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ABSTRACT 

As part of an initiative to promote the development and implementation of innovative technologies on-board Earth 

Observation (EO) missions, the European Space Agency (ESA) kicked off the first Φsat related activities in 2018 

with the aim of enhancing the already ongoing FSSCAT project with Artificial Intelligence (AI). 

The selected Φsat-2 concept will provide a combination of on-board processing capabilities (including AI) and a 

medium to high resolution multispectral instrument from Visible to Near Infra-Red (VIS/NIR) able to acquire 8 

bands (7 + Panchromatic) provided by SIMERA SENSE Europe (BE). These resources will be made available to a 

series of dedicated applications that will run on-board the spacecraft. The mission prime is Open Cosmos (UK), 

supported by CGI (IT) to coordinate the payload operations for at least 12 months after LEOP and commissioning 

phase. During the nominal phase the various AI applications will be fine-tuned after the on-ground training and then 

routinely run. 
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A series of AI applications that could be potentially embarked are under development. The first one is called 

SAT2MAP and is expected to autonomously detect streets from acquired images. It is developed by CGI (IT). 

The second AI application is an enhancement of the Φsat-1 cloud detection experiment, able to prioritize data to be 

downloaded to ground, based on standard cloud coverage and new concentration measurements. It is developed by 

KP Labs (PL) and it is based on a U-Ne. This application will mainly act as an on-board service for the other 

applications, relieving them of the task of assessing the presence of the clouds. 

The Autonomous Vessel Awareness application aims to detect and classify various vessel types in the maritime 

domain. This would enable a reduced amount of data to be downloaded (only image patches including the vessel) 

improving the response time for final users (e.g maritime authorities). In this case the AI technique used is a 

combination of Single Image Super resolution (SRCNN) and Yolo-based Convoluted Neural Network (CNN). 

The Deep Compression application generically reduces the amount of data to be downloaded to ground with limited 

information loss. The image is compressed on-board and then reconstructed on ground by means of a decoder. It can 

achieve a compression rate of about 7 per band. It is based on the use of a Convolutional Auto Encoder (CAE). 

Two more AI applications will be selected by ESA through a dedicated challenge open to institutions, Agencies and 

industries that will be run in the first half of 2023. The Φsat-2 mission successfully passed the CDR phase at the end 

of 2022 aiming for a launch in 2024. 

INTRODUCTION 

As part of an initiative to promote the development and 

implementation of innovative technologies on-board 

Earth Observation (EO) missions, the European Space 

Agency (ESA) kicked off the first Φsat related 

activities in 2018 [1] with the aim of enhancing the 

already ongoing FSSCAT [2] mission with Artificial 

Intelligence (AI). The underlying idea was to combine 

the fast development cycles and reduced cost of new 

space with new Earth Observation concepts to boost 

innovation. Φsat-1 experiment successfully flown in 

2020[3] demonstrating the benefits of edge computing 

through AI and paving the way for its successor: Φsat-

2.  

With Φsat-2 ESA wanted to capitalize on the results of 

the initial experiment and to design a dedicated mission 

to fully explore the benefits and capabilities of having 

extended onboard processing. Many different concepts 

were considered during the evaluation of the proposals 

resulting from the initial call issued in 2019. The 

selected one is based on the use of a single 6U CubeSat 

equipped with a multispectral camera and a dedicated 

payload processing unit able to handle multiple onboard 

applications. The following mission objectives were 

established at the beginning of the project: 

1. Demonstrate the enabling capabilities of 

running onboard Artificial Intelligence 

applications. 

2. Demonstrate relevance for applicative 

scenarios and operational missions. 

3. Demonstrate the ability of running multiple 

applications on board (either segregated or 

combined in a sequential way) and to update 

and upload them in different moment 

throughout the entire mission lifetime. 

Four baseline applications were already identified at the 

proposal stage, for autonomous cloud detection, deep 

compression, vessel detection and street detection in 

case of emergency situations like flooding. Two 

additional applications are expected to be selected 

through a dedicated challenge, called OrbitalAI, that 

has been organized in parallel to the mission 

development and which was open to any person, start-

up or large enterprise willing to test and validate their 

own innovative ideas in space. 

