due to the existence of RDF literals, a class already 

capable of representing a value in its lexical form29, but 

as RDF literals can appear only in the object position of 

a semantic triple and are not denoted by an IRI29, 

assertions cannot be made that associate an attribute or a 

quality directly to a RDF literal, limiting the inference 

capabilities. Value is an adapter class that extends the 

functionality of RDF to allow for a direct association of 

attributes enabling inference capabilities on the 

representation of data structures, namely arrays and 

matrices. The distinction made by the XML schema type 

system regarding the lexical space and value space of a 

data type is reflected in the definition of value and all 

descendent entities. Boolean values are considered a 

subclass of non-numeric values; numeric values do not 

exist in Boolean algebra.  

There is a pervasive, ingrained misconception 

concerning the difference between measurement and 

evaluation that must be rectified for a computer to parse 

the terms with appropriate inferences. Measurement and 

evaluation are often used interchangeably in natural 

language, and units associated with numeric values are 

commonly referred to as units of measure. The core 

problem is that measurement results in the creation of a 

quantity through instrumentation whereas evaluation 

results in the creation of a quantity through any 

evaluation process. The concept of units, exemplified by 

watt, kilogram, or meter, are here termed evaluation 

units. The distinction between evaluation and 

measurement becomes increasingly important when 

relating verification methods to requirements, described 

later in this section.  

Evaluation Unit: An evaluation unit is a quality50 

ascribed a numeric value that allows for comparisons of 

quantities of the same type.   
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Certain evaluation units beget additional description 

information, e.g., a degree or radian must be defined 

relative to a coordinate frame and an axis within that 

coordinate frame. 

Quantities are ontologically related to a quantity value 

and an evaluation unit. The BFO does not include the 

concept of quantities, making the utility these definitions 

and relationships provide specific to the UOF.  

Quantity: A quantity is a specifically dependent 

continuant50 that consists of a quantity value and a 

category of evaluation unit. 

Quantities represent the actual amount of something. 

Quantity values represent the data describing that 

amount. Quantity values are described ontologically 

using a similar definition to that offered by the 

International Vocabulary of Metrology51 (IVM), though 

not all definitions offered here are consistent with IVM 

definitions. The IVM makes improper use of the word 

“magnitude”, implying that magnitude could represent a 

negative value.  

Quantity Value: A quantity value is a numeric value that 

is part of a quantity and is associated with an evaluation 

unit of some type compatible with that of the evaluation 

unit of the owning quantity.  

Engineers frequently ascribe symbolic or alphanumeric 

identifiers to parameters, requirements, and other useful, 

tabulated entities. This could be a requirement identifier 

such as “ACSI.L4.C&DH.6” or a parameter name such 

as “Earth Radiative Surface Emission.” 

Identifier: An identifier is an information entity50 that is 

associated with a value or a symbol and is used 

referentially to denote an entity. 

A parameter can have a quantity value by virtue of a 

quantity value being a subclass of numeric value. If a 

quantity value is used in some data or evaluation process, 

it is concretized in a parameter for that process.  

Parameter: A parameter is an information entity50 that 

consists of an identifier and a value such that it can be 

input to or output from a process. 

Numeric Parameter: A numeric parameter is a parameter 

with a value part associated with a numeric data type. 

Non-Numeric Parameter: A non-numeric parameter is a 

parameter with a value part associated with a non-

numeric data type. 

The distinction between evaluation and measurement 

logically places evaluation process as a superclass of 

measurement process. When considering other useful 

means of evaluating a quantity, both calculation and 

simulation are considered wherein calculation results in 

the ascription of a literal to a quantity value via the 

execution of an equation and simulation results in the 

ascription of a literal to a quantity value via the execution 

of a model. When these evaluation processes are 

ontologically defined and restrictions are placed on the 

types of evaluation processes associated with 

verification methods, the computational rigor required to 

automate M&S is architected.  

Evaluation Process: An evaluation process is a process50 

that has at least one parameter as output and results in the 

ascription of a literal to one or more values contained in 

each output parameter. 

Measurement Process: A measurement process is an 

evaluation process that results in the ascription of a 

literal to one or more quantity values as part of a numeric 

parameter.  

