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ABSTRACT 
Early detection of wildfires is crucial for preventing the spread of fires and protecting lives and properties. In recent 
years, satellite-based wildfire detection is becoming popular because of the coverage area and cost limitations of 
traditional detection methods such as ground-based observation and aerial surveillance. In particular, using CubeSat 
has the advantage of real-time monitoring and early detection of wildfires in a large area at a low cost. However, the 
CubeSats have limited image quality due to physical limitations such as size, weight, and power, which reduce 
detection performance. Therefore, this paper proposes a novel approach for early wildfire detection with CubeSat 
images using deep learning and super-resolution techniques. Considering the limitations of CubeSat, a dataset of three-
channel RGB images was used for binary classification. Landsat-8 images of ten bands were preprocessed into RGB 
images and enhanced by 4x using Real-ESRGAN. The study utilized transfer learning for wildfire detection using two 
pre-trained deep learning models, MobileNetV2 and ResNet152V2. The results proved that the super-resolution of 
the satellite images improved the wildfire detection precision, recall, and f1-score by about 3~5%, depending on the 
models. 

INTRODUCTION 
Wildfires can cause catastrophic damage in many areas 
of life, including transportation, communications, power 
and gas services, and water supplies. It also causes 
environmental damage and human casualties. Therefore, 
early detection and suppression of wildfires are essential 
because the damage of wildfires increases exponentially 
with time after they occur. Past approaches for wildfire 
detection can be divided into three categories which are 
terrestrial-based, aerial-based, and satellite-based. The 
previous two approaches have been more widely used 
than the last method regarding initial cost and technical 
difficulty. On the other hand, satellite-based wildfire 
detection research is being actively conducted as the 
amount of satellite launches has recently increased, and 
costs have been significantly reduced.  

Satellites offer several advantages for wildfire detection. 
They can cover remote and inaccessible areas where 
ground-based detection systems are unavailable and 
continuously monitor fires at night or in bad weather. 
Moreover, satellite-based systems can be cost-effective 
in the long run compared to other methods due to 
reduced maintenance and replacement needs. In 

particular, wildfire detection using CubeSats maximizes 
the advantages of satellite-based systems. CubeSat can 
expand the real-time detection coverage area worldwide 
at a low cost. Depending on the orbit selection, looking 
at various sites or continuously observing one place is 
possible. Additionally, it is possible to address the 
restrictions of the link budget by employing multiple 
CubeSats. 

However, due to their small size, there are a few 
obstacles to wildfire detection using CubeSats. Existing 
satellite-based wildfire detection algorithms are based on 
comparing multiple bands of satellite images, which are 
not feasible for CubeSat-based wildfire detection due to 
the small camera payload capacity. Windfire detection 
using only limited bandwidth of satellite images can 
resolve this issue. CubeSat also has a limited payload 
capacity regarding software memory, making it 
impossible to use heavy deep-learning models. 
Therefore, research is needed to maximize the detection 
performance while satisfying the limited number of 
bands and memory. Considering the limited payload 
capacity of CubeSats, this paper proposes an alternative 
method to improve the CubeSat-based wildfire detection 
performance using single-image super-resolution. 
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Figure 1: Data Preprocessing for Binary Classification 

 

The super-resolution technique in the ground station can 
enhance the wildfire detection performance without 
changing the specification of CubeSat. 

This study presents the possibility of worldwide real-
time wildfire detection using a CubeSat-based system 
with super-resolution. This approach provides a solution 
for maximizing wildfire detection performance while 
satisfying the limitations of CubeSats, such as their small 
size, limited bandwidth, and payload capacity. The 
proposed method applied the super-resolution technique 
at the ground station to improve wildfire detection 
performance in RGB images received from CubeSats. 
The study proved that super-resolution images were 
superior to the original CubeSat images in both learning 
speed and performance by applying the same deep-
learning models.  

