
Halvorson 1 37th Annual Small Satellite Conference

SSC23-WI-02

Automating Spacecraft Analysis: The Era of Ontological Modeling & Simulation

Michael Halvorson

University of Alabama in Huntsville, Complex Systems Integration Lab

Wernher von Braun Research Hall, 301 Sparkman Drive, Huntsville, AL 35899; 334-300-8131

mch0043@uah.edu

Noah Moyers, Carlos Domani, Johny Corona, Matthew Gillis, Sean Price, Aiden Raley, Andrew Crudup, Andrew

Walter, Coleman Deschepper, Grant Gravitt, Jacob Wilkins, Nik Dreicer, Seth Porter, Tyler Babinec,

Tyler Johnson, Nicolas Tsolas

Auburn University, 354 War Eagle Way, Auburn, AL 36849

ncm0034@auburn.edu, cad0087@auburn.edu, jcc0126@auburn.edu, mwg0017@auburn.edu,

sep0049@auburn.edu, acr0068@auburn.edu, agc0049@auburn.edu, amw0158@auburn.edu, cjd0050@auburn.edu,

gmg0017@auburn.edu, jlw0102@auburn.edu, nsd0013@auburn.edu, scp0055@auburn.edu, tdb0040@auburn.edu,

tsj0010@auburn.edu, ntsolas@auburn.edu

L. Dale Thomas

University of Alabama in Huntsville, Complex Systems Integration Lab

Wernher von Braun Research Hall, 301 Sparkman Drive, Huntsville, AL 35899

ldt0001@uah.edu

ABSTRACT

Verification by analysis is a predicted compliance of a design to imposed requirements. The levels of performance

specified by capability requirements can be related to Technical Performance Measures (TPM) in a Model-Based

Systems Engineering (MBSE) environment, but discipline engineers performing verification by analysis are not

commonly versed in professional Systems Engineering (SE) techniques or modeling languages such as SysML. As

the formal application of Systems Engineering (SE) results in a diminution of time, effort, and money for large-scale

projects, the enablement of discipline engineers to contribute MBSE-supported content while performing verification

by analysis is financially incentivized. Ontologies applied to technical analysis methodologies are shown to improve

the quality of verification by analysis activities while adhering to professional organization standards such as the

International Council on Systems Engineering (INCOSE) SE Handbook and the National Aeronautics and Space

Administration (NASA) standard 7009A: Standard for Models and Simulations. Organization strategies for

information pertinent to verification by analysis are provided using object-oriented methods in both natural and formal

languages, and software capabilities for creating the object-oriented relationships in diagram format are described

specific to the Engineering Management Platform for Integration, Realization, and Execution (EMPIRE).

NOMENCLATURE

Variables

𝐴 Area [m2]

𝑚 Mass [kg]

𝑃 Power [W]

�̇� Heat [W]

𝑄"̇ Heat Flux [W/m2]

𝑡 Time [s]

�̅̂�𝑐𝑠,𝑋/𝑌/𝑍+/− Unit Vector Orthogonal to Spacecraft Face

�̅�𝑒−𝑐𝑠 Earth to Satellite Vector [km]

�̅�𝑠−𝑐𝑠 Sun to Satellite Vector [km]

𝜀 Emissivity [-]

𝜃 Angle [rad]

𝜉 Solar Zenith angle [rad]

𝜌 Reflectivity [-]

Halvorson 2 37th Annual Small Satellite Conference

Recurring Subscripts

alb Denotes Radiative Albedo

AOI Denotes per Angle of Incidence

cs Denotes Whole-Satellite (CubeSat)

CPH Denotes Charged Particle Heating

Earth Denotes Earth as Source

ems Denotes Radiative Emission

f, #f Denotes per Face

FMH Denotes Free Molecular Heating

GCR Denotes Galactic Cosmic Rays

in Denotes Inward Directionality

proj Denotes Projection

SEP Denotes Solar Energetic Particles

solar Denotes Sun as Source

#t Denotes Parameter Size per Timestep

TE Denotes Trapped Electrons

TES Denotes per Thermal Environment State

TP Denotes Trapped Protons

INTRODUCTION

Analysis, demonstration, inspection, and test are the four

verification techniques used to determine the compliance

of a small satellite’s design to imposed requirements1.

Verification by analysis, a predicted compliance to

requirements via Modeling & Simulation (M&S)2, is

advantageous when expected outcome precision is

known, the risk of undiscovered problems can be

tolerated, and testing cannot be done credibly or

feasibly3. Because analysis is performed when desired

requirements compliance data is not made available by

vendors, cannot be visually acquired, and does not

present during use of the system element, analysis is

selected if all other verification methods are unviable3.

Despite analysis being a last resort for verification, it is

often the earliest task performed by discipline engineers,

particularly students in university satellite programs4.

Students are commonly asked to develop models,

meaning physical, mathematical, or otherwise logical

representations of a system, entity, phenomenon, or

process5. When considered in the context of verification

by analysis, models are either misleading, defined at an

inappropriate level of abstraction, or misrepresentative

of the system or environment, but some are useful6. If

engineers develop a model that lacks utility, they have

both wasted time and possibly delayed the project launch

schedule. As M&S is often the earliest technical

development responsibility and inexperienced engineers

commonly perform M&S within the university-class

satellite community, the automation of M&S should be a

collective goal resulting in a diminution of time, effort,

and money spent during early spacecraft development7.

Methods for automating M&S using advanced Model-

Based Systems Engineering (MBSE) techniques are

applied here to an updated version of the spacecraft

thermal control strategy presented in Halvorson et al8.

Ontologies are described first, followed by an overview

of ontological parameter evaluation. Parameter

evaluation techniques are visualized using natural

language and ontological methods. Method realization in

an open source software platform is then considered.

Relevant MBSE Theory

The four pillars of applied MBSE are architecture

frameworks, process frameworks, modeling languages,

and ontologies9,10. Applying architecture and process

frameworks to verification by analysis is outside the

scope of this work, but applying modeling languages and

ontologies is fundamental to M&S automation. Any

professional M&S automation paradigm must align with

and logically build upon existing theory to provide utility

without a need for systematic reinvention; relevant M&S

theory is recently described by the Hatley-Pirbhai (H-P)

method11,12,13, the International Council for Systems

Engineering (INCOSE) Systems Engineering (SE)

Handbook14, National Aeronautics and Space

Administration (NASA) standard 7009A: Standard for

Models and Simulations15, and International

Organization for Standardization (ISO) 42010:2022,

Software, Systems, and Enterprise – Architecture

Description16. MBSE theory is contextualized here for

M&S prior to ontological M&S exemplification to

ensure automated verification by analysis relates

performance measures to requirements verified by

analysis, the validated purpose of M&S1.

ONTOLOGY PURPOSE AND STRUCTURE

Ontologies, one of the four pillars of MBSE9,10, are

models of reality that taxonomically describe concepts

and relations with increasing levels of specificity17,18,19.

Top-Level Ontologies (TLO) are domain neutral in that

they describe a maximally broad range of concepts; they

facilitate interoperability of lower-level ontologies

specific to a given subject or domain17,18,19. Mid-Level

Ontologies (MLO) are supported by a TLO but are not

domain-neutral. MLOs describe physics-based,

mathematical, or equally generic concepts applicable to

a broad range of domains to facilitate interoperability of

Domain Ontologies (DO)18,19. DOs describe concepts

specific to a given domain and are supported by one or

more MLOs.

Halvorson 3 37th Annual Small Satellite Conference

The use of ontologies to model object-oriented data has

exploded in recent years, garnering interest from

academic, industrial, and government entities to

organize and populate relational databases, automate

data processing, and train artificial intelligence models

such as large language models20. While there is little

agreement in the MBSE community on the best way to

build and use ontologies, the combination of advanced

M&S techniques, ontologies, and the burgeoning field of

Model-Based Project Management (MBPM) offers a

promising means to fast-track technology development.

The application of ontological methodologies to

verification by analysis is contingent on rigorously

defined data structures and standardized rule sets that

enable determination of the ontology’s logical

consistency, inference of implicit relationships among

taxonomized concepts, and methodical querying of the

knowledge represented in an ontology. Inferences and

detection of logical inconsistencies are made possible via

the use of semantic reasoners that evaluate the assertions

made in an ontology21. Querying for information stored

in an ontology can be performed by using a compatible

query engine with a corresponding query language22,23 or

by directly accessing the contents of an ontology using

an Application Programming Interface (API) designed

for Object-Oriented Programming (OOP)24. Ontology

APIs designed for OOP allow for automated execution

of complex interdependent reasoning tasks and querying

of information, capabilities critical to the automation of

M&S.