Measurement devices and units under test are 

ontologically associated with measurement processes in 

lieu of associating measurement processes with sensors 

and units under test in the measurement process 

definition because measurement processes can occur 

outside of test processes.  

Calculation Process: A calculation process is an 

evaluation process that has at least one numeric 

parameter as input, at least one numeric parameter as 

output, at least one equation that may be ordered, and 

results in the ascription of a literal to one or more 

numeric values as part of one or more numeric 

parameters.  

Simulation Process: A simulation process is an 

evaluation process that has at least one numeric 

parameter as input, at least one numeric parameter as 

output, at least one mathematical model that may be 

ordered, and results in the ascription of a literal to one or 

more values as part of one or more parameters. 

With these logically consistent definitions established, 

mathematical axioms can be created further supporting 

machine-parseability. Axioms supporting UOF 

definitions are the subject of ongoing work and future 

publications.  

USING ONTOLOGICAL PARAMETERS 

INCOSE defines three fundamental requirement types as 

functional, performance, and non-functional14, but these 

can be ontologically simplified to functional and non-

functional when considering the syntax of a machine-

readable requirement statement. Functions are unitless; 
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they do not have an associated value or level of 

performance. A system either does or does not execute a 

function. Like a vector with a direction and magnitude, a 

capability is a function executed to a given level of 

performance1. The only differences between a 

performance requirement statement and a functional 

requirement statement are therefore a relational operator 

such as, “less than or equal to”, a numeric value such as 

“5”, and an evaluation unit such as “kg”. If a 

performance requirement statement is a functional 

requirement statement with the addition of a relational 

operator and a quantity value, a performance 

requirement is a subclass of functional requirement. 

Because functional requirements describe functions and 

performance requirements describe capabilities, it is less 

ambiguous to instead refer to performance requirements 

as capability requirements, a conclusion adopted in both 

the abstract and remainder of this work.  

Ontological restrictions are levied concerning which 

types of verification methods can be applied to which 

types of requirements; the restrictions are predicated on 

the type of evaluation process associated with a given 

verification method. Verification by analysis can be 

achieved via calculation if an equation is executed to 

evaluate a parameter or simulation if a model is executed 

to evaluate a parameter. There are some instances when 

a simulation results in a Boolean value, meaning true or 

false. A Boolean value in this framework would be 

represented by the ascription of a Boolean literal to an 

instance of non-numeric value that is bounded by a 

Boolean data type. Inspection and demonstration by 

nature do not have an associated numeric value; their 

results are always associated with a Boolean value, a 

type of non-numeric value. Test is a verification method 

associated with a measurement process, an evaluation 

process resulting from the application of instrumentation 

to a unit under test. Because instrumented sensors output 

a numeric value associated with some evaluation unit, 

testing cannot result in a Boolean value. To summarize, 

the verification methods analysis, demonstration, and 

inspection can result in Boolean values. Analysis and test 

can result in numeric values. Functional requirements 

corresponding to unitless functions can be verified by 

analysis or demonstration because functional 

requirements require Boolean values as verification 

criteria. Capability requirements corresponding to 

functions executed at a given level of performance can 

be verified by analysis or test because capability 

requirements require numeric values as verification 

criteria. Non-functional requirements have Boolean 

values as verification criteria and can be verified by 

inspection only. The allocation of acceptable primary 

verification methods to fundamental requirement types 

is organized in Table 1.  

Table 1: Primary Verification Methods for 

Fundamental Requirement Types 

Requirement Type Possible Verification Method 

Functional Analysis, Demonstration 

Capability (Performance) Analysis, Test 

Non-Functional Inspection 

Technical Performance Measurement 

Validation ensures a system, product, service, or model 

fulfills its users’ operational needs1, and relating models 

to system requirements ensures time spent developing, 

automating, and executing models is validated to the 

purpose of model users – to verify the system is 

developed in compliance to imposed requirements. To 

connect models to capability requirements and thereby 

validate M&S effort, engineers describe levels of 

performance using TPMs. A numeric parameter assumes 

the role of TPM if the numeric parameter is used for 

comparison of modeled or actual performance against 

that anticipated at the current time and on future dates52. 

