
 124 

   

[51] Liu, D., Chen, X., and Nakato, T. 2012. Resilience assessment of water resources 

system. Water Resources Management, 26, 3743–3755. doi:10.1007/s11269-012-

0100-7 

[52] Llamas, M. R. and Custodio, E. (Eds.). 2003. Intensive use of groundwater, 

challenges and opportunities. Balkema Publishing Co., Dordrecht, The Netherlands, 

478 pp. 

[53] Llamas, M.R., Martínez-Santos P, and De la Hera A. 2006. Dimensions of 

sustainability in regard to groundwater resources: an overview. In: IGME (ed) 

Abstracts and proceedings of the International Symposium on Groundwater 

Sustainability (ISGWAS). IGME, Alicante, pp 24–27 

[54] Lopez-Corona, O., Padilla, P., Escolero, O., Armas, F., Garc, R., and Esparza, R. 

2013. Playing with models and optimization to overcome the tragedy of the 

commons in groundwater. Complexity, 19(1), 9–21. doi:10.1002/cplx 

[55] Loucks, D. P. 1997. Quantifying trends in system sustainability. Hydrological 

Sciences Journal, 42(4), 513–530 

[56] Loucks, D.P. 2000. Sustainable water resources management. Water International, 

25 (1), 3-10.  

[57] Lowe, M., Wallace, J., and Bishop, C.E.  2003. Groundwater quality classification 

and recommended septic tank soil-absorption-system density maps, Cache Valley, 

Cache County, Utah. Utah Geological Survey Special Study 101. Utah Department 

of Natural Resources. Salt Lake City, Utah. 

[58] Luckey, R.R., and Becker, M.F. 1999. Hydrogeology, water use, and simulation of 

flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, 

southwestern Kansas, northeastern New Mexico, and northwestern Texas. USGS 

Water-Resources Investigations Report 99–4104. Denver, Colorado. 

[59] Maddock, T. 1972. Algebraic technological function from a simulation model. 

Water Resources Research, 8(1), 129–134. 

[60] Maddock, T. 1974. Non-linear technological functions for aquifers whose 

transmissivities vary with drawdown. Water Resources Research, 10(3), 877–881.  

[61] Martínez-Santos, P., Llamas, M.R., and Martínez-Alfaro, P.E. 2008. Vulnerability 

assessment of groundwater resources: a modelling-based approach to the Mancha 

Occidental Aquifer, Spain. Environmental Modelling and Software, 23(6), 1145-

1162. 

[62] Mays, L. W. 2007. Water resources sustainability. McGraw-Hill, New York. 



 125 

   

[63] McDonald, M.G., and A.W. Harbaugh. 1988. A modular three-dimensional finite-

difference ground water flow model. In: US geological survey techniques of water-

resources investigations, Book 6, Chapter A1. Denver, Colorado 

[64] Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-being: 

Biodiversity Synthesis. World Resources Institute, Washington, DC, 86 pp. 

http://www.millenniumassessment.org 

[65] Miller, N.L., Dale, L.L., Brush, C.F., Vicuna, S.D., Kadir, T.N., Dogrul, E.C, and 

Chung, F.I. 2009. Drought resilience of the California Central Valley surface-ground-

water-conveyance system. Journal of the American Water Resources Association 

(JAWRA), 45(4), 857-866. DOI: 10.1111/j.1752- 1688.2009.00329.x 

[66] Morel-Seytoux, H. J. 1975. A simple case of conjunctive surface groundwater 

management. Ground Water, 13(6), 506-515 

[67] Moy, W.-S., Cohon, J. L., and ReVelle, C. S. 1986. A programming model for 

analysis of the reliability, resilience, and vulnerability of a water supply reservoir. 

Water Resources Research, 22(4), 489-498. doi:10.1029/WR022i004p00489 

[68] Newman, L. 2005. Uncertainty, innovation and dynamic sustainable development. 

Sustainability: Science, Practice and Policy, 1(2), 25–31. 