Formal Languages

Ontologies bear a machine-readable structure authored

using an ontology language, a formal language designed

for ontological modeling. The machine-readability of

concepts described using a formal language is dependent

upon the language syntax, the structure of an expression

in a given language25, and semantics, the ascription of

meaning to syntactic elements of a language25,26, but

syntax is colloquially a conflation of the terms abstract

syntax, concrete syntax, and grammar, related terms that

carry distinct implications for language use25. Abstract

syntax refers to a metamodel representation of the

conceptual components of a language in terms of a

vocabulary27 independent of any encoding scheme26.

Concrete syntax refers to a set of terminal symbols, the

most primitive elements of a language, and non-terminal

symbols, primitive constructs of a language26,27.

Grammar refers to a set of rules for a language that

recursively define all valid combinations of terminal and

non-terminal symbols27. Formal languages may have

more than one concrete syntax mapped to its abstract

syntax25,26.

Foundational Data Model

The Resource Description Framework (RDF) facilitates

the relation and machine-readable representation of

abstract and physical concepts, declared as resources in

RDF parlance28,29. The RDF abstract syntax defines a

data structure called a RDF triple or a semantic triple that

allows for the assertion of a relationship from a subject

to an object via a predicate. A visualization of the

structure of a RDF graph containing two nodes is shown

in Figure 1.

Figure 1: RDF Graph Structure

Resources cannot directly assume any position in a RDF

graph and must be denoted by one of the following: an

Internationalized Resource Identifier (IRI), a RDF

literal, or a blank node29. IRIs can assume any position,

RDF literals can only assume the object position, and

blank nodes can only assume the subject or object

positions.

An IRI is a uniquely identifying string in a global context

known as a global identifier that denotes a specific

resource. In contrast, a blank node is a local identifier

that RDF enforces no internal representation of29, merely

denoting the existence of an unnamed resource. A RDF

literal is a RDF graph that relates a lexical representation

of a value to a data type denoted by an IRI and, if

required by the data type, a language tag29. A RDF data

type consists of a lexical space mapped to a value space

such that one or more elements in the lexical space map

to a single element in the value space as defined by the

Extensible Markup Language (XML) schema30. To

elaborate, consider the literals “+1.0” and “1.00” defined

with a data type of decimal, a concrete numeric data type

in XML with a lexical space consisting of any real

number representable in base-1030. Despite the differing

representation of these literals in the lexical space, both

map to an identical value of “1” in the associated value

space.

Ontology Languages

The RDF abstract syntax is combined with a data-

modeling vocabulary and semantics framework from the

RDF Schema (RDFS) to serve as the foundation for the

Web Ontology Language (OWL)31. RDFS is a general-

purpose language that can be used as an ontology

language to facilitate the representation of RDF

concepts32. RDFS expands on the concept of a RDF

Halvorson 4 37th Annual Small Satellite Conference

resource by defining a class as an instantiable and

potentially hierarchical categorization of RDF resources

such that the members of a class are its subclasses,

instances, and instances of its subclasses. RDFS also

allows for the attribution of domain restrictions, a

specification of allowed classes of subjects, and range

restrictions, a specification of allowed classes of objects,

directly to a RDF property to enforce the intended usage

of a given property. RDFS can be used to define the

structure of an ontology but on its own lacks sufficiently

rigorous semantics necessary to support complex

reasoning tasks31,32.

OWL is an ontology language developed as an extension

of RDFS that provides a richer data-modeling

vocabulary and corresponding semantics necessary to

facilitate enhanced machine-readability for complex

reasoning tasks31. OWL expansively extends the

expressivity of RDFS and is subdivided into three

increasingly expressive profiles: OWL Lite, OWL

Description Logic (DL), and OWL Full. OWL Lite

defines the core vocabulary and semantic extensions for

both OWL DL and OWL Full. OWL Full allows for

augmentations to the predefined RDFS and OWL

vocabulary thereby creating potential for reasoning tasks

to produce indeterminate results. OWL DL disallows

modifications to the predefined RDFS and OWL

vocabulary, among other less notable restrictions, to

support deterministic reasoning of ontological

structures33,34. OWL is superseded by OWL 2, a further

extension of the data-modeling vocabulary and

associated semantics of RDFS that remains backward

compatible with the original version of OWL33,35.

Despite OWL 2 remaining backward compatible, certain

features introduced by OWL have been deprecated and

replaced in OWL 236; only relevant, non-deprecated

OWL 2 DL features are discussed for the sake of brevity.

OWL 2 expands upon the concept of a RDFS property

by adding annotation property, object property, and data

property as specializations. An annotation property is

used to ascribe metadata, meaning data about data, to a

class, individual, or property to facilitate human-

readability rather than machine-readability such that

metadata is to be ignored by a semantic reasoner36. An

object property is used to assert a semantic relationship

between two individuals in the form of an object

property expression, and a data property is used to assert

a semantic relationship between an individual and a RDF

literal in the form of a data property expression. A class

expression must be used to assert a semantic relationship

at the class level rather than at the individual level such

that all individuals of involved classes are bound by said

assertion36. Usage of a class expression allows for a

restriction to be placed on an object property expression

or a data property expression relating to existential

quantification, universal quantification, or cardinality of

the object in a semantic triple. An existential class

expression is used to relate a class of subjects “A” to a

class of objects “B” and assert that an instance of “A”

must be related via a specific object property to a

minimum of one instance of “B”. An existential class

expression is used to relate a class of subjects “A” to a

class of objects “B” and assert that an instance of “A”

cannot be related via a specific object property to an

instance of a class other than “B”. A class expression

containing a minimum, exact, or maximum cardinality

restriction is used to relate a class of subjects “A” to a

class of objects “B” and assert that an instance of “A”

must be related via a specific object property to greater

than or equal to, exactly, or less than equal to a specific

number of instances of “B” respectively. A more

complex form of class expression is often necessary to

enhance inference capabilities and can be formulated

using the herein described concepts and the Boolean

connectives “and”, “or”, and “not”, referred to as

conjunction, disjunction, and negation respectively in

the parlance of logisticians35. Specific examples of class

expressions are provided later in this work.

The capabilities for deterministic semantic inference

enabled by OWL 2 DL are extensive but limited in that

minimum cardinality restrictions, including those

explicitly asserted in a class expression or implicitly

asserted in an existential class expression, are ignored by

reasoners compliant with the open-world semantics of

language36. During the reasoning process, the application

of open-world semantics results in the assumption that

information not declared is simply considered to be

unknown rather than indicative of a logical

inconsistency36. If asserted minimum cardinality

restrictions are to be relied upon for detecting logical

inconsistencies due to missing information in

ontological structures pertinent to M&S, a reasoner that

applies closed-world semantics must be used.

The Problem with Purposeful Ontologies

Ontologies and analysis models have a similar, ironic

problem. Despite ontologies being designed for reuse,

there are few reported examples of existing ontologies

being used by groups who did not build them37,38. A

diversity of domain-specific content representation

styles with incompatible levels of abstraction and

narrowly prescribed purposes limit the utility of both

models and ontologies. Maier notes a substantial

challenge to modern Digital Engineering (DE) is, “the

sheer diversity of models, notations, tools, and methods,

many of them overlapping and redundant13.” As an

example, a hierarchy of ontologies including the Basic

Formal Ontology (BFO) as the TLO39 and the Common

Core Ontologies (CCO) as a suite of MLOs40 were used

as the basis for a set of Space Domain Ontologies

Halvorson 5 37th Annual Small Satellite Conference

(SDO)41 describing outer space, space events, space

objects, spacecrafts41, and spacecraft missions. The

Marshall Space Flight Center (MSFC) Advanced

Concepts Office (ACO) evaluated the BFO, CCO, and

SDO for inclusion in an upcoming set of space-focused,

NASA-centric DOs called the Common Space Systems

Ontology (CSSO) and determined the relation formality

and level of abstraction in the BFO, CCO, and SDO did

not fully meet the ACO’s needs, though this work is

ongoing43. Separately, the BFO and Information Artifact

Ontology (IAO) were evaluated as a basis for a DO

concerning Prognostic Health Management (PHM) in

spacecraft avionics by Halvorson, Moyers, and

Thomas42, but the BFO independent continuant division

of material versus immaterial entities does not coincide

with how the standard model of physics organizes

relations between matter and energy, making it difficult

to represent interactions of spacecraft electronics with

subatomic particles. The BFO 2.0 User’s Guide44 states,

Matter is intended to encompass both mass and

energy (we will address the ontological

treatments of portions of energy in a later version

of the BFO).]