As Boolean values are non-numeric values, this implies 

Boolean results from analysis, inspection, or 

demonstration cannot assume the role of TPM. TPMs 

exist for components, subsystems, and systems and are 

used to confirm progress or identify deficiencies that 

might jeopardize meeting a system requirement. If a 

requirement dictates a component can only use 5 W of 

power and the system is verified by analysis to use only 

4 W of power, the TPM would be a component power 

margin with a value of 1 W. TPMs should53, 

 be relevant to the entity and tailored to the 

mission 

 be relatively easy to measure or evaluate 

 be controllable, i.e. tradeable with cost, 

schedule, and performance 

 have a value or uncertainty that is expected to 

improve with time 

 have a target or threshold value 

 have known corrective action if the target or 

threshold value is exceeded  

NASA decomposes stakeholder requirements into 

Measures of Effectiveness (MOE), translates MOEs into 

Measures of Performance (MOP), and selects TPMs 

from MOPs. The most important, system-wide TPMs 

relating to mission success are Key Performance 

Parameters (KPP), characterizing major drivers of 

operational performance, supportability, and 

interoperability26. The ACSI has found students 

experience significant difficulty understanding and 

successfully implementing MOEs and MOPs, and the 

NASA parameter role delineation is not ontologically 

supportable because it contains subjective boundaries. A 
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simplified set of concentric numeric parameter roles is 

taught instead using NASA’s TPM and KPP definitions 

with the addition of one numeric parameter role: 

Knowledge Points (KP). Shown in Figure 2, these 

numeric parameter roles are both relevant to practical 

verification by analysis and ontologically useful. UOF 

definitions for numeric parameter roles are provided 

here. 

 Knowledge Point: A knowledge point is a role50 a 

numeric parameter may assume if it is evaluated 

through some evaluation process. 

Technical Performance Measure: A technical 

performance measure is a role50 a numeric parameter 

may assume if it is controllable, has a quantity value 

that is expected to improve with time, has a target or 

threshold quantity value, and corrective action is 

known if the target or threshold quantity value is 

exceeded or not met.  

Key Performance Parameter: A key performance 

parameter is a role50 a numeric parameter may 

assume if it meets the criteria to assume the role of 

TPM and relates directly to system-level stakeholder 

needs. 

Building on existing NASA definitions26, all KPPs are 

TPMs and all TPMs are KPs, ergo all KPPs are also KPs. 

The evaluation of a KP through an evaluation process is 

a central feature; KPs are not sourced from a textbook or 

provided in a vendor’s component datasheet. KPs are 

always calculated, simulated, or measured, else 

parameters cannot assume the role of KP, but not all 

evaluated parameters assume the role of KP. KPs may 

also not meet the criteria to be considered TPMs. The 

maximum heat flux incident on the +Z face of a 

spacecraft is a numeric parameter that is relevant to the 

system and relatively easy to evaluate, but it is not 

controllable. There is not a target value for maximum 

heat flux, and there is not an expectation that the value 

or uncertainty inherent to parameter evaluation will 

improve over time. Maximum heat flux incident on the 

+Z face is therefore a numeric parameter assuming the 

role of KP, not the role of TPM. NASA prefers to 

attribute the role of TPM to margins because they feel it 

is easier to set current and future targets on margins 

instead of calculated values54.  

If project managers and systems engineers understand 

the rules and purpose of technical performance 

measurement, they may tailor which numeric parameters 

assume the role of KP or TPM at their discretion based 

on imposed requirements. What is important is 

understanding what parameter role a capability 

requirement is specifying as a level of performance and 

how a given organization plans to track the compliance 

of their design to that requirement. Once parameter roles 

are understood in relation to imposed requirements 

verified by analysis, one or more parameters assuming 

the role of KP, TPM, or KPP are allocated to models. 

Models are allocated to modeling environments, 

developed using traditional or ontological methods, and 

executed for some baselined system design. Systems 

engineers can then enjoy a holistic view of which 

parameters must be evaluated using which models in 

which modeling environments. 

Visualizing Parameter Relationships 

Object-oriented representations of individual KP 

evaluation methodologies in user-friendly natural 

language are referred to as Domain Knowledge Maps 

(DKM). A DKM example is provided in Figure 3 for the 

Sun to Satellite View Factor KP. Each oval in Figure 3 

corresponds to a numeric parameter that has assumed the 

role of KP. Non-oval entities may be numeric parameters 

or any other entity type described in the legend.