[69] Pandey, V.P., Shrestha, S., Chapagain, S.K., and Kazama, F. 2011. A framework for 

measuring groundwater sustainability. Environmental Science and Policy, 14(4), 

396–407. doi:10.1016/j.envsci.2011.03.008 

[70] Pearson, L. J., Coggan, A., Proctor, W., and Smith, T. F. 2010. A sustainable 

decision support framework for urban water management. Water Resources 

Management, 24, 363–376. doi:10.1007/s11269-009-9450-1 

[71] Peralta, R.C. and Peralta, A.W. 1984.  Arkansas groundwater management via target 

level. Transactions of the ASAE. 27(6):1696-1703. 

[72] Peralta R.C., Azarmnia, H., and Takahashi, S. 1991. Embedding and response matrix 

techniques for maximizing steady-state ground-water extraction: computational 

comparison. Ground Water, 29(3), 357–364 

[73] Peralta, R.C., Timani, B., and Das. R. 2011. Optimizing safe yield policy 

implementation. Journal of Water Resources Management, 25(2), 483-508. 

[74] Peterson, H.M., Nieber, J.L., Kanivetsky, R., and Shmagin, B. 2013. Water 

resources sustainability indicator: application of the watershed characteristics 

approach. Water Resources Management, 27, 1221–1234. doi:10.1007/s11269-012-

0232-9 

http://www.millenniumassessment.org/


 126 

   

[75] Peterson, T.J., Argent, R.M., Western, A.W., and Chiew, F.H.S.  2009. Multiple 

stable states in hydrological models: an ecohydrological investigation. Water 

Resources Research, 45, W03406, doi:10.1029/2008WR006886. 

[76] Peterson, T.J., Western, A.W., and Argent, R.M. 2012. Analytical methods for 

ecosystem resilience: A hydrological investigation, Water Resources Research, 48, 

W10531, doi:10.1029/2012WR012150.1. 

[77] Peterson, W. 1946. Ground water supply in Cache Valley, Utah, available for 

domestic use and irrigation. Utah State Agricultural College Extension Service 

No.133 

[78] Prettyman, B. 2015, March 9. Looking north to quench the Wasatch Front's thrist. 

Salt Lake Tribune. Accessed (03/09/2015) Online at 

[http://www.sltrib.com/news/2230808-155/how-to-quench-wasatch-fronts-thirst\] 

[79] Psarropoulou, E.T., and Karatzas, G.P. 2012. Transient groundwater modelling with 

spatiotemporally variable fluxes in a complex aquifer system: new approach in 

defining boundary conditions for a transient flow model. Civil Engineering and 

Environmental Systems, 29(1), 1–21. doi:10.1080/10286608.2011.637622 

[80] Psilovikos, A. 2006. Response matrix minimization used in groundwater 

management with mathematical programming: A case study in a transboundary 

aquifer in Northern Greece. Water Resources Management, 20(2), 277-290. 

doi:10.1007/s11269-006-0324-5 

[81] Refsgaard, J.C., and Henriksen, H.J. 2004. Modelling guidelines - terminology and 

guiding principles, Advances in Water Resources, 27(1), 71–82. 

[82] Refsgaard, J.C., Henriksen, H.J., Harrar, W.G., Scholten, H., and A. Kassahun, A. 

2005. Quality assurance in model based water management – review of existing 

practice and outline of new approaches. Environmental Modelling and Software, 

20(10), 1201–1215. doi: 10.1016/j.envsoft.2004.07.006. 

[83] Rothman, D.W., and Mays, L.W. 2014. Water resources sustainability: development 

of a multiobjective optimization model. Journal of Water Resources Planning and 

Management, 1–9. doi:10.1061/(ASCE)WR.1943-5452.0000425. 