The project has been initially divided into two separate 

phases: 

• Phase 1, focused on the definition and initial 

development of the baselined applications and 

the overall end to end onboard data handling 

approach (ended in 2021). 

• Phase 2, in which the mission is being 

implemented and exploited, this phase is 

expected to end after at least 12 months of 

nominal operations. 

The Φsat-2 mission consortium is led by Open Cosmos 

(UK) as Prime Contractor, CGI (IT) as coordinator of 

the various application providers and in charge of the 

development of NanosatMO Framework, Simera Sense 

Europe (BE) and Ubotica Technologies (IL) providing 

the payload main components (Multispectral Camera 

and AI accelerator) and KPLabs, CEiiA and GEO-K 

providing the remaining baselined applications. The 
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role of the main AI application providers, in the context 

of the Φsat-2 mission was extremely important since 

they also acted as reference end users for the final data 

products. The data produced by the mission will be 

freely available being distributed under an open and 

free data policy. 

ΦSAT-2 MISSION  

The Φsat-2 mission architecture is provided in Figure 1 

where the various segments are identified. Because of 

the very specific demonstration nature of the mission, 

the final users correspond to the application developers.  

 

Figure 1: Mission Architecture 

 

SPACE SEGMENT 

The Φsat-2 spacecraft is composed of the spacecraft 

platform and the payload chain, which are described in 

the following subsections. According to the baseline 

launch service and to ensure the required Sun 

illumination conditions, the parameters of the reference 

orbit used for the Φsat-2 design are reported in the 

following table. 

Table 1 Orbital Parameters 

Launch Date 2024 

Baseline Orbit Altitude 500 km 

LTDN 10:30 PM 

Inclination SSO 

Platform 

The Φsat-2 platform is based on the standard Open 

Cosmos Opensat in its 6U variant (Figure 2). The 

platform is equipped with a state of the art On Board 

Computer (OBC) that constitutes the heart of the On 

Board Data Handling subsystem. It includes a multicore 

processing unit, an high speed data switch, the mass 

memory, the reconfiguration unit in charge of the 

system level FDIR and the GNSS receiver. Power is 

handled by an Electrical Power Subsystem (EPS) that 

includes 2 deployable solar arrays in an asymmetrical 

configuration (single deployable stowed on -Y face and 

double deployable on +Y face, Figure 3) and six body 

mounted panels for a total of 89 solar cells. The solar 

cells strings are then connected through six independent 

MPPTs that provides current to the protected power 

distribution rails at 3.3V and 5V and to charge the 

battery whose capacity is around 140 Wh. 

The platform will be controlled from ground through a 

high-speed S-Band transceiver (5MBd) that will also 

act as a backup in case of unavailability of the High 

Speed Data Transmitter (HSDT). The payload data is 

downloaded via an X-Band HSDT, capable of up to 500 

Mbit/s. The ground station network is provided by 

KSAT through their KSAT lite service and thanks to 

the co-location of both the S-Band and X-Band 

antennas an acknowledged protocol (Tsunami [4]) can 

be utilized to request corrupted or missed packages, 

improving the overall effectiveness of the link. Both 

units are connected to the main OBC through a Gigabit 

Ethernet link. 

 

Figure 2: Φsat-2 spacecraft in stowed configuration 

To achieve the expected mission performances and to 

meet the image quality requirements a high-

performance Attitude Determination Control System 

(AOCS) has been selected. The package includes a 

processing unit, a series of magnetometers and Sun and 

Earth horizon sensors, a Star Tracker and a 3-Axis 

MEMS rate sensor. The Star Tracker has been 

purposely tilted to minimize the chances of having the 

Earth in its Field of View during nominal operations. 

On the actuators side, four Reaction Wheels (RWs) are 

elastically mounted to the platform in a pyramidal 

configuration to maximize controllability and minimize 

the effect of the jitter on the payload. Magnetorquers 

are finally used for detumbling, sun-spin mode and 

desaturation of the RWs.  

The final mass of the system, including the payload, in 

this configuration will be around 10 Kg. 
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Figure 3: Φsat-2 spacecraft deployed 

Payload 

The Φsat-2 payload is an ensemble of three different 

hardware units, with distinct functions and connected 

through the platform main OBC as shown in the figure 

below. 