Figure 2: Simplified Numeric Parameter Roles Replacing Measures of Effectiveness and Measures of 

Performance  
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Figure 3: Domain Knowledge Map for Sun to Satellite View Factor 

Numeric parameters assuming the role of KP are often 

evaluated using M&S on a longer road to TPM 

evaluation; this necessitates KPs to be strung together in 

KP integration diagrams. An example is shown in Figure 

4 for a subsection of the incident spacecraft heat flux 

calculation methodology described in Halvorson et al8. 

Each oval in Figure 4 corresponds to the same KP as the 

eponymous ovals of Figure 3, and KP integration 

diagrams form both an easily digestible process for new 

spacecraft engineers to use as onboarding material and 

an order of operations for high-level, machine-readable 

instruction sets. To reiterate, the Sun to Satellite View 

Factor KP for which the DKM in Figure 3 defines the 

calculation process methodology is one of the KPs 

present in Figure 4. The KP integration diagram in 

Figure 4 does not represent an exhaustive set of KPs for 

complete spacecraft thermal analysis, but one can readily 

see how this numeric parameter organization can be both 

extended to the desired level of detail and applied to 

other domains. Starting at the left, the red source block 

defines the team or group responsible for the evaluation 

of the KP. Prescribing ownership to a KP, meaning a 

prescription of requirement compliance responsibility 

related to that KP, enables project and team managers to 

partition verification responsibility. Moving right in 

Figure 4 from the source into ovals denoting KPs, each 

KP shown has its own DKM such as that of Figure 3. 

KPs, each with bespoke DKMs, are linked together until 

the TPM corresponding to a capability requirement’s 

level of performance is reached. In Figure 3 are a few 

examples of the differences between KPs and numeric 

parameters not assuming the role of KP. Solar Radius is 

a numeric parameter that does not assume the role of a 

KP and therefore is also not a TPM or KPP. Non-KP 

parameters are shown as rectangular blocks. CubeSat to 

Sun Vector is a parameter that is evaluated via 

calculation in an equation, but it is subjectively not a KP 

because it is considered a steppingstone to the desired 

KP Sun to Satellite View Factor. The decision to keep 

CubeSat to Sun Vector as a parameter that does not 

assume the role of a KP is subjective in a different sense 

than MOEs and MOPs are subjective. Engineers using 

EMPIRE to create DKMs and KP integration diagrams 

will automatically link KP diagram content to other 

EMPIRE content such as system architecture and 

requirements. Any evaluated numeric parameter can be 

labeled as a KP to suit analysis interests. One could argue 

that every evaluated parameter should be a KP; that 

strategy is legal in EMPIRE but may not be desired by 

all organizations. TPMs may evolve as the architecture 

matures through design decisions, so parameters may 

assume the role of KPs or TPMs during concept 

definition but not during verification or integration. 

Because KP integration diagrams are built on DKMs and 

DKMs are both object-oriented and written in a natural 

language syntax, users can readily create machine-

readable diagrams linked to a backend database using 

their desired parameter definition strategy. A goal in 

future work is for DKM and related EMPIRE database 

content to populate subsystem analysis documentation, 

avoiding the need for users to write model export code 

into documents using Velocity Template Language or 

another model export language. The equation numbers 

in the green equation blocks are specific to the equation 

numbers in ACSI documentation and do not have 

significance in the context of the present work.
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Figure 4: Knowledge Point Integration Diagram for a Section of the Advanced Thermal Analysis 

Methodology Presented in Halvorson et al8. Figure 3 Content is Marked with a Red Outline. 
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Model Generation Versus Model Linkage 

In these early days of M&S automation, engineers must 

still build models in modeling environments such as 

MATLAB, Simulink, or Thermal Desktop to match 

DKM organization, but the long-term goal is for object-

oriented structures in DKMs to generate model content 

specific to the system. If the goal was to build models 

separately from a defined model execution hierarchy, 

users would be better enabled by linking externally built 

models to SysML parametric diagrams, though this 

process is time-consuming and ill-advised for 

understaffed projects. Generation of models 

corresponding to DKM content is what differentiates 

EMPIRE diagrams from parametric diagrams in SysML. 