[84] Rougé, C. and Deffuant, G. 2013. Performance of Water Extraction in an 

Endangered Aquifer when Management Is Not All-Powerful: A Theoretical 

Framework Based on a Viability Theory. World Environmental and Water 

Resources Congress 2013, 530-539. doi:  

http://dx.doi.org/10.1061/9780784412947.051 

[85] Salcedo-Sánchez, E. R., Esteller, M. V., Garrido Hoyos, S. E., and Martínez-

Morales, M. 2013. Groundwater optimization model for sustainable management of 

http://www.sltrib.com/news/2230808-155/how-to-quench-wasatch-fronts-thirst/


 127 

   

the Valley of Puebla aquifer, Mexico. Environmental Earth Sciences, 70, 337–351. 

doi:10.1007/s12665-012-2131-z 

[86] Sandoval-Solis, S., Mckinney, D.C., and Loucks, D.P. 2011. Sustainability index for 

water resources planning and management. Journal of Water Resources Planning 

and Management, 137, 381–390. doi:10.1061/(ASCE)WR.1943-5452.0000134. 

[87] Sophocleous, M. 1997. Managing water resources systems: why ‘safe yield’ is not 

sustainable. Ground Water, 35(4), 561. 

[88] Sophocleous, M. 2000. From safe yield to sustainable development of water 

resources: the Kansas experience. Journal of Hydrology, 235(1–2), 27–43. 

doi:10.1016/S0022-1694(00)00263-8. 

[89] Sophocleous, M. 2011. “Groundwater legal framework and management practices in 

the High Plains aquifer, USA”. Groundwater Management Practices. Eds. N. 

Findikakis and K. Sato. London, UK. 325-366. 

[90] Thomas, K., Oaks, R. Q., Inkenbrandt, P., Sabbah, W., and Lowe, M. 2011. Cache 

Valley principal aquifer storage and recovery site assessment: phase I. Utah 

Geological Survey, Open File Report 579. Salt Lake City, Utah. 

[91] Timani, B. and Peralta, R.C. 2015. Multi-model groundwater-management 

optimization: reconciling disparate conceptual models. Hydrogeology Journal. doi: 

10.1007/s10040-015-1259-9  

[92] Uddameri, V., and Kuchanur, M. 2007. Simulation-optimization approach to assess 

groundwater availability in Refugio County, Texas. Environmental Geology, 51(6), 

921–929. 

[93] United Nations World Commission on Environment and Development (UN/WCED). 

1987. Report of the world commission on environment and development “our 

common future”. United Nations, Report of the 42nd Session, Annex, 4. August 1987 

[94] United States Geological Survey (USGS). 2012a. Bear River monthly flow rates. 

[online  
http://waterdata.usgs.gov/id/nwis/monthly/?referred_module=sw&site_no=10092700&por_1

0092700_1=448866,00060,1,1970-10,2011-11&format=html_table&date_format=YYYY-

MM-DD&rdb_compression=file&submitted_form=parameter_selection_list] 

[95] United States Geological Survey (USGS). 2012b. Blacksmith Fork River monthly 

flow rates. [online 
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10113500&por_101

13500_1=448901,00060,1,1913-11,2011-10&format=html_table&date_format=YYYY-MM-

DD&rdb_compression=file&submitted_form=parameter_selection_list] 

http://dx.doi.org/10.1016/S0022-1694(00)00263-8
http://waterdata.usgs.gov/id/nwis/monthly/?referred_module=sw&site_no=10092700&por_10092700_1=448866,00060,1,1970-10,2011-11&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/id/nwis/monthly/?referred_module=sw&site_no=10092700&por_10092700_1=448866,00060,1,1970-10,2011-11&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/id/nwis/monthly/?referred_module=sw&site_no=10092700&por_10092700_1=448866,00060,1,1970-10,2011-11&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10113500&por_10113500_1=448901,00060,1,1913-11,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10113500&por_10113500_1=448901,00060,1,1913-11,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10113500&por_10113500_1=448901,00060,1,1913-11,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list


 128 

   

[96] United States Geological Survey (USGS). 2012c. Cub River monthly flow rates. 