MATERIALS 

Original Dataset 

The data used for learning were preprocessed from 
wildfire satellite images released as open sources in the 
previous study [1]. The dataset was created by collecting 
Landsat-8 imagery from the United States Geological 
Survey (USGS). Since the Landsat-8 images are 
multispectral, including 11 bands, they were encoded in 
TIFF format. The image of the original dataset is 
composed of ten bands, excluding band 8 (panchromatic). 
The wavelength and resolution of each band in Landsat-
8 images are shown in Table 1. 

Table 1: Wavelengths and Resolutions of Bans in 
Landsat-8 Imagery 

Bands Wavelength [μm] Resolution [m] 

Coastal aerosol 0.43-0.45 30 

Blue 0.45-0.51 30 

Green 0.53-0.59 30 

Red 0.64-0.67 30 

Near Infrared 0.85-0.88 30 

SWIR 1 1.57-1.65 30 

SWIR 2 2.11-2.29 30 

Panchromatic 0.50-0.68 15 

Cirrus 1.36-1.38 30 

Thermal Infrared 1 10.60-11.19 100 

Thermal Infrared 2 11.50-12.51 100 

The previous study trained a deep learning model on 
images of size 256x256. Considering the resolution of 
Landsat-8, which is 30m, each image covers an area of 
approximately 59 km2. From a wildfire detection 
perspective, this is a relatively large area, so in the 
previous study, a segmentation technique was used to 
create fire masks based on whether each pixel was on fire. 
However, much effort is required to create manually 
annotated fire masks because manual annotation is 
possible only when there is a large amount of data on the 
time and point of the actual fire, and satellite images are 
complicated to process. Therefore, they used three well-
established fire detection algorithms of satellite images 
to create a massive amount of fire masks presented by 
Schroeder et al. [2], Murphy et al. [3], and Kumar and 
Roy [4]. Since the three algorithms are not ground truth, 
they sometimes produce slightly different results. In this 
paper, the model was trained based on the assumption 
that a pixel within the mask should be classified as an 
active fire if there is an agreement between at least two 
sets of algorithms indicating it is a fire pixel. 
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Figure 2: Learning Architecture of Early Wildfire Detection Using Super-Resolution 

 

Preprocessing 
The image size was reduced to 64x64 to take advantage 
of the CubeSat-based system, which can operate 
multiple units simultaneously with a small capacity. As 
the image size decreased, the area occupied by one image 
shrank to 3.7 km2. Hence, the problem changed to a 
binary classification of whether the image has fire rather 
than pixel-by-pixel segmentation. In addition, since 
camera payloads containing ten bands could not be 
loaded due to CubeSat’s capacity limitations, the 
original dataset images were converted to images 
containing only RGB channels. (Band 4, 3, 2 in Landsat-
8). 

The dataset preprocessing process for the learning is 
shown in Figure.1. First, ten bands of multispectral 
images format in TIFF is converted to three-channel 
RGB images in PNG format. The Python library GDAL 
was used for this process. When the image format is 
changed from TIFF to PNG, each pixel value is 
converted from a float to an integer, losing some 
information. However, since learning through the model 
uses normalized information, the effect on the learning 
result is insignificant. Next, Landsat-8 images of size 
256x256 are divided into 16 new images of 64x64. The 
divided images are newly labeled according to whether 
or not they contain wildfire areas based on the fire masks 
of the original dataset. For example, if the fire Mask in 
Figure 1 is divided into 16 parts, there are areas where 
an image with white parts (fire) and an image with only 
black parts (no fire) are generated. This study assumes 
that the existing fire masks are as the ground truth. A new 
binary classification dataset was created based on the 
ground truth. 

The original dataset was intended for pixel-level 
segmentation. Therefore, even if only one pixel 
corresponded to fire, it was included in the dataset, 
resulting in a severe class imbalance of about 10:1. When 
the dataset is imbalanced, the model may be biased 
toward the majority class and ignore the minority class 
as it attempts to optimize overall accuracy. Since it is 
essential to accurately detect fire in wildfire detection, 
dataset imbalance causes model performance 
degradation. Among several methods to solve dataset 
imbalance, undersampling was used in this study. The 
images for undersampling were randomly selected to 
avoid losing important information. The final dataset for 
binary classification deep-learning contains 5,966 
images with equal proportions of fire and no fire images, 
and the total dataset split is presented in Table 2. The 
identical images were used for training and testing 
regardless of whether super-resolution was used. 