 

Figure 4: On Board Data Handling Architecture 

The SIMERA Sense Multiscape100 CIS, is a 

pushbroom compact 1.5U multispectral camera selected 

in the very early stages to support the Φsat-2 mission. 

Its main characteristics are report in Table 2.  

Table 2: SIMERA MultiScape100 CIS 

Characteristic Specification 

Focal Length 580 mm 

Aperture 95 mm 

Full field of View (across track) 2.22 deg 

Detector CMOS, 4096 pixels AT 

Pixel Size  5.5 µm 

Pixel Depth 12, 10, 8 bit selectable 

Spectral Range 450 to 900 nm 

Spectral Bands 7 + Panchromatic 

Digital TDI Stages Up to 16 per Band 

The camera is characterized by a GSD of 4.75 m and a 

swath of 19.4 km at 500 km altitude (5.1 m and 21 km 

respectively with an altitude of 540 km). Onboard 

Digital Time Delay Integration (dTDI) operations are 

carried out automatically and the number of usable 

stages depends on the spacecraft stability (8 to 16 for 

the Φsat-2 mission). The unit uses a Spacewire link for 

both TT&C and high speed data download operating up 

to 100 Mbit/s. For the Φsat-2 mission SIMERA has 

provided a series of updates/upgrades that will improve 

the overall performance of the device in multiple areas: 

• An enhanced thermal solution that allows for a 

better decoupling between the payload and the 

rest of the spacecraft; this solution validated 

through a dedicated thermal vacuum test 

campaign, consists in the change of the optical 

characteristics of some the external surfaces 

(Figure 5), 

• A new Multispectral filter that provides an 

additional Panchromatic band (500-750 nm), 

• A firmware update that allows to perform a 

simplified relative calibration on board.  

  

Figure 5: New reflective coatings on the 

Multiscape100 external surfaces 

The End-to-End performances of the system have been 

extensively simulated during the design phase to create 

a series of representative datasets for the training of the 

various AI applications. At 500 Km of orbital altitude 

the modulation transfer function (MTF) for separate 

spectral bands is expected to be between 3.9% and 

7.2% at Nyquist Frequency while the SNR to be 

between 54 and 129. A higher SNR level, equal to 256 

is predicted for the panchromatic band. 

The Multiscape100 CIS is connected directly to the 

platform main OBC that act also as the system mass 

memory. Once an image is captured is then moved to 

main OBC as shown in Figure 4. 



 

Melega 5 37th Annual Small Satellite Conference 

Once the images are stored on the main OBC are ready 

to be sent to the image pre-processor. From a physical 

standpoint this unit is a copy of the main OBC, with the 

same processing power and memory size (both volatile 

and non-volatile) with the sole exception of the GNSS 

receiver which is not present. 

Table 3: Multiscape100 CIS Spectral Bands 

Band 

(order) 

Centre 

Wavelength 

(nm) 

FWHM 

Bandwidth 

(nm) 

Cut on 

(nm) 

Cut-Off 

(nm) 

#4: PAN 625 250 500.0 750.0 

#1: MS 1 490 65 457.5 522.5 

#2: MS 2 560 35 542.5 577.5 

#3: MS 3 665 30 650.0 680.0 

#5: MS 4 705 15 697.5 712.5 

#6: MS 5 740 15 732.5 747.5 

#7: MS 6 783 20 773.0 793.0 

#5: MS 7 842 115 784.5 899.5 

The third unit, completing the payload system is 

represented by the AI processor. The Ubotica 

CogniSAT-XE1TM CubeSat Board serves both as a 

powerful edge computer and AI compute accelerator. It 

is built around the Intel Movidius Myriad 2 Computer 

Vision (CV) and Artificial Intelligence (AI) COTS 

VPU whose 12 vector cores provide high-performance 

parallel and hardware accelerated compute within a low 

power envelope and in PC/104 form factor compatible 

with the CubeSat standard. In the Φsat-2 

implementation CogniSat is integrated in the payload 

processing chain through a Gigabit ethernet link 

enabling data rates sufficient to handle many CV and 

AI applications at near-streaming throughput. 