Informally, the BFO has difficulty describing physics in

a realistic, machine-readable way, and changing the BFO

to suit MSFC ACO’s needs is akin to defining a

completely new TLO, perpetuating the problem of

ontologies designed for reuse not being re-used. The

IAO fails to distinguish between data, entities that

individually carry no intrinsic meaning, and information,

entities that carry intrinsic meaning after being

contextualized such that information is dependent upon

data but data is not dependent upon information45. The

distinction between data and information is necessary to

support an accurate representation of knowledge in the

software domain specific to M&S or otherwise.

If ontologies are to be used as the foundation for

automated verification by analysis, both challenges of

model reuse and ontology reuse must be addressed. A

consistently reusable ontology must feature a broadly

applicable content representation style, a robustness of

purpose, and a level of abstraction highly aligned to

engineering reality wherein both meticulously detailed

and intentionally vague representations are possible.

Engineers using the ontology to create models must have

the ability to represent domain-specific model content

and execute orders of operations using ontologically

supported M&S techniques. To this end, the Alabama

CubeSat Initiative (ACSI) is developing the Unified

Ontological Foundry (UOF) as a basis for ontologically

foundational work in spacecraft engineering, including

the NASA ACO CSSO. A software platform for

ontologically supported MBSE, MBPM, and M&S is

being developed in lockstep with the UOF. This platform

is called the Engineering Management Platform for

Integration, Realization, and Execution (EMPIRE);

EMPIRE version alpha will be released open source by

2024. Additional discussion of the UOF and EMPIRE is

provided later in this work.

ONTOLOGICAL VERIFICATION

Requirements development is described with historical

context as foundational material concerning M&S

validation. Requirements verified by analysis are

coupled with object-oriented technical performance

measurement methods in preparation for ontological

exemplification. Readers may find certain phrasing

unnatural, such as “numeric parameters may assume the

role of Technical Performance Measures (TPM)” instead

of “numeric parameters can be TPMs,” but this phrasing

is intentional and supports machine-readability in an

ontological context. Without delving deeply into BFO

theory and justification, the attribution and loss of a BFO

role such as TPM does not fundamentally change the

structure of a numeric parameter. The attribution instead

sets an expectation for how the role of TPM must be

acquired and subsequently used44.

Hatley-Pirbhai: Requirements and Functions

The H-P method is a MBSE method originating in the

1980s that separated any system specification into two

models: requirements and architecture13,46. The first

stage of the H-P method built the requirements model as

a functional decomposition of the system’s purpose;

context diagrams translated stakeholder needs into

customer and system specifications13. Parallel to the

functional requirements model was a physical

decomposition model with system architecture flow and

connection diagrams. Viewpoints, a system organization

tool used in SE methods such as NASA-STD-1005: the

Space Mission Architecture Framework47, were first

conceptualized within the H-P method, though the

authors did not refer to requirements and architecture

models as viewpoints outright. The requirements and

architecture models later became known as the logical or

functional viewpoint and the physical viewpoint,

respectively. There are needlessly restrictive ways to

build viewpoints into applied SE methods10, but relating

system requirements to system function using diagrams

was established as a useful MBSE practice by the H-P

method. Maier provides a thorough overview of the H-P

method and its impact on modern digital engineering13,

an especially useful perspective considering Maier also

wrote parts of ISO 42010. Modern system modeling

languages such as SysML48 offer additional diagram

types such as parametric and use case diagrams for

system characterization outside requirements and

architecture.

Halvorson 6 37th Annual Small Satellite Conference

Verifying Requirements Compliance

Building upon the H-P method, a Requirements

Verification and Traceability Matrix (RVTM)1,3 is

developed as part of a requirements specification.

SysML or bespoke requirement development tools are

useful when allocating verification methods to

requirements and tracing requirement verification across

multiple requirements levels48. Requirements can be

verified using a verification case, meaning the

application of analysis, demonstration, inspection, or

test, by tracing an upper-level requirement to one or

more lower-level requirements and verifying the lower-

level requirements49, or a combination of both

techniques. The allocation of verification methods and

lower-level requirements to upper-level requirements is

tabulated in the RVTM and graphically depicted in an

Operational Compliance Assessment (OCA). Upper-

level requirements are often verified by the compliance

of several lower-level requirements, and lower-level

requirements, termed specifications, are often verified

by a verification case.

Parameter Evaluation

When defining machine-readable syntax and semantics

for automated M&S, ambiguity must be removed from

terms often used colloquially in engineering settings.

Rigorous definition specificity facilitates the translation

of definitions to mathematical axioms, which enable a

computer to infer what quantities, equations, and

evaluation units are related to a model developed for

verification by analysis, ontologically relating

verification methods in the RVTM to the evaluation of

parameters. Ontological class definitions concerning

parameter evaluation are provided here as preface

materials for automated technical performance

measurement. These definitions are part of the UOF and

were created specifically to assist engineers in

automating spacecraft M&S. While the BFO50 is not

perfect, some classes in the BFO hierarchy are well-

formed, included in the UOF TLO, and referenced here.

Mathematical axiom development is ongoing and will be

published as future work relating to the present work, but

semantics are defined for maximal flexibility in all cases

to support domain interoperability. Parameter evaluation

begins by distinguishing data versus information, a

distinction the IAO fails to make.

Data Entity: A data entity is a generically dependent

continuant50 that carries no intrinsic meaning until

contextualized as information.

Information Entity: An information entity is a

generically dependent continuant50 that carries intrinsic

meaning for a period of time by virtue of contextualized

data.

Reasonable minds may disagree on the distinctions

between a parameter, quantity, and value, but the

semantics of an expression containing these terms must

be strictly defined for automatable M&S. Values are first

split into numeric and non-numeric values.

Value: A value is a data entity that is ascribed a literal

from the lexical space of a data type.

Numeric Value: A numeric value is a value that is

ascribed a literal from the lexical space of a numeric data

type.

Non-Numeric Value: A non-numeric value is a value that

is ascribed a literal from the lexical space of a non-

numeric data type.

Formally defining value as a class may appear redundant

due to the existence of RDF literals, a class already

capable of representing a value in its lexical form29, but

as RDF literals can appear only in the object position of

a semantic triple and are not denoted by an IRI29,

assertions cannot be made that associate an attribute or a

quality directly to a RDF literal, limiting the inference

capabilities. Value is an adapter class that extends the

functionality of RDF to allow for a direct association of

attributes enabling inference capabilities on the

representation of data structures, namely arrays and

matrices. The distinction made by the XML schema type

system regarding the lexical space and value space of a

data type is reflected in the definition of value and all

descendent entities. Boolean values are considered a

subclass of non-numeric values; numeric values do not

exist in Boolean algebra.

There is a pervasive, ingrained misconception

concerning the difference between measurement and

evaluation that must be rectified for a computer to parse

the terms with appropriate inferences. Measurement and

evaluation are often used interchangeably in natural

language, and units associated with numeric values are

commonly referred to as units of measure. The core

problem is that measurement results in the creation of a

quantity through instrumentation whereas evaluation

results in the creation of a quantity through any

evaluation process. The concept of units, exemplified by

watt, kilogram, or meter, are here termed evaluation

units. The distinction between evaluation and

measurement becomes increasingly important when

relating verification methods to requirements, described

later in this section.

Evaluation Unit: An evaluation unit is a quality50

ascribed a numeric value that allows for comparisons of

quantities of the same type.

Halvorson 7 37th Annual Small Satellite Conference

Certain evaluation units beget additional description

information, e.g., a degree or radian must be defined

relative to a coordinate frame and an axis within that

coordinate frame.

Quantities are ontologically related to a quantity value

and an evaluation unit. The BFO does not include the

concept of quantities, making the utility these definitions

and relationships provide specific to the UOF.

Quantity: A quantity is a specifically dependent

continuant50 that consists of a quantity value and a

category of evaluation unit.

Quantities represent the actual amount of something.

Quantity values represent the data describing that

amount. Quantity values are described ontologically

using a similar definition to that offered by the

International Vocabulary of Metrology51 (IVM), though

not all definitions offered here are consistent with IVM

definitions. The IVM makes improper use of the word

“magnitude”, implying that magnitude could represent a

negative value.

Quantity Value: A quantity value is a numeric value that

is part of a quantity and is associated with an evaluation

unit of some type compatible with that of the evaluation

unit of the owning quantity.

Engineers frequently ascribe symbolic or alphanumeric

identifiers to parameters, requirements, and other useful,

tabulated entities. This could be a requirement identifier

such as “ACSI.L4.C&DH.6” or a parameter name such

as “Earth Radiative Surface Emission.”

Identifier: An identifier is an information entity50 that is

associated with a value or a symbol and is used

referentially to denote an entity.

A parameter can have a quantity value by virtue of a

quantity value being a subclass of numeric value. If a

quantity value is used in some data or evaluation process,

it is concretized in a parameter for that process.