MATLAB models can be linked to SysML diagrams, but 

SysML diagrams cannot generate MATLAB code.  

ONTOLOGICAL AUTOMATION 

The creation of a DKM in EMPIRE provides ontology-

supported database population functionality. When users 

create DKMs, the sources, equations, parameters, and 

states defined also populate backend database fields. 

Because the natural language DKMs have an underlying, 

ontological structure, fidelity of database relationships is 

ensured during DKM creation. Natural language, 

however, does not enable machines to understand the 

relationships between DKM entities such as parameters, 

sources, and equations. A bridge between the user-

friendly natural language and the machine-friendly 

formal language must be defined.  

The BFO-2020 is recognized as a TLO by ISO 21838-

2:2021 and is used to facilitate the representation of 

entities pertinent to DKMs. Definitions for BFO 

terminology can be found in the BFO 2.0 User’s Guide44. 

The BFO 2.0 and BFO-2020 are separate iterations of the 

BFO, but few changes between versions are directly 

pertinent to this work. The BFO-2020 added an 

“enriched treatment of relations involving time” such 

that previously existing relationships such as 

“concretizes” were expanded to variations such as 

“concretizes at some time” and “concretizes at all 

times”39. The phrase “at some time” denotes that the 

entity in the object position of a semantic triple is 

impacted by the predicate to which it is attached at some 

temporal instant and potentially for the duration of an 

associated temporal interval, and “at all times” denotes 

said object would be impacted by the predicate to which 

it is attached through the entirety of the temporal interval 

that bounds its existence. 

The vocabulary of a DKM such as that of Figure 3 is 

investigated to facilitate additional context necessary for 

automated M&S. The following definitions of the 

extrapolated vocabulary of a DKM are prescribed in 

ontological format: 

Information Source: An information source is a role50 

that an independent continuant50 or generically 

dependent continuant50 assumes if providing some 

information.   

Equation: An equation is a generically dependent 

continuant50 that represents a mathematical statement 

of equality. 

State: A state is a disposition50 that specifically 

depends on some system or operational environment 

and exists during some temporal interval. 

States here are described in the context of Wasson1 and 

can be system, configuration, operational, dynamic, or 

environmental states. The Thermal Environment State 

(TES) in Figure 3 varies parameters to represent their 

hottest and coldest possibilities. If a parameter is varied 

by TES, the chosen data structure must store 2 elements 

at a given index because there are two TES. This is an 

example of semantic inference applied to the data size 

field of a parameter. A visualization of the ontological 

structure of a DKM is shown in Figure 5 in Manchester 

OWL Syntax. The Manchester OWL Syntax is used to 

represent class expressions in Figure 5 in a format 

identical to that of Protégé 5. The Manchester OWL 

Syntax is an alternative abstract syntax for OWL DL that 

allows for development of ontologies with a “less 

logician like” syntax in that “special mathematical 

symbols such as ∃, ∀, ¬ and have been replaced by more 

intuitive keywords such as some, only, and not,” wherein 

the former two symbols correspond to existential and 

universal property restrictions respectively55. Shown in 

Figure 5 are ontological relationships necessary to 

enable semantic inference, based on an asserted 

evaluation process, of the structure of unknown or not 

yet instantiated input or output parameters. 

Input-Process-Output 

With historical perspectives and best practices 

concerning requirements verification, technical 

performance measurement, and translation of M&S 

entities into machine-readable data structures 

understood, the next step is defining the conceptual 

organization of automated M&S methodology 

execution. DKMs and KP integration diagrams convert 

technical performance measurement information into 

machine-readable structures suitable for back-end 

database field population, but a common framework for 

providing database content to executable models and 

retrieving KP and TPM outputs from models must be 

defined. The Input-Process-Output (IPO) framework is 

considered as a solution to M&S automation theory.  
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Figure 5: Ontological Representation of DKM Structure
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IPO has been used in economics, law, and software since 

the 70s; its earliest origins are unclear. Forsberg, 

Walden, Shortell, Roedler, and Hamelin organized SE 

processes using the IPO framework for the INCOSE SE 

Handbook14, which makes IPO an attractive M&S 

automation option for future SE handbook inclusion. 