[online  
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10093000&por_100

93000_1=448867,00060,1,1940-03,2010-09&format=html_table&date_format=YYYY-MM-

DD&rdb_compression=file&submitted_form=parameter_selection_list] 

[97] United States Geological Survey (USGS). 2012d. Little Bear River monthly flow 

rates. [online 
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10104700&por_101

04700_1=448882,00060,1,1960-10,1992-09&format=html_table&date_format=YYYY-MM-

DD&rdb_compression=file&submitted_form=parameter_selection_list] 

[98] United States Geological Survey (USGS). 2012e. Logan River monthly flow rates. 

[online 
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10109000&por_101

09000_1=448896,00060,1,1953-10,2011-10&format=html_table&date_format=YYYY-MM-

DD&rdb_compression=file&submitted_form=parameter_selection_list] 

[99] Utah Department of Natural Resources (UDNR). 1995. Cache Valley ground-water 

flow model – monthly stress periods. Internal document. UDNR, Division of Water 

Rights, Salt Lake City, Utah. 

[100] UDNR. 1997. Method of evaluation of groundwater pumping within Cache Valley. 

Internal document. UDNR, Division of Water Rights, Salt Lake City, Utah.  

[101] UDNR. 1999. Interim Cache Valley groundwater management plan. UDNR, 

Division of Water Rights, Salt Lake City, Utah [On line at 

http://www.waterrights.utah.gov/wrinfo/mmplan/ugw/cachevly.pdf ] 

[102] UDNR. 2010. Municipal and industrial water use in Utah. UDNR, Division of 

Water Resources, Salt Lake City, Utah. 

[103] van Camp, M., and Walraevens, K. 2009. Recovery scenarios for deep over-

exploited aquifers with limited recharge: methodology and application to an aquifer 

in Belgium. Environmental Geology, 56, 1505–1516. doi:10.1007/s00254-008-

1248-6 

[104] Wan, J., Yang, Y. E., Lin, Y., and Wang, J. 2013. Groundwater resource planning 

to preserve streamflow: where environmental amenity meets economic welfare loss. 

Journal of Water Resources Planning and Management, 139(4), 440–448. 

doi:10.1061/(ASCE)WR.1943-5452.0000269.  

[105] Wang, C., and Blackmore, J.M. 2009. Resilience concepts for water resource 

systems. Journal of Water Resources Planning and Management, 135(6), 528–536. 

doi:10.1061/?ASCE?0733-9496?2009?135:6?528? CE 

http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10093000&por_10093000_1=448867,00060,1,1940-03,2010-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10093000&por_10093000_1=448867,00060,1,1940-03,2010-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10093000&por_10093000_1=448867,00060,1,1940-03,2010-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10104700&por_10104700_1=448882,00060,1,1960-10,1992-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10104700&por_10104700_1=448882,00060,1,1960-10,1992-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10104700&por_10104700_1=448882,00060,1,1960-10,1992-09&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10109000&por_10109000_1=448896,00060,1,1953-10,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10109000&por_10109000_1=448896,00060,1,1953-10,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://waterdata.usgs.gov/nwis/monthly/?referred_module=sw&site_no=10109000&por_10109000_1=448896,00060,1,1953-10,2011-10&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list
http://www.waterrights.utah.gov/wrinfo/mmplan/ugw/cachevly.pdf


 129 

   

[106] Werner, A.D., Bakker, M., Post, V.E.A, Vandenbohede, A., Lu, C., Ataie-Ashtiani, 

B., Simmons, C.T., and Barry, D.A. 2013. Seawater intrusion processes, 

investigation and management: Recent advances and future challenges. Advances in 

Water Resources, 51, 3–26. doi:10.1016/j.advwatres.2012.03.004 

[107] World Health Organization. 2009. Summary and policy implications–vision 2030: 

the resilience of water supply and sanitation in the face of climate change. Geneva.  