Table 2. Size of Dataset for Learning 

Train Validation Test 

3818 954 1194 

METHODS 

Early Wildfire Detection Framework 
The proposed approach involves utilizing two deep 
learning models for wildfire detection - one deployed on 
an onboard satellite and the other deployed on the ground. 
This approach is adopted to address the inefficiency of 
using many CubeSats for real-time wide-range 
surveillance, resulting in a large volume of captured 
images. Thus, a lightweight model has to be utilized for 
wildfire detection onboard the CubeSat. 
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Figure 3. Examples of Training Dataset Super-Resolved by Real-ESRGAN: The upper row is the original 
images (spatial resolution 30m), and the lower row is the images after x4 super-resolution (spatial resolution 

7.5m). 

 

However, the limited payload capacity of the CubeSat 
poses a challenge for performing wildfire detection 
onboard. Several studies have consistently shown that 
the detection performance of a deep learning model 
increases as the number of parameters increases. 
Therefore, it is beneficial to perform this task on the 
ground by leveraging adequate computing power.  

However, using CubeSats for image acquisition presents 
a challenge due to the fixed resolution of the images. We 
cannot simply apply more complex models to improve 
performance because of the fixed resolution. This study 
proposes a super-resolution technology to address this 
challenge, which can enhance image quality and achieve 
more accurate wildfire detection. The super-resolution 
techniques can identify image features that are not 
readily discernible at lower resolutions. The study 
investigates the impact of super-resolution on wildfire 
detection performance compared to using the same 
image and training model without super-resolution. The 
overall flow of wildfire detection using super-resolution 
is illustrated in Figure 2. 

Super-Resolution of Satellite Images 
Deep learning-based super-resolution techniques have 
become increasingly popular due to their capacity to 
learn complex image features and generate high-quality 
results. However, applying super-resolution to satellite 
imagery poses several challenges. Since super-resolution 

research has developed in the field of computer vision, 
the majority of the research has focused on processing 
RGB images. On the other hand, satellite imagery 
typically comprises multiple spectrums, including 
infrared bands which are frequently used for wildfire 
detection. As a result, most pre-trained models for super-
resolution are unsuitable for satellite imagery. In 
addition, there is a requirement for wildfire image 
datasets that are appropriate for super-resolution training 
that considers atmospheric conditions, clouds, and cloud 
shadows. For this reason, despite the advantages of 
super-resolution technology, super-resolution is not 
being used for CubeSat-based wildfire detection. 
However, the existing super-resolution algorithm was 
easily applied in this study because the satellite image 
was preprocessed and converted into an image with three 
RGB channels. 

Furthermore, there are several reasons why the decision 
was made to utilize single-image super-resolution 
instead of multi-image super-resolution. Firstly, given 
the limited bandwidth allocated to satellite 
communications, transmitting multiple photos of a 
specific area to the ground proved challenging, as 
satellites are constantly in orbit. The amount of data that 
could be transmitted is restricted, making capturing 
images at multiple time intervals difficult. Second, 
creating a dataset of satellite images of wildfires at 
consecutive time intervals was virtually impossible. It is 
the same reason for using the algorithms rather than 
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creating manually annotated masks explained earlier. 
Therefore, single-image super-resolution was adopted as 
a super-resolution technique. 

The pre-trained “Real-ESRGAN” model [5] was used to 
super-resolve the satellite image dataset. Real-ESRGAN 
is a deep learning-based super-resolution model using a 
generative adversarial network (GAN) architecture to 
generate realistic images of high quality. The model is 
trained on real-world images and incorporates perceptual 
loss to enhance the super-resolution performance. The 
application of super-resolution of the model increases 
the image resolution by a factor of 4, resulting in an 
image size of 256x256. As the image size increases, the 
resolution has improved up to 7.5m, while one pixel has 
the same spatial resolution of 30m. The generated 
satellite images using the Real-ESRGAN model were of 
significantly higher quality, as visually evident in Figure 
3, with a few examples of super-resolution images 
shown. 