Forsberg and Mooz invented the Vee life cycle model in 

199156, Walden developed criteria to tailor SE processes 

to bespoke projects57, and Roedler published on both 

knowledge management and technical performance 

measurement58,59, indicating INCOSE SE Handbook 

authors consider the IPO model useful for a variety of 

system architecture descriptions. Each process includes 

controls, activities, and enablers in addition to inputs and 

outputs. The INCOSE SE Handbook organizes certain 

chapters into technical, technical management, 

agreement, organizational project-enabling, and 

tailoring processes; the system analysis process is 

considered a technical process. Table 2 defines a high-

level overview of the inputs, activities, and outputs for 

the system analysis process per the INCOSE SE 

Handbook.  

Table 2: System Analysis Process IPO 

Considerations14 

Inputs Activities Outputs 

Life cycle concepts Prepare for system 
analysis 

System analysis 
strategy 

Analysis situations Perform system 
analysis 

System analysis 
report 

Life cycle 
constraints 

Manage system 
analysis 

System analysis 
record 

Context descriptions are provided for each process 

activity, and the present assertion is that ontological, 

automated M&S should also adhere to theory-supported 

process activities. When preparing for system analysis, 

the scope, types, objectives, level of accuracy, evaluation 

criteria, methods, relevant requirements, modeling 

environments, order of operations, and relevant 

documentation must be defined. These criteria are almost 

all met when NASA-STD-7009A is applied, specifically 

Appendix E regarding M&S credibility assessments15. 

Appendix E asserts eight factors for M&S credibility in 

three categories: development, operations, and 

supporting evidence. Development defines credibility 

factors for data pedigree, verification, and validation. 

Operations define factors for input pedigree, uncertainty 

characterization, and results robustness. Supporting 

evidence defines factors for M&S history and M&S 

process/product management. These factors can be 

taxonomized in an ontology and related to technical 

performance measurement as database fields, though 

EMPIRE has not included this yet. When performing 

system analysis, the INCOSE SE handbook considers 

collection of data and assumptions, execution of the 

model, and application of peer-reviews to the 

methodology. Figure 6 represents a visualization of 

model process for the Isothermal First Order (IFO) 

model described in Halvorson et al.8 created in the 

MATLAB modeling environment. While Figure 6 

complements Figure 3 and Figure 4 in describing the 

order of operation for model execution instead of the 

dependence of parameters upon previously evaluated 

parameters, its ability to describe model assumptions 

falls short. Models themselves should therefore be 

ascribed assumptions, behaviors, and use cases in 

editable database fields for additional peer review. 

System analysis management as the final IPO activity 

concerns documentation, an easily automatable task for 

database-represented information.  

A key problem in both providing database field 

information to and receiving it from modeling 

environments is that disparate modeling environments 

feature disparate Graphical User Interfaces (GUI) or data 

import methods. Modeling environments such as 

MATLAB can be interfaced with in an object-oriented 

context via the MATLAB Engine for Python API60, 

making data import from and export to EMPIRE 

relatively easy, but modeling environments relevant to 

domain-specific M&S, e.g., Simulink and Thermal 

Desktop for spacecraft thermal analysis, require design-

specific information provided to the modeling 

environment through graphical means such as Simscape 

blocks. The automation of deterministic, equation-based 

analysis methodologies is therefore considered for 

inchoate ontological automation, and ontologically 

driven automation using Simulink and Thermal Desktop 

in this thermal analysis example is considered the subject 

of future work.   

Ontological Analysis Automation Summary 

The steps to relate requirements to executable models in 

an ontologically supported platform such as EMPIRE are 

then,  

1. Develop the RVTM and OCA to determine 

system requirements verified by analysis.  

2. Define Boolean values associated with 

functional requirements verified by analysis. 

3. Define numeric values associated with 

capability requirements verified by analysis. 

4. For numeric parameters associated with 

capability requirements verified by analysis, 

define which numeric parameters assume the 

role of TPMs or KPs.  

5. Allocate models to one or more KPs resulting 

in a TPM such that all KPs are related to a 

model. 

6. Allocate modeling environments to models. 
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7. Define which KPs are inputs and outputs of 

which models. In EMPIRE these populate 

database fields. 

8. Define the process for model execution using 

KP integration diagrams and DKMs. 