Parameter: A parameter is an information entity50 that

consists of an identifier and a value such that it can be

input to or output from a process.

Numeric Parameter: A numeric parameter is a parameter

with a value part associated with a numeric data type.

Non-Numeric Parameter: A non-numeric parameter is a

parameter with a value part associated with a non-

numeric data type.

The distinction between evaluation and measurement

logically places evaluation process as a superclass of

measurement process. When considering other useful

means of evaluating a quantity, both calculation and

simulation are considered wherein calculation results in

the ascription of a literal to a quantity value via the

execution of an equation and simulation results in the

ascription of a literal to a quantity value via the execution

of a model. When these evaluation processes are

ontologically defined and restrictions are placed on the

types of evaluation processes associated with

verification methods, the computational rigor required to

automate M&S is architected.

Evaluation Process: An evaluation process is a process50

that has at least one parameter as output and results in the

ascription of a literal to one or more values contained in

each output parameter.

Measurement Process: A measurement process is an

evaluation process that results in the ascription of a

literal to one or more quantity values as part of a numeric

parameter.

Measurement devices and units under test are

ontologically associated with measurement processes in

lieu of associating measurement processes with sensors

and units under test in the measurement process

definition because measurement processes can occur

outside of test processes.

Calculation Process: A calculation process is an

evaluation process that has at least one numeric

parameter as input, at least one numeric parameter as

output, at least one equation that may be ordered, and

results in the ascription of a literal to one or more

numeric values as part of one or more numeric

parameters.

Simulation Process: A simulation process is an

evaluation process that has at least one numeric

parameter as input, at least one numeric parameter as

output, at least one mathematical model that may be

ordered, and results in the ascription of a literal to one or

more values as part of one or more parameters.

With these logically consistent definitions established,

mathematical axioms can be created further supporting

machine-parseability. Axioms supporting UOF

definitions are the subject of ongoing work and future

publications.

USING ONTOLOGICAL PARAMETERS

INCOSE defines three fundamental requirement types as

functional, performance, and non-functional14, but these

can be ontologically simplified to functional and non-

functional when considering the syntax of a machine-

readable requirement statement. Functions are unitless;

Halvorson 8 37th Annual Small Satellite Conference

they do not have an associated value or level of

performance. A system either does or does not execute a

function. Like a vector with a direction and magnitude, a

capability is a function executed to a given level of

performance1. The only differences between a

performance requirement statement and a functional

requirement statement are therefore a relational operator

such as, “less than or equal to”, a numeric value such as

“5”, and an evaluation unit such as “kg”. If a

performance requirement statement is a functional

requirement statement with the addition of a relational

operator and a quantity value, a performance

requirement is a subclass of functional requirement.

Because functional requirements describe functions and

performance requirements describe capabilities, it is less

ambiguous to instead refer to performance requirements

as capability requirements, a conclusion adopted in both

the abstract and remainder of this work.

Ontological restrictions are levied concerning which

types of verification methods can be applied to which

types of requirements; the restrictions are predicated on

the type of evaluation process associated with a given

verification method. Verification by analysis can be

achieved via calculation if an equation is executed to

evaluate a parameter or simulation if a model is executed

to evaluate a parameter. There are some instances when

a simulation results in a Boolean value, meaning true or

false. A Boolean value in this framework would be

represented by the ascription of a Boolean literal to an

instance of non-numeric value that is bounded by a

Boolean data type. Inspection and demonstration by

nature do not have an associated numeric value; their

results are always associated with a Boolean value, a

type of non-numeric value. Test is a verification method

associated with a measurement process, an evaluation

process resulting from the application of instrumentation

to a unit under test. Because instrumented sensors output

a numeric value associated with some evaluation unit,

testing cannot result in a Boolean value. To summarize,

the verification methods analysis, demonstration, and

inspection can result in Boolean values. Analysis and test

can result in numeric values. Functional requirements

corresponding to unitless functions can be verified by

analysis or demonstration because functional

requirements require Boolean values as verification

criteria. Capability requirements corresponding to

functions executed at a given level of performance can

be verified by analysis or test because capability

requirements require numeric values as verification

criteria. Non-functional requirements have Boolean

values as verification criteria and can be verified by

inspection only. The allocation of acceptable primary

verification methods to fundamental requirement types

is organized in Table 1.

Table 1: Primary Verification Methods for

Fundamental Requirement Types

Requirement Type Possible Verification Method

Functional Analysis, Demonstration

Capability (Performance) Analysis, Test

Non-Functional Inspection

Technical Performance Measurement

Validation ensures a system, product, service, or model

fulfills its users’ operational needs1, and relating models

to system requirements ensures time spent developing,

automating, and executing models is validated to the

purpose of model users – to verify the system is

developed in compliance to imposed requirements. To

connect models to capability requirements and thereby

validate M&S effort, engineers describe levels of

performance using TPMs. A numeric parameter assumes

the role of TPM if the numeric parameter is used for

comparison of modeled or actual performance against

that anticipated at the current time and on future dates52.

As Boolean values are non-numeric values, this implies

Boolean results from analysis, inspection, or

demonstration cannot assume the role of TPM. TPMs

exist for components, subsystems, and systems and are

used to confirm progress or identify deficiencies that

might jeopardize meeting a system requirement. If a

requirement dictates a component can only use 5 W of

power and the system is verified by analysis to use only

4 W of power, the TPM would be a component power

margin with a value of 1 W. TPMs should53,

 be relevant to the entity and tailored to the

mission

 be relatively easy to measure or evaluate

 be controllable, i.e. tradeable with cost,

schedule, and performance

 have a value or uncertainty that is expected to

improve with time

 have a target or threshold value

 have known corrective action if the target or

threshold value is exceeded

NASA decomposes stakeholder requirements into

Measures of Effectiveness (MOE), translates MOEs into

Measures of Performance (MOP), and selects TPMs

from MOPs. The most important, system-wide TPMs

relating to mission success are Key Performance

Parameters (KPP), characterizing major drivers of

operational performance, supportability, and

interoperability26. The ACSI has found students

experience significant difficulty understanding and

successfully implementing MOEs and MOPs, and the

NASA parameter role delineation is not ontologically

supportable because it contains subjective boundaries. A

Halvorson 9 37th Annual Small Satellite Conference

simplified set of concentric numeric parameter roles is

taught instead using NASA’s TPM and KPP definitions

with the addition of one numeric parameter role:

Knowledge Points (KP). Shown in Figure 2, these

numeric parameter roles are both relevant to practical

verification by analysis and ontologically useful. UOF

definitions for numeric parameter roles are provided

here.

 Knowledge Point: A knowledge point is a role50 a

numeric parameter may assume if it is evaluated

through some evaluation process.

Technical Performance Measure: A technical

performance measure is a role50 a numeric parameter

may assume if it is controllable, has a quantity value

that is expected to improve with time, has a target or

threshold quantity value, and corrective action is

known if the target or threshold quantity value is

exceeded or not met.

Key Performance Parameter: A key performance

parameter is a role50 a numeric parameter may

assume if it meets the criteria to assume the role of

TPM and relates directly to system-level stakeholder

needs.

Building on existing NASA definitions26, all KPPs are

TPMs and all TPMs are KPs, ergo all KPPs are also KPs.

The evaluation of a KP through an evaluation process is

a central feature; KPs are not sourced from a textbook or

provided in a vendor’s component datasheet. KPs are

always calculated, simulated, or measured, else

parameters cannot assume the role of KP, but not all

evaluated parameters assume the role of KP. KPs may

also not meet the criteria to be considered TPMs. The

maximum heat flux incident on the +Z face of a

spacecraft is a numeric parameter that is relevant to the

system and relatively easy to evaluate, but it is not

controllable. There is not a target value for maximum

heat flux, and there is not an expectation that the value

or uncertainty inherent to parameter evaluation will

improve over time. Maximum heat flux incident on the

+Z face is therefore a numeric parameter assuming the

role of KP, not the role of TPM. NASA prefers to

attribute the role of TPM to margins because they feel it

is easier to set current and future targets on margins

instead of calculated values54.

If project managers and systems engineers understand

the rules and purpose of technical performance

measurement, they may tailor which numeric parameters

assume the role of KP or TPM at their discretion based

on imposed requirements. What is important is

understanding what parameter role a capability

requirement is specifying as a level of performance and

how a given organization plans to track the compliance

of their design to that requirement. Once parameter roles

are understood in relation to imposed requirements

verified by analysis, one or more parameters assuming

the role of KP, TPM, or KPP are allocated to models.

Models are allocated to modeling environments,

developed using traditional or ontological methods, and

executed for some baselined system design. Systems

engineers can then enjoy a holistic view of which

parameters must be evaluated using which models in

which modeling environments.