Wildfire Detection Learning Models 
Two models (MobileNetV2 [6] and ResNet152V2 [7]) 
were used as deep-learning models for wildfire detection. 
The two models explored the impact of the model size 
on wildfire detection capability. Both models were the 
pre-trained model provided by the Keras application. 
The fully connected layers were added to change both 
models’ roles from multi-class classification to binary 
classification. The model size and the number of 
parameters are summarized in Table 3. 

Table 3: Model Size and Number of Parameters of 
MobileNetV2 and ResNet152V2 

 MobileNetV2 ResNet152V2 

No. of Parameters 2,438,593 58,610,561 

Model Size (MB) 9.75 234.44 

Two separate iterations of training and testing were 
conducted on each model. One of these rounds utilized 
the original dataset, while the other employed the super-
resolved dataset. Both datasets were trained to leverage 
an equivalent model architecture, with only the input 
image size as the distinguishing factor. 

Both models were trained for up to 100 epochs, and the 
model that achieved the minimum validation loss was 
selected as the best model and applied to the test dataset. 
The input images were preprocessed by normalizing and 
fed into a model as three-channel inputs. In addition, in 
this study, data augmentation was performed by 
allowing horizontal and vertical flips of the input image. 
However, care was taken to avoid enlargement 

techniques that could result in loss of information from 
the original image, such as cropping or rotating the 
original image. Multiple tests for hyperparameter 
selection were conducted using varying values of the 
learning rate, batch size, and other relevant parameters. 
Table 4 exhibits the resulting hyperparameters used in 
the training process. 

Table 4: Hyperparameters for Learning 

Hyperparameter Value 

Optimizer Adam 

Learning rate 1e-5 

Batch size 128 

Epochs 100 

Loss function Binary Cross-entropy 

RESULTS 

Evaluation Metrics 
The models’ performances are evaluated by computing 
precision, recall, and f1-score. Precision (P) evaluates 
the accuracy of the model’s positive predictions by 
dividing true positives (TP) by the sum of TP and false 
positives (FP). Recall (R), also known as sensitivity, 
measures the model’s capacity to identify positive 
instances by dividing TP by the sum of TP and false 
negatives (FN). Finally, the F1-score (F), which balances 
precision and recall, is calculated as the harmonic mean 
of these two measures. 

TP
TP FP

P
+

=                                                           (1) 

TP
TP FN

R
+

=                                                          (2) 

2
1/ 1/P R

F
+

=                                                      (3) 

In addition, graphical representations of the models’ 
binary classification performances were generated by 
plotting a ROC curve. The ROC curve plots the true 
positive rate or sensitivity against the false positive rate 
or 1-specificity at different threshold settings as the 
discrimination threshold changes. AUC is a measure that 
quantifies the overall performance of a binary classifier 
by computing the area under the ROC curve, which 
ranges from 0 to 1. For example, a perfect classifier is 
represented by an AUC of 1, while an AUC of 0.5 
denotes a random classifier.
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Figure 4: Confusion Matrices of Trained Models for Test Dataset 
 

Performance of Trained Models 
The four trained models were evaluated against 1,194 
test datasets, and the results are summarized in Table 5. 
The models using super-resolution images demonstrated 
superior performance compared to those not using super-
resolution. In the case of MobileNetV2, using super-
resolution images resulted in a 5% increase in precision, 
recall, and f1-score, while ResNet152V2 showed a 3% 
increase. The learning performance of the models trained 
without super-resolution images improved as the 
model’s size increased. However, in the case of the 
model using the super-resolution images, the 
performance difference between ResNet152V2 and 
MobileNetV2 observed during the training process did 
not occur during the test process. This suggests that 
super-resolution images contain more explicit 
information, allowing the model to learn all the features 
in the training dataset regardless of the model size. It 
implies that model performance can be improved by 
increasing the size of the training dataset. 