Common Neural Network (NN) frameworks (e.g., 

TensorFlow, PyTorch, Caffe) can be used for NN 

model development and training, with the model 

subsequently imported into Intel’s OpenVINO toolkit 

for targeting to the Myriad device. CogniSat leverages 

the broad range of pre-qualified models and layers 

available within OpenVINO. 

Custom Computer Vision pipelines can easily be 

deployed and executed on CogniSat using the CVAI 

Toolkit software toolkit. Deployment to the hardware 

platform involves the transfer of only a single 

configuration file, and runtime updates enable the 

updating of pipelines without requiring application re-

compile or system reboot. 

Payload Data Pre-Processing 

Since the beginning of the project, it has been clearly 

identified the need to provide the Φsat-2 end users with 

usable/actionable information without further 

processing on ground. This requires the correct pre-

condition of the data before the AI inference process 

stage that includes, among others, the radiometric and 

geometric calibration and different band co-registration 

that rotates and shifts each acquired band to generate 

the data-cube. In Table 4, the available (onboard) data 

products are listed. 

Table 4: Φsat-2 onboard data products 

Name description 

Level 

1A 

Top of Atmosphere Radiance in sensor geometry, no geo-

referenced, no band-to-band alignment  

Level 

1B 

Top of Atmosphere Radiance in sensor geometry, fine 

geo-referenced, fine band-to-band alignment (<10 m 
RMSE).  

Level 

1C 

Top of Atmosphere Reflectance in sensor geometry, fine 

geo-referenced, fine band-to-band alignment (<10 m 

RMSE). This product level is not orthorectified. 

Processing is done in steps, through the use of a series 

of algorithms, that are applied according to the specific 

data product and the number of bands required. These 

algorithms have been tested on the Φsat-2 FlatSat and 

in Table 5 the associated execution time per frame 

(19.4x19.4 km2) is presented. 

Table 5: Algorithms execution time 

Algorithm  Execution Time 

[s] 

Data Preparation  0.8306 

Relative Calibration  0.5859 

Cosmetic Filling 0.0189 

Denoising 11.0114 

Absolute Calibration 0.2993 

Bands Co-Registration (per band) 9.617 

Radiances to TOA Reflectancies (per band) 10.0912 

Geolocation  8.9405 

Data formatting/saving (per band) 7.6781 

Every AI application has different requirements in 

terms of pre-processing like the number of bands or the 

necessity for the fine geolocation of the input. In Table 

6 the typical pre-processing time for the different 

applications is provided. 

Table 6: L1B processing time per AI Application 

Application  Execution Time 

[s] 

Cloud Detection (standalone application)  79.4930 

Cloud Detection (Service)  79.0614 

Street Mapping 78.8457 

Vessel Detection 67.5177 

Deep Compression 78.8457 

All bands 297.2039 
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NanosatMO Framework 

The NanoSat MO Framework (NMF)[5] is a software 

framework for CubeSats based on CCSDS Mission 

Operations services. It facilitates not only the 

monitoring and control of the nanosatellite software 

applications, but also the interaction with the 

nanosatellite platform. This is achieved by using the 

latest CCSDS standards for monitoring and control, and 

by exposing services for common peripherals that are 

available in nanosatellite platforms, such as, GPS, 

Camera, ADCS, and others. Furthermore, it can manage 

the software on-board by exposing a set of services for 

software management. In simple terms, the NanoSat 

MO Framework introduces the concept of apps in space 

that can be installed, and then simply started and 

stopped from ground. An NMF App can be easily 

developed, distributed, and deployed on a spacecraft. 

The main objective of the NanoSat MO Framework is 

to facilitate the development of software for small 

satellites and to simplify its orchestration. For example, 

new software can be easily deployed in a satellite just 

by starting and stopping Apps. Beyond the standard 

adaptation of the framework to support the additional 

hardware components (e.g. extending camera service, 

AI service), for the Φsat-2 mission the NMF has been 

enhanced to support a more robust execution and 

extending the monitoring and control of the various 

application states during their execution. 