Visualizing Parameter Relationships

Object-oriented representations of individual KP

evaluation methodologies in user-friendly natural

language are referred to as Domain Knowledge Maps

(DKM). A DKM example is provided in Figure 3 for the

Sun to Satellite View Factor KP. Each oval in Figure 3

corresponds to a numeric parameter that has assumed the

role of KP. Non-oval entities may be numeric parameters

or any other entity type described in the legend.

Figure 2: Simplified Numeric Parameter Roles Replacing Measures of Effectiveness and Measures of

Performance

Halvorson 10 37th Annual Small Satellite Conference

Figure 3: Domain Knowledge Map for Sun to Satellite View Factor

Numeric parameters assuming the role of KP are often

evaluated using M&S on a longer road to TPM

evaluation; this necessitates KPs to be strung together in

KP integration diagrams. An example is shown in Figure

4 for a subsection of the incident spacecraft heat flux

calculation methodology described in Halvorson et al8.

Each oval in Figure 4 corresponds to the same KP as the

eponymous ovals of Figure 3, and KP integration

diagrams form both an easily digestible process for new

spacecraft engineers to use as onboarding material and

an order of operations for high-level, machine-readable

instruction sets. To reiterate, the Sun to Satellite View

Factor KP for which the DKM in Figure 3 defines the

calculation process methodology is one of the KPs

present in Figure 4. The KP integration diagram in

Figure 4 does not represent an exhaustive set of KPs for

complete spacecraft thermal analysis, but one can readily

see how this numeric parameter organization can be both

extended to the desired level of detail and applied to

other domains. Starting at the left, the red source block

defines the team or group responsible for the evaluation

of the KP. Prescribing ownership to a KP, meaning a

prescription of requirement compliance responsibility

related to that KP, enables project and team managers to

partition verification responsibility. Moving right in

Figure 4 from the source into ovals denoting KPs, each

KP shown has its own DKM such as that of Figure 3.

KPs, each with bespoke DKMs, are linked together until

the TPM corresponding to a capability requirement’s

level of performance is reached. In Figure 3 are a few

examples of the differences between KPs and numeric

parameters not assuming the role of KP. Solar Radius is

a numeric parameter that does not assume the role of a

KP and therefore is also not a TPM or KPP. Non-KP

parameters are shown as rectangular blocks. CubeSat to

Sun Vector is a parameter that is evaluated via

calculation in an equation, but it is subjectively not a KP

because it is considered a steppingstone to the desired

KP Sun to Satellite View Factor. The decision to keep

CubeSat to Sun Vector as a parameter that does not

assume the role of a KP is subjective in a different sense

than MOEs and MOPs are subjective. Engineers using

EMPIRE to create DKMs and KP integration diagrams

will automatically link KP diagram content to other

EMPIRE content such as system architecture and

requirements. Any evaluated numeric parameter can be

labeled as a KP to suit analysis interests. One could argue

that every evaluated parameter should be a KP; that

strategy is legal in EMPIRE but may not be desired by

all organizations. TPMs may evolve as the architecture

matures through design decisions, so parameters may

assume the role of KPs or TPMs during concept

definition but not during verification or integration.

Because KP integration diagrams are built on DKMs and

DKMs are both object-oriented and written in a natural

language syntax, users can readily create machine-

readable diagrams linked to a backend database using

their desired parameter definition strategy. A goal in

future work is for DKM and related EMPIRE database

content to populate subsystem analysis documentation,

avoiding the need for users to write model export code

into documents using Velocity Template Language or

another model export language. The equation numbers

in the green equation blocks are specific to the equation

numbers in ACSI documentation and do not have

significance in the context of the present work.

Halvorson 11 37th Annual Small Satellite Conference

Figure 4: Knowledge Point Integration Diagram for a Section of the Advanced Thermal Analysis

Methodology Presented in Halvorson et al8. Figure 3 Content is Marked with a Red Outline.

Halvorson 12 37th Annual Small Satellite Conference

Model Generation Versus Model Linkage

In these early days of M&S automation, engineers must

still build models in modeling environments such as

MATLAB, Simulink, or Thermal Desktop to match

DKM organization, but the long-term goal is for object-

oriented structures in DKMs to generate model content

specific to the system. If the goal was to build models

separately from a defined model execution hierarchy,

users would be better enabled by linking externally built

models to SysML parametric diagrams, though this

process is time-consuming and ill-advised for

understaffed projects. Generation of models

corresponding to DKM content is what differentiates

EMPIRE diagrams from parametric diagrams in SysML.

MATLAB models can be linked to SysML diagrams, but

SysML diagrams cannot generate MATLAB code.

ONTOLOGICAL AUTOMATION

The creation of a DKM in EMPIRE provides ontology-

supported database population functionality. When users

create DKMs, the sources, equations, parameters, and

states defined also populate backend database fields.

Because the natural language DKMs have an underlying,

ontological structure, fidelity of database relationships is

ensured during DKM creation. Natural language,

however, does not enable machines to understand the

relationships between DKM entities such as parameters,

sources, and equations. A bridge between the user-

friendly natural language and the machine-friendly

formal language must be defined.

The BFO-2020 is recognized as a TLO by ISO 21838-

2:2021 and is used to facilitate the representation of

entities pertinent to DKMs. Definitions for BFO

terminology can be found in the BFO 2.0 User’s Guide44.

The BFO 2.0 and BFO-2020 are separate iterations of the

BFO, but few changes between versions are directly

pertinent to this work. The BFO-2020 added an

“enriched treatment of relations involving time” such

that previously existing relationships such as

“concretizes” were expanded to variations such as

“concretizes at some time” and “concretizes at all

times”39. The phrase “at some time” denotes that the

entity in the object position of a semantic triple is

impacted by the predicate to which it is attached at some

temporal instant and potentially for the duration of an

associated temporal interval, and “at all times” denotes

said object would be impacted by the predicate to which

it is attached through the entirety of the temporal interval

that bounds its existence.

The vocabulary of a DKM such as that of Figure 3 is

investigated to facilitate additional context necessary for

automated M&S. The following definitions of the

extrapolated vocabulary of a DKM are prescribed in

ontological format:

Information Source: An information source is a role50

that an independent continuant50 or generically

dependent continuant50 assumes if providing some

information.

Equation: An equation is a generically dependent

continuant50 that represents a mathematical statement

of equality.

State: A state is a disposition50 that specifically

depends on some system or operational environment

and exists during some temporal interval.

States here are described in the context of Wasson1 and

can be system, configuration, operational, dynamic, or

environmental states. The Thermal Environment State

(TES) in Figure 3 varies parameters to represent their

hottest and coldest possibilities. If a parameter is varied

by TES, the chosen data structure must store 2 elements

at a given index because there are two TES. This is an

example of semantic inference applied to the data size

field of a parameter. A visualization of the ontological

structure of a DKM is shown in Figure 5 in Manchester

OWL Syntax. The Manchester OWL Syntax is used to

represent class expressions in Figure 5 in a format

identical to that of Protégé 5. The Manchester OWL

Syntax is an alternative abstract syntax for OWL DL that

allows for development of ontologies with a “less

logician like” syntax in that “special mathematical

symbols such as ∃, ∀, ¬ and have been replaced by more

intuitive keywords such as some, only, and not,” wherein

the former two symbols correspond to existential and

universal property restrictions respectively55. Shown in

Figure 5 are ontological relationships necessary to

enable semantic inference, based on an asserted

evaluation process, of the structure of unknown or not

yet instantiated input or output parameters.

Input-Process-Output

With historical perspectives and best practices

concerning requirements verification, technical

performance measurement, and translation of M&S

entities into machine-readable data structures

understood, the next step is defining the conceptual

organization of automated M&S methodology

execution. DKMs and KP integration diagrams convert

technical performance measurement information into

machine-readable structures suitable for back-end

database field population, but a common framework for

providing database content to executable models and

retrieving KP and TPM outputs from models must be

defined. The Input-Process-Output (IPO) framework is

considered as a solution to M&S automation theory.

Halvorson 13 37th Annual Small Satellite Conference

Figure 5: Ontological Representation of DKM Structure

Halvorson 14 37th Annual Small Satellite Conference

IPO has been used in economics, law, and software since

the 70s; its earliest origins are unclear. Forsberg,

Walden, Shortell, Roedler, and Hamelin organized SE

processes using the IPO framework for the INCOSE SE

Handbook14, which makes IPO an attractive M&S

automation option for future SE handbook inclusion.