Table 5: Comparison of Precision, Recall, and F1-
Score of Trained Models 

Models P R F1 

Super-resolution, MobileNetV2 (HMob) 0.88 0.91 0.90 

Super-resolution, ResNet152V2 (HRes) 0.88 0.90 0.89 

Low resolution, MobileNetV2 (LMob) 0.83 0.85 0.84 

Low resolution, ResNet152V2 (LRes) 0.85 0.88 0.86 

The confusion matrices in Figure 4 display the 
classification results for the test data. As it is a binary 
classification problem, the confusion matrix has a size of 
2x2, with fire representing negative and no fire 
representing positive. Consistent with the evaluation 
metrics results, the true positive and true negative ratio 
was higher in the model using a super-resolution image. 
A significant difference occurred due to model size only 
in the model without using super-resolution. Since all 
four confusion matrices show higher values for TP and 
TN, it can be inferred that the models have learned the 
classification task well. However, there is still room for 
improvement as the test accuracies of the models are 
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lower than the training accuracies. Notably, all four 
models exhibited more FP than FN. This can be solved 
by changing the decision threshold value of the model or 
increasing the size of the data used for learning. A higher 
threshold would make it more difficult for the model to 
predict a positive outcome, potentially reducing the 
number of FP. Increasing the size and diversity of the 
dataset used to train the model can help reduce FP. 

The ROC curves in Figure 5 clearly show the 
performance differences between models trained with 
and without super-resolution images. Despite using the 
same model architecture, super-resolution images 
increased the AUC score by 0.04. Unlike the previous 
results, the AUC scores were high when the model size 
was large in both cases, regardless of the image 
resolution. This seems to contradict previous results, but 
it is not. A model can have a high AUC score but low P, 
R, and F when the threshold used to make predictions 
may not be optimal for maximizing precision or recall, 
even if the model can distinguish between positive and 
negative cases effectively. ResNet152V2 can 
outperform MobileNetV2 in other evaluation metrics if 
the Decision Threshold value is adjusted accordingly. 

 

Figure 5: ROC-Curves of Trained Models 

CONCLUSION 
In conclusion, this paper presents a novel approach for 
early wildfire detection with CubeSat images, which 
utilizes deep learning and super-resolution techniques. 
This approach addresses the challenges posed by the 
limitations of CubeSats, such as their small size, limited 
bandwidth, and payload capacity while maximizing 
wildfire detection performance. The proposed method 
has the potential to enable worldwide real-time wildfire 

detection using a CubeSat-based system, which would 
provide a more cost-effective and efficient alternative to 
traditional ground-based observation and aerial 
surveillance methods. The study employed transfer 
learning for wildfire detection, utilizing two pre-trained 
deep-learning models, MobileNetV2 and ResNet152V2. 
Preprocessing and converting the Landsat-8 imagery 
into an image with three RGB channels enabled the easy 
application of the existing super-resolution algorithm. 
The results demonstrated that training with super-
resolution images was superior to using original CubeSat 
images in both learning efficiency and performance, with 
an improvement in precision, recall, and f1 score by 
about 3~5%, depending on the model used. 

We can explore several future research directions to 
improve the proposed method. First, increasing the 
dataset size can improve the test accuracy of the model. 
The current study utilized a dataset of 1,194 test images. 
More images of different types of fires, weather 
conditions, and terrain can be added to the dataset for 
better performance. Second, the performance of the 
proposed method is investigated when the super-
resolution factor is different. In the current study, 
Landsat-8 images were enhanced 4x using the Real-
ESRGAN algorithm. Changing super-resolution 
coefficients can affect wildfire detection accuracy. Third, 
exploring trends in decision thresholds for wildfires can 
be further studied. Although this study has shown that 
super-resolution techniques increase the AUC score, the 
fire decision threshold has yet to be optimized. 
Performance can be improved by analyzing trends in 
decision threshold models. Finally, reducing the model 
size and false negative rate are also future research topics. 
The current study assumes a situation where the CubeSat 
makes its first detection onboard. Given the model 
capacity, reducing the model size and the false negative 
rate can improve the system’s overall performance. 
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