To be compatible with the initial mission requirements 

an additional functionality related to the chaining of 

multiple applications has been developed and 

implemented. Users will be able to use two or more 

applications in series to further improve the output 

quality.  

Training dataset preparation 

A basic simulator has been developed to offer AI app 

developer an easy-to-use tool that could simulate the 

various products generated onboard, without any 

limitations in terms of geographic or temporal 

coverage, while also providing relatively trustworthy 

outputs. 

Despite having conducted comprehensive studies on the 

intrinsic performance of the various COTS elements of 

the Φsat-2 payload, including integration into FlatSat 

and Engineering Model configurations, it is not possible 

to fully simulate its actual performance once it is in 

orbit. The use of end-to-end simulators would have 

been the most accurate solution to account for the 

payload optic system and processing chain. However, 

this type of simulators is generally limited in their 

capabilities to simulate realistic environment as input. 

In addition, to enable simulation of any Area Of Interest 

(AOI) without being constrained by cost or commercial 

licenses, the simulator is required to use openly 

available missions with comparable spatial and spectral 

properties as input. 

For instance, the spectral and spatial characteristics of 

Sentinel-2 (S-2) represent a very good starting point for 

Φsat-2 even considering the notable differences in 

spatial resolution (Φsat-2 with a GSD equal to 4.75m, 

10-20m for S-2). 

The necessary auxiliary data comprises the Spectral 

Response Function (SRF) of S-2 and Φsat-2 missions, 

Earth-Sun distance and Sun Irradiance spectrum as well 

as the parameters required in the modeling of the 

Signal-to-Noise Ratio (SNR), the sensor-specific Point 

Spread Function (PSF) and knowledge of the 

acquisition geometry.   

1. Spectral adjustment: A comparative analysis 

reveals a substantial correspondence of the 

central wavelengths and bandwidths of (seven 

of the) S-2 bands and Φsat-2 bands. Φsat-2 

panchromatic band (with central wavelength at 

625 nm and bandwidth 250 nm) is simulated 

via a linear combination of S-2 multispectral 

bands (from B2 to B6) [4] 

2. Spatial resampling: a bicubic interpolation 

method is foreseen to reduce interpolation 

artifacts. As well known, in bicubic 

interpolation, the intensity value assigned to 

the point under analysis is obtained using the 

knowledge of its sixteen nearest neighbors in 

terms of function values and derivatives 

3. Band-misalignment: The band-to-band mis-

alignment of remote sensing images acquired 

by multi-spectral pushbroom spectrometers 

refers to the co-registration error between 

different bands caused by differences in the 

imaging time or angle between detector 

elements. For Level 1A products, for each 

subsequently acquired band, the misalignment 

direction is considered fully random while the 

magnitude is computed by adding a Gaussian 

random offset to a constant shift evaluated 

with respect to the previous acquired band. For 

L1A products the mis-alignment error 

accumulates from band to band. For Level 1B 

products, a band co-registration algorithm will 

run on board to reduce the misalignment error. 

As a result, for L1B products, no shift 

accumulates across bands and the simulated 

error is just a random shift noise w.r.t. a 

reference band. 
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4. Signal-To-Noise Ratio (SNR): the noise to be 

added to the signal is modeled as a normally 

distributed random variable with zero mean 

and a standard deviation equal to the expected 

noise level. The total noise level will be the 

square root of the quadrature sum of the noise 

levels.  For each band of Φsat-2 sensor, the 

equivalent noise is evaluated making use of 

the SNR for each sensor band as well as the 

reference radiance used to generate the 

specific SNR reported. 

5. Modulation transfer function: In the case of 

Φsat-2, the average system MTF (along and 

across track) at 8 dTDI fluctuates around 5% 

depending on the band under consideration. 

Because of the (much) higher spatial 

resolution of the S-2 source sensor with 

respect to the Φsat-2 target, the blurring 

affecting S-2 data has not been corrected. The 

corresponding Point Spread Function (PSF), 

computed as Inverse Fourier Transform of the 

MTF, provides the 7-by-7 kernel to be used for 

convolving the input image. 