 130 

   

CHAPTER 4 

Multi-model Groundwater Management Optimization: Reconciling Disparate Conceptual 

Models
a
 

Abstract 

Disagreement among policymakers often involves policy issues and differences 

between the decision makers’ implicit utility functions. Significant disagreement can also 

exist concerning conceptual models of the physical system. Disagreement on the validity 

of a single simulation model delays discussion on policy issues and prevents the adoption 

of consensus management strategies. For such a contentious situation, the proposed 

multi-conceptual model optimization (MCMO) can help stakeholders reach a 

compromise strategy.  MCMO computes mathematically optimal strategies that 

simultaneously satisfy analogous constraints and bounds in multiple numerical models 

that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. 

Shadow prices and trade-offs guide the process of refining an originally-developed multi-

model strategy into a realistic compromise management strategy. By employing 

automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this 

reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and 

Idaho, USA) river-aquifer system employs two simulation models with analogous 

background conditions but different vertical discretization and boundary conditions. The 

objective is to maximize additional safe pumping (beyond current pumping), subject to 
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constraints on groundwater head and seepage from the aquifer to surface waters. MCMO 

application reveals that in order to protect the local ecosystem, increased groundwater 

pumping can satisfy only 40 % of projected water demand increase. To explore the 

possibility of increasing that pumping while protecting the ecosystem, MCMO clearly 

identifies localities requiring additional field data. MCMO is applicable to other areas 

and optimization problems than used here. Steps to prepare comparable sub-models for 

MCMO use are area-dependent. 

4.1 Introduction 

The adoption of groundwater management plans is hindered when experts cannot 

agree on a particular simulation model to describe the physical system dynamics.  

Disagreement prevents the adoption of strategies that satisfy governmental goals and are 

also acceptable to local water authorities, share-holders, and stake-holders. The proposed 

method helps in resolving such situations. 

Disparities among conceptual models lead to different simulation models that, in 

turn, lead to different optimal strategies reported for the same management problem. 

Adopting water policy strategies is less difficult when all involved parties agree on the 

validity of the same conceptual model, numerical model, and optimization problem 

(objective function and constraints). A tool has been needed to aid in bringing the 

different points of view closer to each other and resolving disagreements. 

                                                                                                                                                 
a
 Reprinted from Hydrogeology Journal, DOI 10.1007/s10040-015-1259-9, Bassel Timani and Richard Peralta, Multi-

model groundwater-management optimization: reconciling disparate conceptual models. Copyright (2015), with 

permission from Springer 
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Trial-and-error is one approach to help smooth such disagreements. A modeler 

begins by optimizing for each model independently. Then, the modeler modifies one or 

more strategies until a single resulting strategy satisfies the set of respective bounds and 

constraints in all models. This process can be labor intensive and time consuming even 

for linear aquifer systems.  

The multi-conceptual model optimization (MCMO) method presented here 

automatically creates and solves a multi-conceptual model optimization problem, 

reducing labor and time costs. MCMO provides a time- and cost-effective way to avoid 

the necessity that all stakeholders agree on a single conceptual and numerical model. 

MCMO is applicable for physical systems ranging from linear to extremely non-linear. 

MCMO develops an optimal strategy for a common management optimization 

problem by simultaneously using multiple deterministic simulation models – each 

referred to as a sub-model. Each sub-model can be a significantly different realization 

(representation of reality) of the same study area. This differs from traditional 

deterministic simulation-optimization (S-O) modeling that might include simulation 

models for different processes (such as for flow and transport). MCMO also differs from 

stochastic S-O models that might employ multiple identically discretized models of the 

same process that differ in employed parameter values.  

MCMO involves formulating comparable optimization problems for each sub-

model, and requires that each sub-model have comparable salient variables, bounds, and 

constraints. Initial conditions and background (unmanaged, non-optimal) hydraulic 

stresses (stimuli) should be reasonably analogous.   
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A decision variable (DV) in one sub-model located at a particular layer, row, and 

column can have a different DV identifier (#) than a DV with corresponding layer-row-

column indices in another sub-model.   DV#10 modeled at a particular model cell in one 

sub-model, might correspond to DV#23 in a cell having different layer-row-column 

indices in another sub-model. The two cells might not have identical layer-row-column 

indices in the two models but they must represent the same geographic location.  