Forsberg and Mooz invented the Vee life cycle model in

199156, Walden developed criteria to tailor SE processes

to bespoke projects57, and Roedler published on both

knowledge management and technical performance

measurement58,59, indicating INCOSE SE Handbook

authors consider the IPO model useful for a variety of

system architecture descriptions. Each process includes

controls, activities, and enablers in addition to inputs and

outputs. The INCOSE SE Handbook organizes certain

chapters into technical, technical management,

agreement, organizational project-enabling, and

tailoring processes; the system analysis process is

considered a technical process. Table 2 defines a high-

level overview of the inputs, activities, and outputs for

the system analysis process per the INCOSE SE

Handbook.

Table 2: System Analysis Process IPO

Considerations14

Inputs Activities Outputs

Life cycle concepts Prepare for system
analysis

System analysis
strategy

Analysis situations Perform system
analysis

System analysis
report

Life cycle
constraints

Manage system
analysis

System analysis
record

Context descriptions are provided for each process

activity, and the present assertion is that ontological,

automated M&S should also adhere to theory-supported

process activities. When preparing for system analysis,

the scope, types, objectives, level of accuracy, evaluation

criteria, methods, relevant requirements, modeling

environments, order of operations, and relevant

documentation must be defined. These criteria are almost

all met when NASA-STD-7009A is applied, specifically

Appendix E regarding M&S credibility assessments15.

Appendix E asserts eight factors for M&S credibility in

three categories: development, operations, and

supporting evidence. Development defines credibility

factors for data pedigree, verification, and validation.

Operations define factors for input pedigree, uncertainty

characterization, and results robustness. Supporting

evidence defines factors for M&S history and M&S

process/product management. These factors can be

taxonomized in an ontology and related to technical

performance measurement as database fields, though

EMPIRE has not included this yet. When performing

system analysis, the INCOSE SE handbook considers

collection of data and assumptions, execution of the

model, and application of peer-reviews to the

methodology. Figure 6 represents a visualization of

model process for the Isothermal First Order (IFO)

model described in Halvorson et al.8 created in the

MATLAB modeling environment. While Figure 6

complements Figure 3 and Figure 4 in describing the

order of operation for model execution instead of the

dependence of parameters upon previously evaluated

parameters, its ability to describe model assumptions

falls short. Models themselves should therefore be

ascribed assumptions, behaviors, and use cases in

editable database fields for additional peer review.

System analysis management as the final IPO activity

concerns documentation, an easily automatable task for

database-represented information.

A key problem in both providing database field

information to and receiving it from modeling

environments is that disparate modeling environments

feature disparate Graphical User Interfaces (GUI) or data

import methods. Modeling environments such as

MATLAB can be interfaced with in an object-oriented

context via the MATLAB Engine for Python API60,

making data import from and export to EMPIRE

relatively easy, but modeling environments relevant to

domain-specific M&S, e.g., Simulink and Thermal

Desktop for spacecraft thermal analysis, require design-

specific information provided to the modeling

environment through graphical means such as Simscape

blocks. The automation of deterministic, equation-based

analysis methodologies is therefore considered for

inchoate ontological automation, and ontologically

driven automation using Simulink and Thermal Desktop

in this thermal analysis example is considered the subject

of future work.

Ontological Analysis Automation Summary

The steps to relate requirements to executable models in

an ontologically supported platform such as EMPIRE are

then,

1. Develop the RVTM and OCA to determine

system requirements verified by analysis.

2. Define Boolean values associated with

functional requirements verified by analysis.

3. Define numeric values associated with

capability requirements verified by analysis.

4. For numeric parameters associated with

capability requirements verified by analysis,

define which numeric parameters assume the

role of TPMs or KPs.

5. Allocate models to one or more KPs resulting

in a TPM such that all KPs are related to a

model.

6. Allocate modeling environments to models.

Halvorson 15 37th Annual Small Satellite Conference

7. Define which KPs are inputs and outputs of

which models. In EMPIRE these populate

database fields.

8. Define the process for model execution using

KP integration diagrams and DKMs.

9. Interface the model-based platform or SysML

model with the modeling environment.

10. Export input parameters from the model-based

platform or SysML model to the technical

modeling environments.

11. Import evaluated KPs and Boolean values from

the technical modeling environments to the

model-based platform or SysML model.

12. Assess requirements compliance.

Figure 6: Isothermal First Order Thermal Model IPO Process Diagram8

Halvorson 16 37th Annual Small Satellite Conference

EMPIRE: PURPOSE, FUNCTION, AND STATUS

EMPIRE was conceived when aerospace, mechanical,

electrical, and software engineering students from

multiple universities had a need to architect, design,

integrate, and verify the 12U Space Transporter by ACSI

(Space TACSI) satellite bus. ACSI students learn

technical discipline engineering from their constituent

universities, but students from all universities stated their

exposure to SE principles were limited at best, a difficult

foundation to build a spacecraft engineering education

upon considering every engineer, no matter the technical

discipline, is a systems engineer1. SysML offers a means

to develop models representing a central source of truth

for all ACSI projects, but SysML diagrams do not

inherently facilitate professional SE. The soul of SE is

not concerned with diagrams or documentation; SE is

about making decisions that reduce the time, effort, and

money required to realize a system validated to

stakeholder needs1. Diagrams in SysML are used to

represent core SE features such as architecture,

interfaces, use cases, and requirements, but practitioners

must still develop SE content based on their experience.

When coupling a need for substantial SE experience with

the steep learning curve common to SysML-based

modeling environments, it is clear the existence of

SysML and other SE modeling tools does not inherently

provide large-scale SE capabilities.

Simultaneously, all PM efforts were organized via

graduate students at the University of Alabama in

Huntsville, meaning document version control and

maintenance of work breakdown structures,

organizational breakdown structures, integrated master

plans, integrated master schedules and any team-specific

documentation was a constant effort based on the

experience and leadership of a few capable engineers.

Online platforms suitable for geographically disperse

PM such as Trello, Jira, or Wrike are useful for non-

technical PM or specific technical discipline features

such as software bug management, but they are not

organized using core SE principles such as architecture,

integration, and verification. These problems are not

specific to university-class programs. When knowledge

and authority is concentrated at the top of any

organization, personnel turnover, an inherent feature of

university programs due to frequent, expected

graduations, means programs are gambling that their

next leaders will be as competent and capable as the

previous ones. Information silos develop and cripple an

organization’s ability to make and execute decisions.

Many engineers enter the workforce without

understanding SE principles, so a combined PM and SE

platform that organizes engineering work around SE

principles would relieve the need to train engineers in SE

before they could work effectively. Thus, EMPIRE was

born.

EMPIRE Functionality

When engineers initiate a spacecraft project, the first task

is to evaluate stakeholder needs. Is the project a payload

or a satellite with one or more payloads? Where is the

system going? What kind of risk posture does the project

assume? Model-Based Mission Planning (MBMP) was

described using ontological querying in Halvorson et

al61., and this functionality is integrated into EMPIRE.

Table 3 describes the questions asked of project

managers when instantiating a project and the resulting

data generated based on the answers to those questions.

The rationale for question genesis and order will be the

topic of publication in future work for the 2024

International Astronautical Congress (IAC). This data

querying relieves the need for managers and engineers to

manually populate EMPIRE with desired data. Answers

are selected from a list of options and are not provided

as short answers. Once question responses have been

ontologically translated into database fields, those fields

are used to populate information in EMPIRE sections for

architecture, design, integration, requirements,

verification, and an executive dashboard. That database

field content in part includes the parameters used as a

basis for DKM creation and model development.

EMPIRE Status

EMPIRE is a work in progress. While the database

backend, some of the GUI, and some of the DKM

diagram creation has been baselined, significantly more

work has been put into the theory of its creation than the

execution. Because the theory of EMPIRE is defined by

ontological relationships codified in the UOF, the ACSI

is formally collaborating with the MSFC ACO on a

maximally useful ontological foundry prior to

developing corresponding EMPIRE functionality.

Effectively, if a relationship or class does not exist in the

UOF, it does not exist in EMPIRE. The ACSI is also

informally collaborating with the Jet Propulsion Lab to

produce functional flight software directly from

diagrams in EMPIRE, which should be functional by

December 2023. An overview of general EMPIRE

capabilities will be provided in a presentation at the 2024

IAC, and an overview of verification by test

relationships will be provided in a presentation at the

2024 Institute of Electrical and Electronics Engineers

(IEEE) Aerospace Conference. The ACSI is seeking

accountability in all steps of UOF and EMPIRE creation,

and EMPIRE is slated to be released in part through the

United Nations Office of Outer Space Affairs

(UNOOSA). Software engineers have been hired, and

open-source accessibility is expected by 2024.

Halvorson 17 37th Annual Small Satellite Conference

Table 3: EMPIRE Database Instantiation Q&A

Question Example Answer

Are you developing a full
spacecraft or a payload?