6. Radiance to reflectance conversion: the 

reflectance can be easily obtained from the 

corresponding radiance value from the pixel 

radiance value, the Earth-Sun distance, the Sun 

irradiance captured by the target sensor and 

the Sun-Zenith angle.  This information are 

extracted from S-2 metadata. For the PAN 

band, since the radiance values have been 

computed as a linear combination of 

overlapping S-2 multispectral bands, we take 

the sun irradiance values at multispectral 

bands and then perform a weighted average by 

considering with weights given by the 

(normalized) areas under the spectral response 

function curves for each band limited by the 

panchromatic SRF. 

BASELINED AI APPLICATIONS 

Cloud Detection 

Onboard cloud detection was one of the main goals of 

the Φsat-1 experiment and for this second, follow on 

mission, it has been decided to expand the original 

concept going into two different directions: 

1. First to develop a cloud detection app service 

to be used by other AI applications to offload 

them from the task of cloud assessment. Given 

the limited resources onboard, only cloud free 

(or images with a cloud coverage within the 

limits specified by the different users) will be 

moved to the successive processing stages; the 

service won’t manipulate the data (e.g 

removing cloud scenes) and will also provide 

ancillary data that the final user can use as 

input for further processing down the line, 

2.  Second a proper cloud detection 

demonstration application, based on the 

service described in the previous point to be 

used in the initial stages of the mission for 

validation and fine-tuning purposes. 

The optimized U-Net architecture for cloud detection is 

exploited [6]. To accelerate the inference process 

offered by this deep learning model, this has been 

thoroughly benchmarked, and the second convolutional 

layer was removed, with minor impacts on the detection 

accuracy (the FPS was increased from 1.62 fps to 5.57 

fps here). The models were benchmarked on the Intel 

Movidius Myriad-2 connected by the USB port to a PC 

computer (the inference time was measured for a 19.4 x 

19.4 km scene, and it amounted to approximately 12 

seconds). The segmentation quality of the models was 

verified over the unseen test data (obtained using a 

GPU and Myriad), and it was quantified using classic 

metrics, including the Dice coefficient, accuracy, 

precision, recall, specificity and the Jaccard’s index 

(elaborated for the Sentinel-2 and simulated Φsat-2 

multispectral imagery). The results showed that the 

optimized U-Net model offers high-quality multi-class 

cloud segmentation (clouds, semi-transparent clouds, 

cloud shadows and background, Figure 6) reaching 0.81 

categorical accuracy (for the original KappaZeta test set 

[7]) and fast operation. 

  

Figure 6: Examples of cloud masks from the 

processing of the training dataset 

Vessel Detection 

The Autonomous Vessel Awareness experiment (AVA) 

aims to demonstrate the capability to autonomously 

develop awareness about vessels in the maritime 

domain using AI. AVA will run onboard Φsat-2 and 

will make use of machine learning techniques (in 

particular deep learning) to autonomously detect and 
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classify vessels in optical imagery captured by the 

Φsat-2 camera (e.g., based on the following elements: 

absence of clouds, presence of ocean water, presence of 

ships in the image). It will then determine if a given 

scene (or areas) is interesting and requires further 

monitoring. Based on this, the sensor could further 

acquire data and transmit the data to the ground for 

further analysis. This will enable faster responses, and 

potentially higher value detections. AVA will enable: 

· A reduction in the volume of downlinked 

images; 

· A reduction in image processing and analysis 

time by human operators; 

· A reduction in operational costs of satellite 

missions; 

AVA results will be of interest to specific EO user 

communities such as maritime authorities and 

regulators in countries with coastal areas and Exclusive 

Economic Zones (EEZ), as well as their potential use in 

the detection of illegal fisheries and monitoring of 

fisheries in general. 

The implementation of the model consists of two parts: 

image enhancement and vessel detection. For image 

enhancement, a deep learning model (Single Image 

Super-Resolution Model) is used. This model uses the 

concept of Convolutional Neural Network (CNN), 

intending to increase the original image quality, and 

consequently the performance of the whole AVA app 

(considering physical satellite limitations and onboard 

devices). Regarding vessel detection in sea and oceans 

satellite images, YOLO can be used both to detect and 

classify the vessels according to the image high score 

regions when compared with predefined vessel classes. 