MCMO identifies physical locations where optimal strategy variables are tight 

against bounds and have the largest shadow prices (constrained derivatives or marginals). 

Such locations can require either a) reconsideration of the optimization problem 

formulation, or b) further field investigation to fine tune the simulation models.  

For example, it might be acceptable to lower the lower bound on the average 

aquifer groundwater head in a 1 km x 1 km model cell to compensate for spatial 

variability. Alternatively, further field investigation might show the reasonableness of 

lowering a drain bottom elevation assumed in the sub-models. If the simulators are not 

too distinctly different, this process could lead to merging the sub-models into a single 

simulator acceptable by all parties.  If, as in this paper, the simulators are more distinctly 

different, making prioritized optimization problem changes, and evaluating trade-offs 

leads to a compromise optimal strategy. 

To demonstrate utility for real-life problems, this paper applies MCMO to Cache 

Valley, Utah (USA) (Figure 4.1). Cache Valley is attractive because: (1) different 

stakeholders subscribe to different conceptual and numerical models; and (2) there is 

potential for increasing groundwater pumping without causing unacceptable 

environmental consequences or violating legal rights. 
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Sub-models of this MCMO application employ: (1) a well package with 

equivalent pumping rates to simulate analogous background pumping; and (2) vertically 

corresponding candidate managed well locations and constraints. The vertical 

correspondence is necessary because a particular subsurface elevation exists within 

different numerical layers in the sub-models.  

 
Figure 4.1 Cache Valley study area (adapted from Kariya at al. 1994) 
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Here, MCMO employs the response matrix method (RMM), detailed below, to 

quantify state variable (SV) response to pumping during optimization. MCMO also 

automatically integrates RMM with cycling (successive optimization) to enable RMM 

convolution equations to accurately compute SV values of nonlinear systems.  

4.1.1 Traditional Simulation-

Optimization Modeling    

Coupling a flow simulation model (simulator) with an optimizer yields a 

traditional flow S-O model. Traditional S-O models have long been used for developing 

transient groundwater management strategies, sustained-yield strategies, and perennial 

(safe) yield strategies.  Sustained-yield strategies should be protective of aquifer 

conditions during a year, as well as from year to year. Perennial-yield strategies generally 

are designed to be protective from year to year without much consideration of issues 

during a year (ASCE 1987). For perennial-yield planning, modelers often employ steady-

state simulation models that compute the same equilibrium aquifer conditions as SVs 

computed by transient models simulated for a very long time (Peralta et al. 2011). If one 

is simulating transient monthly pumping rates that are in harmony with a perennial-yield 

annual pumping strategy, heads and stored groundwater volume change during the year, 

but net annual storage change is virtually nil.  

Outside of groundwater management, Godding’s (2008) operation management 

work resembles traditional S-O modeling. Godding’s ‘knowledge interchange broker’ 

combines supply chain network planning systems and manufacturing processes into a 
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coherent multi-model. The compatible combination allows manufacturing processes to 

receive commands from planning systems.   

4.1.2 Response Matrix Methods 

Within groundwater flow S-O models, the most common technique for simulating 

SV response to stimuli (pumping) is the response matrix method (RMM). Within RMM 

S-O models, linear convolution equations consisting of constants, coefficients, and DVs 

serve as surrogates (substitutes) for full numerical flow simulators. A convolution 

equation is a concise 1
st
 order Taylor series expansion (Ahlfeld and Mulligan 2000). 

Convolution equations also use the additive and multiplicative properties of linear 

systems (Maddock 1974) to superimpose in space and/or time.  

Rather than using numerical flow simulators to calculate optimal SVs, RMMs use 

convolution equations to compute the SVs. This substitution causes convolution 

equations to be termed surrogate simulators.  