9. Interface the model-based platform or SysML 

model with the modeling environment.  

10. Export input parameters from the model-based 

platform or SysML model to the technical 

modeling environments.  

11. Import evaluated KPs and Boolean values from 

the technical modeling environments to the 

model-based platform or SysML model. 

12. Assess requirements compliance. 

Figure 6: Isothermal First Order Thermal Model IPO Process Diagram8 
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EMPIRE: PURPOSE, FUNCTION, AND STATUS 

EMPIRE was conceived when aerospace, mechanical, 

electrical, and software engineering students from 

multiple universities had a need to architect, design, 

integrate, and verify the 12U Space Transporter by ACSI 

(Space TACSI) satellite bus. ACSI students learn 

technical discipline engineering from their constituent 

universities, but students from all universities stated their 

exposure to SE principles were limited at best, a difficult 

foundation to build a spacecraft engineering education 

upon considering every engineer, no matter the technical 

discipline, is a systems engineer1. SysML offers a means 

to develop models representing a central source of truth 

for all ACSI projects, but SysML diagrams do not 

inherently facilitate professional SE. The soul of SE is 

not concerned with diagrams or documentation; SE is 

about making decisions that reduce the time, effort, and 

money required to realize a system validated to 

stakeholder needs1. Diagrams in SysML are used to 

represent core SE features such as architecture, 

interfaces, use cases, and requirements, but practitioners 

must still develop SE content based on their experience. 

When coupling a need for substantial SE experience with 

the steep learning curve common to SysML-based 

modeling environments, it is clear the existence of 

SysML and other SE modeling tools does not inherently 

provide large-scale SE capabilities.  

Simultaneously, all PM efforts were organized via 

graduate students at the University of Alabama in 

Huntsville, meaning document version control and 

maintenance of work breakdown structures, 

organizational breakdown structures, integrated master 

plans, integrated master schedules and any team-specific 

documentation was a constant effort based on the 

experience and leadership of a few capable engineers. 

Online platforms suitable for geographically disperse 

PM such as Trello, Jira, or Wrike are useful for non-

technical PM or specific technical discipline features 

such as software bug management, but they are not 

organized using core SE principles such as architecture, 

integration, and verification. These problems are not 

specific to university-class programs. When knowledge 

and authority is concentrated at the top of any 

organization, personnel turnover, an inherent feature of 

university programs due to frequent, expected 

graduations, means programs are gambling that their 

next leaders will be as competent and capable as the 

previous ones. Information silos develop and cripple an 

organization’s ability to make and execute decisions. 

Many engineers enter the workforce without 

understanding SE principles, so a combined PM and SE 

platform that organizes engineering work around SE 

principles would relieve the need to train engineers in SE 

before they could work effectively. Thus, EMPIRE was 

born.  

EMPIRE Functionality 

When engineers initiate a spacecraft project, the first task 

is to evaluate stakeholder needs. Is the project a payload 

or a satellite with one or more payloads? Where is the 

system going? What kind of risk posture does the project 

assume? Model-Based Mission Planning (MBMP) was 

described using ontological querying in Halvorson et 

al61., and this functionality is integrated into EMPIRE. 

Table 3 describes the questions asked of project 

managers when instantiating a project and the resulting 

data generated based on the answers to those questions. 

The rationale for question genesis and order will be the 

topic of publication in future work for the 2024 

International Astronautical Congress (IAC). This data 

querying relieves the need for managers and engineers to 

manually populate EMPIRE with desired data. Answers 

are selected from a list of options and are not provided 

as short answers. Once question responses have been 

ontologically translated into database fields, those fields 

are used to populate information in EMPIRE sections for 

architecture, design, integration, requirements, 

verification, and an executive dashboard. That database 

field content in part includes the parameters used as a 

basis for DKM creation and model development.  

EMPIRE Status 

EMPIRE is a work in progress. While the database 

backend, some of the GUI, and some of the DKM 

diagram creation has been baselined, significantly more 

work has been put into the theory of its creation than the 

execution. Because the theory of EMPIRE is defined by 

ontological relationships codified in the UOF, the ACSI 

is formally collaborating with the MSFC ACO on a 

maximally useful ontological foundry prior to 

developing corresponding EMPIRE functionality. 