Full Spacecraft

Is your spacecraft a CubeSat? Yes

What size is your CubeSat? 12U

What is your mission class? University

What is your mission type? Science

What type of science? Astrophysics

Payload Entry
High Energy Particle

Detector62

Payload Mass 4.5 kg

Which type of celestial entity

is your spacecraft primarily

orbiting?

Planet

Which planet is your spacecraft
primarily orbiting?

Earth

Do you have a specialty orbit? Yes

What is your specialty orbit? Sun-Synchronous

What is your launch type? Rideshare

Which launch vehicle will your

spacecraft be on?
Polar Satellite Launch Vehicle

What is your funding
institution?

NASA CSLI

What is your funding program?
Astrophysics Research and

Analysis (APRA)

Who is your lead institution?
University of Alabama in

Huntsville

What is your risk posture? Sub-Class D

What is your life cycle?
NASA Single-Mission Robotic

Life Cycle

Do you have any optional

subsystems?
None

Do you have any partnerships

or contractors?
Auburn University

Which subsystems or

components is Auburn
University responsible for?

Structural Integrity, Thermal

Control, Flight Software

Do you have any component
vendors?

Blue Canyon Technologies

What subsystem or

components is Blue Canyon
Technologies providing?

Guidance, Navigation, and
Control

Do you have any service

providers?
KSAT

What enabling system is KSAT
providing?

Ground Control Station

CONCLUSION

Every engineer is a systems engineer, but early-career

engineers do not know how to perform professional PM

and SE. Due to this lack of PM or SE acumen, those

engineers will make decisions ultimately resulting in

higher costs, longer schedules, and additional effort for

the institutions they work for. Project managers can

either spend valuable time and money training early-

career engineers to be professional systems engineers, a

worthwhile but difficult endeavor not accepted by all

discipline engineers, or project managers can employ

tools with professional systems engineering ingrained to

support common discipline engineer tasks. Ontologies

enable engineers performing M&S to accurately plan,

describe, and execute M&S activities while at the same

time contributing to the central source of truth for a

program, but cohesive ontologies are highly complex

and notoriously difficult to develop. Software platforms

corresponding to rigorously developed ontologies offer

strong semantics that both prevent erroneous work and

infer additional system architecture descriptions from

existing work, reducing the cumulative effort required to

realize a project. The purpose of verification by analysis

is to ensure a design is compliant to functional and

capability requirements, and the cardinal sin of M&S is

to make a perfect, pristine model that does not yield the

TPM relevant to the requirement. Connecting system

architecture descriptions to modeling environments

through ontologies prevents this cardinal sin from being

committed and supports M&S validation during model

input, model execution, and model management. The

ultimate goal of this ongoing work is to establish the

ontological foundation for a platform to automate M&S,

generate documentation, and provide a central source of

truth for discipline engineers ill-versed in PM and SE

topics to contribute technical information such that the

platform semantically infers PM and SE content from

technical input. The UOF will serve as the ontological

foundation for EMPIRE, and EMPIRE version alpha

will be released free and open-source in 2024 for

community contribution.

Acknowledgments

The authors would like to thank the Alabama Space

Grant Consortium for its tireless support of student space

education and workforce development. Tim Canham,

Robert Bocchino, and Jeff Levison of the Jet Propulsion

Lab are thanked for their continued support of the

Alabama CubeSat Initiative and its model-based

software development.

Halvorson 18 37th Annual Small Satellite Conference

References

1. Wasson, C. S., “Systems Engineering: Analysis,

Design, & Development”, 2nd edition, ISBN 978-

1-118-44226-5, Wiley, 2016.

2. Thomas, L. D., “Systems Test and Verification”,

Engineering Systems. University of Alabama in

Huntsville. Presentation. 2021.

3. Larson, W. J., Kirkpatrick, D., Sellers, J. J.,

Thomas, L. D., & D. Verma., “Applied Space

Systems Engineering”. McGraw-Hill, 2018.

4. Berthoud, L., Swartwout, M., Cutler, J., Klumpar,

D., Larsen, J. A., & J. F. D. Nielsen, (2019).

“University cubesat project management for

success.” Small Satellite Conference. 2019.

5. Modeling and Simulation (M&S) Management,

DoD Instruction 5000.59, December 2003.

PhilArchive copy v3:

https://philarchive.org/archive/SEPGFWv3DoD

6. Box, G. E. P., "Science and statistics." Journal of

the American Statistical Association, 71. 1976.

(356): 791–799,

doi:10.1080/01621459.1976.10480949.

7. Ferguson, R., Marshall, J., and L. Assadzadeh.

"Automated Power Analysis of Onboard

Spacecraft Electronics with Model Based Systems

Engineering." 2019 IEEE Aerospace Conference.

IEEE, 2019.

8. Halvorson, M. C., Cho, J., Farkas, S., Boyd, L.,

Cartie,r N., Cole, K., DeAngelo, N., Edwards, T.,

Middleton, T., Moquin, C., May, B., Kilpatrick,

W., Taylor, M., Tsai, H., Cameron, C., and N.

Tsolas. “High-Fidelity Spacecraft Thermal

Modeling: Synthesis of STK, SPENVIS,

MATLAB, Simulink, and Thermal Desktop using

Model-Based Systems Engineering.” Small

Satellite Conference. 2022

9. Chesley, Bruce. Sellers, Jerry. Applied Model-

Based Systems Engineering. May 2021. Copyright

Teaching Science and Technology, Inc.

Presentation.

10. Halvorson, M. C., & Thomas, L. D., “Architecture

Framework Standardization for Satellite Software

Generation Using MBSE and F Prime.” IEEE

Aerospace Conference (AERO) IEEE, 2022.

11. Hatley, D. and I. Pirbhai, Strategies for real-time

system specification. 2013: Addison-Wesley.

12. Hatley, D., Hruschka, P., and I. Pirbhai, Process

for system architecture and requirements

engineering. 2013: Addison-Wesley.

13. Maier, M. W., "Adapting the Hatley-Pirbhai

Method for the Era of SysML and Digital

Engineering." 2022 IEEE Aerospace Conference

(AERO). IEEE, 2022.

14. Walden, D. D., Shortell, T. M., Roedler, G. J.,

Delicado, B. A., Mornas, O., Yew-Send, Y., and

D. Endler., “INCOSE Systems Engineering

Handbook” 4th Edition. 2015.

15. NASA Office of the Chief Engineer, NASA

Technical Standard. NASA-STD-7009, “Standard

for Models and Simulations”.

https://standards.nasa.gov/sites/default/files/stand

ards/NASA/w/CHANGE-

1/1/nasa_std_7009a_change_1.pdf

16. ISO 42010:2022, "Software, systems and

enterprise – Architecture Description” Geneva,

Switzerland, 2022.

https://www.iso.org/standard/74393.html

17. Information Technology – Top-Level Ontologies

(TLO) – Part 1: Requirements. ISO/IEC 21838-

1:2021. ISO/IEC JTC 1/SC 32. October, 2021.

18. Drobnjakovic, M., Ameri, F., Will, C., Smith, B.,

and Jones, A., “The Industrial Ontologies Foundry

(IOF) Core Ontology.” 12th International

Workshop on Formal Ontologies meet Industry,

Tarbes, France. September 12th – 15th.

19. Rudnicki, R., Smith, B., Malyuta, T., and

Mandrick, W., “White Paper: Best Practices of

Ontology Development.” CUBRC, Buffalo, NY,

USA. October, 25. [Online]. Available:

https://www.nist.gov/system/files/documents/202

1/10/14/nist-ai-rfi-cubrc_inc_002.pdf

20. Hohenecker, P. and Lukasiewicz, T., 2020.

Ontology reasoning with deep neural networks.

Journal of Artificial Intelligence Research, 68,

pp.503-540.

21. Antoniou, G., van Harmelen, F., “Web Ontology

Language.” May, 2003. DOI: 10.1007/978-3-540-

92673-3_4

22. W3C SPARQL Working Group. “SPARQL 1.1

Overview.” March, 2013. W3C Recommendation

21. [Online]. Available:

https://www.w3.org/TR/2013/REC-sparql11-

overview-20130321/

23. O’Connor, M., and Amar., “SQWRL: A Query

Language for OWL.” Proceedings of the 5th

International Workshop on OWL: Experiences

and Directions, October 23rd – 24th, 2009.

24. Lamy, J.-B., “Owlready: Ontology-Oriented

Programming in Python with Automatic

Classification and High-Level Constructs for

Biomedical Ontologies.” Artificial Intelligence in

Medicine, 80: 28–11. July, 2017. DOI:

10.1016/j.artmed.2017.07.002.