YOLOv3-tiny is a real-time detection algorithm 

developed for devices with a lack of data processing 

capacity. The model structure is simpler than YOLO, 

and the detection is very fast. YOLOv3-tiny is a 

lightweight target detection algorithm applied to 

embedded platforms.  

During the test stage, a single neural network is applied 

to the whole image. Hence, the model looks for a full 

image and separates it into smaller tiles. The bounding 

boxes (tiles) and probabilities are predicted for each 

location of the image. The bounding boxes are 

weighted by the predictions, since it allows the model 

to look at the whole image during tests, leading to 

informed predictions for the global context in the 

image. 

YOLO scores each region based on the similarities with 

predefined classes (from AIS clustering developed 

classification). To train the model, a dataset of vessel 

images was created by converging the information of 

AIS and satellite imagery. Some of the performance 

metrics of YOLOv3-tiny trained with the vessel dataset 

are presented in Table 7. 

Table 7: Performance values of YOLOv3-tiny 

trained with vessel dataset for a Intersection over 

Union (IoU) value of 30% 

Metric Value 

Precision (IoU threshold 30%) 0.74 

Recall (IoU threshold 30%) 0.87 

F1-score (IoU threshold 30%) 0.80 

Street Mapping (SAT2MAP) 

Sat2Map is an AI software application developed by 

CGI, extracting street map data from satellite images. 

The idea behind the application was to be able to supply 

updated actionable information to the ground teams in 

emergency scenarios (e.g. a flooding event). In this 

specific case the end user on the ground would use the 

information provided by the application to support 

evacuations or the routing of rescuers. 

The software implements Generative Adversarial 

Networks (GANs), a specialized neural network 

architecture capable of modelling the underlying data 

distribution in a given dataset such as to be able to 

create another data set following the same distribution. 

In case of Sat2Map, GANs are used to learn the data 

distribution of images to create images following the 

same distribution and create new images. In other 

words, GANs empower Sat2Map to learn how street 

maps derived from satellite imagery shall look like and 

apply this knowledge to unknown satellite imagery. In 

general, GANs use two different networks, a Generator 

and a Discriminator network competing against each 

other. With the Sat2Map setting, the Generator creates 

new “fake” images mimicking the source images, i.e. 

learns to create images showing same data distribution 

as the input imagery. The Discriminator in turn learns 

to distinguish between fake and real imagery. The result 

of the Discriminator’s decision is subsequently fed back 

to the Generator, enabling the latter to adapt and 

improve the next set of fake images. Once the 

Discriminator is not able to distinguish real from fake 

imagery, the training concludes and the final model for 

generating target imagery is found. Conditional GANs 

are a slight variation of GANs that can further direct the 

results of a GAN into a desired direction. Within 

Sat2Map, the target direction is the generation of road 

maps based on satellite images. 
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Sat2Map uses three different implementations of such 

conditional GANs: CycleGAN, Pix2Pix and Jerin Paul. 

CycleGAN is a technique that involves the automatic 

training of image-to-image translation models without 

paired examples, whereas Pix2Pix uses paired training 

data. Lastly, Sat2Map uses an algorithm developed by 

CGI for model training. This algorithm is based on 

ideas presented by Jerin Paul. The models are trained 

using a collection of images from the source (i.e., 

satellite images) and target (i.e, street maps). These 

techniques are powerful, achieving visually impressive 

results on a range of diverse application domains. 

Finally, the Jerin Paul model has been chosen for the 

Sat2Map App for its final implementation.  

The model has been trained exploiting synthetic 

representative dataset generated by processing different 

mission including PlanetScope and S-2. The dataset 

was prepared aiming at enabling the model to learn 

distinguishing between streets, flooded streets, and 

cloudy areas (Figure 7). 

  

Figure 7: Example of Street Mapping output 

The model has been trained over a specific area in the 

Assam region (Northern India) for which relevant 

images including flooded streets were available and 

tested again over a different area with similar 

characteristics in Pakistan. 

A series of metrics have been identified to evaluate the 

performance of the application from an end user 

perspective that will be furtherly refined during the 

nominal phase of the mission. To support the on-ground 

users of the processed maps, a quick georeferencing 

procedure has also been designed to improve the quality 

of the provided information. 