Effectively, if a relationship or class does not exist in the 

UOF, it does not exist in EMPIRE. The ACSI is also 

informally collaborating with the Jet Propulsion Lab to 

produce functional flight software directly from 

diagrams in EMPIRE, which should be functional by 

December 2023. An overview of general EMPIRE 

capabilities will be provided in a presentation at the 2024 

IAC, and an overview of verification by test 

relationships will be provided in a presentation at the 

2024 Institute of Electrical and Electronics Engineers 

(IEEE) Aerospace Conference. The ACSI is seeking 

accountability in all steps of UOF and EMPIRE creation, 

and EMPIRE is slated to be released in part through the 

United Nations Office of Outer Space Affairs 

(UNOOSA). Software engineers have been hired, and 

open-source accessibility is expected by 2024.   
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Table 3: EMPIRE Database Instantiation Q&A 

Question Example Answer 

Are you developing a full 
spacecraft or a payload? 

Full Spacecraft 

Is your spacecraft a CubeSat? Yes 

What size is your CubeSat? 12U 

What is your mission class? University 

What is your mission type? Science 

What type of science? Astrophysics 

Payload Entry 
High Energy Particle 

Detector62 

Payload Mass 4.5 kg 

Which type of celestial entity 

is your spacecraft primarily 

orbiting? 

Planet 

Which planet is your spacecraft 
primarily orbiting? 

Earth 

Do you have a specialty orbit? Yes 

What is your specialty orbit? Sun-Synchronous 

What is your launch type? Rideshare 

Which launch vehicle will your 

spacecraft be on? 
Polar Satellite Launch Vehicle 

What is your funding 
institution? 

NASA CSLI 

What is your funding program? 
Astrophysics Research and 

Analysis (APRA) 

Who is your lead institution? 
University of Alabama in 

Huntsville 

What is your risk posture? Sub-Class D 

What is your life cycle? 
NASA Single-Mission Robotic 

Life Cycle 

Do you have any optional 

subsystems? 
None 

Do you have any partnerships 

or contractors? 
Auburn University 

Which subsystems or 

components is Auburn 
University responsible for? 

Structural Integrity, Thermal 

Control, Flight Software 

Do you have any component 
vendors? 

Blue Canyon Technologies 

What subsystem or 

components is Blue Canyon 
Technologies providing? 

Guidance, Navigation, and 
Control 

Do you have any service 

providers? 
KSAT 

What enabling system is KSAT 
providing? 

Ground Control Station 

 

 

CONCLUSION 

Every engineer is a systems engineer, but early-career 

engineers do not know how to perform professional PM 

and SE. Due to this lack of PM or SE acumen, those 

engineers will make decisions ultimately resulting in 

higher costs, longer schedules, and additional effort for 

the institutions they work for. Project managers can 

either spend valuable time and money training early-

career engineers to be professional systems engineers, a 

worthwhile but difficult endeavor not accepted by all 

discipline engineers, or project managers can employ 

tools with professional systems engineering ingrained to 

support common discipline engineer tasks. Ontologies 

enable engineers performing M&S to accurately plan, 

describe, and execute M&S activities while at the same 

time contributing to the central source of truth for a 

program, but cohesive ontologies are highly complex 

and notoriously difficult to develop. Software platforms 

corresponding to rigorously developed ontologies offer 

strong semantics that both prevent erroneous work and 

infer additional system architecture descriptions from 

existing work, reducing the cumulative effort required to 

realize a project. The purpose of verification by analysis 

is to ensure a design is compliant to functional and 

capability requirements, and the cardinal sin of M&S is 

to make a perfect, pristine model that does not yield the 

TPM relevant to the requirement. Connecting system 

architecture descriptions to modeling environments 

through ontologies prevents this cardinal sin from being 

committed and supports M&S validation during model 

input, model execution, and model management. The 

ultimate goal of this ongoing work is to establish the 

ontological foundation for a platform to automate M&S, 

generate documentation, and provide a central source of 

truth for discipline engineers ill-versed in PM and SE 

topics to contribute technical information such that the 

platform semantically infers PM and SE content from 

technical input. The UOF will serve as the ontological 

foundation for EMPIRE, and EMPIRE version alpha 

will be released free and open-source in 2024 for 

community contribution.  
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