25. Kleppe, A. G., “A Language Description is More

than a Metamodel.” 4th International Workshop on

Software Language Engineering, Nashville, TN.,

U.S., October 1st, 2007.

Halvorson 19 37th Annual Small Satellite Conference

26. Fondement, Frédéric., “Concrete Syntax

Definition for Modeling Languages.” November,

2007. Swiss Federal Institute of Technology in

Lausanne. DOI: 10.5075/epfl-thesis-3927.

27. Chomsky, N., and Schützenberger, M. P. “The

Algebraic Theory of Context-Free Languages.”

Studies in Logic and Foundations of Mathematics,

vol. 35, 118-161, 1963. DOI:

https://doi.org/10.1016/S0049-237X(08)72023-8

28. Raimond, Y., and Schreiber, G., “RDF 1.1

Primer.” June, 2014. W3C Working Group Note

24. [Online]. Available:

https://www.w3.org/TR/2014/NOTE-rdf11-

primer-20140624/

29. Cyganiak, R., and Wood, D., “RDF 1.1 Concepts

and Abstract Syntax.” February, 2014. W3C

Recommendation 25. [Online]. Available:

https://www.w3.org/TR/2014/REC-rdf11-

concepts-20140225/

30. Biron, P. V. and Malhotra, A., eds., “XML

Schema Part 2: Datatypes Second Edition.”

October, 2004. W3C Recommendation 28.

[Online]. Available:

https://www.w3.org/TR/2004/REC-xmlschema-

2-20041028/

31. McGuinness, D. L., and van Harmelen, F., “OWL

Web Ontology Language Overview.” February,

2004. W3C Recommendation 10. [Online].

Available: https://www.w3.org/TR/2004/REC-

owl-features-20040210/

32. Brickley, D., and Guha, R. V., “RDF Schema 1.1.”

February, 2014. W3C Recommendation 25.

[Online]. Available:

https://www.w3.org/TR/2014/REC-rdf-schema-

20140225/

33. W3C OWL Working Group. “OWL 2 Web

Ontology Language Overview (Second Edition).”

December, 2012. W3C Recommendation 11.

[Online]. Available:

https://www.w3.org/TR/2012/REC-owl2-

overview-20121211/

34. W3C OWL Working Group. “OWL Web

Ontology Language Guide.” February, 2004.

W3C Recommendation 10. [Online]. Available:

https://www.w3.org/TR/2004/REC-owl-guide-

20040210/

35. Golbreich, C., Wallace, E. K., eds. “OWL 2 Web

Ontology Language: New Features and Rationale

(Second Edition).” December, 2012. W3C

Recommendation 11. [Online]. Available:

https://www.w3.org/TR/2012/REC-owl2-new-

features-20121211/

36. Motik, B., Patel-Schneider, P. F., Parsia, B., eds.

“OWL 2 Web Ontology Language: Structural

Specification and Functional-Style Syntax

(Second Edition).” December, 2012. W3C

Recommendation 11. [Online]. Available:

https://www.w3.org/TR/2012/REC-owl2-syntax-

20121211/

37. Uschold, Mike, and Tate, Austin., “Putting

Ontologies to Use.” The Knowledge Engineering

Review 13, no. 1. March 1998: 1–3.

https://doi.org/10.1017/S0269888998001027.

38. Smith, B., (2018). Applied Ontology: Lecture 1.

Introduction to Ontology. University of Buffalo.

39. Information Technology – Top-Level Ontologies

(TLO) – Part 2: Basic Formal Ontology (BFO).

ISO/IEC 21838-2:2021. ISO/IEC JTC 1/SC 32.

November, 2021.

40. Calspan-University of Buffalo Research Center.

“Common core ontologies for data integration.”

https://www.cubrc.org/index.php/data-science-

and-information-fusion/ontology

41. Cox, A.P., Nebelecky, C.K., Rudnicki, R., Tagliaferri,

W.A., Crassidis, J.L. and B. Smith, “The Space Domain

Ontologies.” 2021. Calspan-University of Buffalo

Research Center.
42. Halvorson, M.C., Moyers, N. and Thomas, L.D.,

“An Ontology for Prognostic Health Management

in Spacecraft Avionics.” Annual Conference of

the PHM Society. October, 2022. (Vol. 14, No. 1).

43. Johnson, Hamilton E., L. Dale Thomas, and

Manuel J. Diaz. "Developing and Testing a

Common Space Systems Ontology using the

Ontological Modeling Language." 2023 IEEE

Aerospace Conference. IEEE, 2023.

44. Smith, B., “Basic Formal Ontology 2.0:

Specification and User’s Guide.” June, 2015.

[Online]. Available:

https://purl.obolibrary.org/obo/bfo/reference

45. Aamodt, A., Nygard, M., “Different Roles and

Mutual Dependencies of Data, Information, and

Knowledge: An AI Perspective on their

Integration.” Data & Knowledge Engineering,

vol. 16, no. 3, 191-222. May, 1995. DOI:

10.1016/0169-023X(95)00017-M

46. Rader, J. and Haggerty, L., “Supporting systems

engineering with methods and tools: a case study.”

28th Asilomar Conference on Signals, Systems

and Computers (Vol. 2, pp. 1330-1334). IEEE,

1994.

47. NASA Office of the Chief Engineer, NASA

Technical Handbook. NASA-HDBK-1005,

“NASA Space Mission Architecture Framework

(SMAF) Handbook for Uncrewed Space

Missions”.

https://standards.nasa.gov/standard/nasa/nasa-

hdbk-1005-0. Approved 2021-03-11.

Halvorson 20 37th Annual Small Satellite Conference

48. Friedenthal, S., Moore, A., and R. Steiner., “A

Practical Guide to SysML”, 3rd Edition, ISBN:

978-0-12-800202-5, Morgan Kaufmann, 2014.

49. Wolfgang, R., Katz, T., and L. Wheatcraft.,

“Guide to Verification and Validation” INCOSE-

TP-2021-004-01, Rev 1.0. May, 2022.

50. Smith, B., “Basic Formal Ontology 2.0:

Specification and User’s Guide.” University of

Buffalo, 2015.

51. Mari, Luca, Anna Chunovkina, and Charles

Ehrlich. "The complex concept of quantity in the

past and (possibly) the future of the International

Vocabulary of Metrology." Journal of Physics:

Conference Series. Vol. 1379. No. 1. IOP

publishing, 2019.

52. NASA Office of the Chief Engineer, NASA

Technical Handbook. NASA-SP-2016-6105

Rev2, “NASA Systems Engineering

Handbook”.

 https://www.nasa.gov/sites/default/files/atoms/

files/nasa_sy

 stems_engineering_handbook_0.pdf.

53. Oakes, J., R. Bottaand T. Bahill, “Technical

Performance Measures,” BAE Systems, San

Diego, CA, 2004.

54. Standard: Mass Properties Control for Space

Systems, AIAA Standards. American Institute of

Aeronautics and Astronautics, Inc. 2015.

https://doi.org/10.2514/4.103858.001

55. Horridge, M., Drummond, N., Goodwin, J.,

Rector, A., Stevens, R., Wang, H. H., “The

Manchester OWL Syntax.” Proceedings of the

2006 OWL Experiences and Directions Workshop,

November 10th – 11th, 2006.

56. Forsberg, K. and H. Mooz., “The Relationship of

System Engineering to the Project Cycle.”

Proceedings of the National Council for Systems

Engineering (NCOSE) Conference, Chattanooga,

TN. Pp 57-65. October, 1991

57. Walden, D.D., “YADSES: Yet Another Darn

Systems Engineering Standard.” Proceedings of

the 17th Annual INCOSE International

Symposium. San Diego, California. International

Council on Systems Engineering.

58. Roedler, G. “Knowledge Management Position.”

Proceedings of the 20th Annual INCOSE

International Symposium. Chicago, IL.

International Council on Systems Engineering.

2010.

59. Roedler, G. and C. Jones. “Technical

Measurement: A Collaborative Project of PSM,

INCOSE, and Industry.” INCOSE Measurement

Working Group. INCOSE TP-2003-020-01.

60. MathWorks., “MATLAB Engine API for

Python.” [Online]. Available:

https://www.mathworks.com/help/matlab/matlab-

engine-for-python.html

61. Robinson, J.A., Waid, M.C., Korth, D., Rucker,

M. and Renfrew, R., 2019, October. Innovative

approaches to using the International Space

Station as a Mars transit analog. In International

Astronautical Congress (No. HQ-E-DAA-

TN74078).

62. Brown, Nichols F. "Space Scientific Instrument

Taxonomy (SSIT) Version 2.0." 2022 IEEE

Aerospace Conference (AERO). IEEE, 2022.