Deep Compression 

The Deep Compression application performs image 

compression exploiting a Convolutional AutoEncoder 

(CAE) i.e., a Convolutional Neural Network (CNN) 

with an AutoEncoder (AE) structure. The model was 

developed to demonstrate how onboard AI post 

processing can reduce the amount of data to be sent to 

the ground with a limited information loss. The 

compression of the image is performed on-board: the 

model accepts as input single band images acquired by 

the multispectral camera which are compressed through 

the encoder part of the CAE. Reconstruction is 

performed on the ground by means of the dedicated 

decoder. 

AEs are Neural Networks (NNs) with a symmetrical 

structure consisting of an encoding and a decoding part, 

with one or more hidden layers, and an internal 

bottleneck layer that forces a compressed knowledge 

representation of the original input. Essentially, AEs 

transform input data to a lower dimensional 

representation and ensure the reconstruction of the 

input based on these characteristics. AEs are commonly 

used for feature learning and data compression [8]. The 

CAE model on which the Deep Compression 

application is based is summarized in Figure 8. The 

encoder comprises blocks of convolutional layers 

(CONV block) and the innermost bottleneck layer 

which returns the compressed representation of the 

input images and determines the Compression Ratio 

(CR). CR is defined as the ratio between the size of the 

input image in terms of pixels and the number of units 

in the bottleneck layer. Symmetrically, the decoder part 

includes transposed convolutional blocks (DE-CONV 

block) and return back the output with the same 

dimension as the input. In the encoder, convolutional 

layers progressively extract deeper feature maps 

through an increasing number of filters. Then, the 

output of the last convolutional layer is flattened to 

return the compressed representation of the image 

through the bottleneck layer. In the decoder the reverse 

process is performed, returning the reconstructed image 

as final output.  

 

Figure 8: Deep Compression Application CAE 

Network 

The final definition of the model was determined 

considering the requirements imposed by the mission, 

especially in terms of memory footprint and computing 

power usage. The dataset used for training and 

validating the application is based on SIMERA Sense 

MultiScape100 CIS simulated acquisitions. After the 

training phase, the encoder and decoder parts are used 

separately.  

The quality of the reconstructed image was evaluated 

using standard metrics, i.e., Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure 



 

Melega 10 37th Annual Small Satellite Conference 

(SSIM) widely used for lossy compression evaluation. 

PSNR depends on Mean Squared Error (MSE), and 

higher PSNR values indicate higher image quality. 

SSIM is related to the perception of image quality by 

the human eye and ranges between 0 and 1 [9]. 

Additionally, an applicative metric was implemented 

that aims at assessing the practical use of the 

reconstructed images. The images compressed and 

reconstructed through the CAE were indeed used in a 

real application scenario, that is semantic segmentation. 

More in detail, the decompressed images were used to 

predict building masks along with the original 

acquisitions. The obtained masks were then compared 

to assess the differences between the two cases, 

confirming that the decompressed images can be used 

with the same results as the originals.  

Table 8 reports the values for CR, SSIM, and PSNR 

computed as an average over all the patches of the test 

set.  

Table 8: Deep Compression Application metrics 

Metric Value 

CR 8 

SSIM 0.977 

PSNR 38.58 

Figure 9 shows on the top a test image (a) with the 

respective reconstruction (b). A more detailed view of 

the areas bounded by the boxes is shown on the bottom. 

The SSIM value is also reported. 

 

Figure 9: Deep Compression Application results 

 

CONCLUSIONS 

In this paper the current status and all the work done 

since the selection of winning proposal in 2020 has 

been presented. The mission required the design and 

implementation of a dedicated 6U cubesat platform 

capable to support the power and pointing requirements 

of the selected multispectral camera and processing 

units. To allow the proper execution of the six different 

applications that will be run onboard (four of which 

already pre-selected) the ability to generate the 

equivalent of Level 1B data has been implemented 

though a series of software algorithm orchestrated in a 

dedicated hardware unit. 

The pre-selected applications have been extensively 

developed since the beginning of the activity and they 

have been already tested in a representative Φsat-2 

FlatSat. The spacecraft is currently being assembled 

and it is planned to be launched in 2024.  
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