Developing convolution equations involves two automated procedural phases, 

namely coefficient generation (CG) and coefficient use (CU). The CG phase uses a 

simulator such as a numerical flow simulation model to compute system response to unit 

stimuli for each pair of DV and SV. System responses to unit stimuli are often, as here, 

termed influence coefficients (ICs).  An IC quantifies system response (observation 

location and time) to a ‘unit’ stimulus of specified magnitude (stimulus location and 

time). For steady state situations, unit-stimulus time and time of system response 

observations are the same. 



 137 

   

The CU phase populates the convolution equations with ICs. One convolution 

equation can compute one SV value. By using convolution equations to estimate SV 

response to pumping during optimization, RMM S-O models are much smaller than S-O 

models that embed an entire flow simulation model.    

MODFLOW (McDonald and Harbaugh 1988; Harbaugh et al. 2000; Harbaugh 

2005) is often the finite difference model of choice in RMM to develop ICs for 

heterogeneous systems. MODFLOW discretizes a groundwater flow domain into layers, 

rows and columns. A model cell represents a unique set of (layer, row, column) or 

(L,R,C). MODMAN (Greenwald 1998), SOMO1CS (SSOL 2009) module of SOMOS, 

and GWM-2005 (Ahlfeld et al. 2009) are S-O models that use an RMM and MODFLOW 

as simulators. Many others used other simulators within groundwater flow S-O models 

(Morel-Seytoux 1975; Gorelick 1982; Heidari 1982).  

CGU1, CGU2, and CGU4 are compatible RMMs (Peralta with Kalwij 2012). 

Their coefficients are indexed by stimulus location and time, and observation location 

and time. For steady state applications, the times of stimulus and SV observations are the 

same, no temporal index is needed, and the RMMs compute the same SV values. Here, 

CGU1 is the RMM of choice.  

In steady-state applications, for a particular stimulus location, CGU1 exerts a unit 

stimulus at a DV location, then observes SVs, and computes an IC. After executing a 

steady-state simulation of the background conditions (for assumed unmanaged stimuli 

and conditions, and maybe initial guess), a unit stimulus, at one DV at a time, is 

appended to the background conditions and another steady-state simulation is performed 

to compute an IC value for each pair of DV and SV.  
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Eqn (4.1) shows a simplified form of CGU1’s discretized convolution equation 

(Peralta with Kalwij 2012) to compute SVs of a steady-state model.  In Eqn (4.1), ô  is 

the SV value at observation location ô (numerical model cell where a state variable is 

defined) at equilibrium (units are SV dependent), 
non

ô  is the background (non-optimal) 

SV value at observation location ô at equilibrium (units are SV dependent), 
p

,ô ê 
 is the 

SV (Ψ) influence coefficient describing Ψ response at location ô at equilibrium to a unit 

pumping (
ut

êp ) at well ê (units are SV dependent), 𝑀P is the number of candidate 

managed-groundwater-extraction locations or pumping locations, and êp  is the DV  

managed pumping rate at location ê ( 3L T ):  

P

non p

, ut
1

    
M

ê
ô ô ô ê

ê ê

p

p
   



 
 (4.1) 

One distinct Eqn (4.1) is required for each location at which an aquifer condition 

is necessary within the steady-state optimization problem.  To achieve small optimization 

problem size and reduce computational burden, RMM models usually include 

convolution equations only for SV values that must satisfy user-specified upper or lower 

limits (such as a lower bound on aquifer head), or that are necessary to satisfy other 

management constraints (such as a requirement to avoid excessive reduction in seepage 

from aquifer to river).  

CGU1 employs linear systems theory and is clearly suitable for linear systems 

such as confined aquifers. The next section discusses its application to nonlinear systems. 
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To address nonlinear aquifer problems with acceptable accuracy, an S-O model 

employing CGU1 uses cycling (Peralta with Kalwij 2012). 

4.1.3 Addressing Nonlinear Aquifers 

by Cycling    

The Cache Valley aquifer system (Figure 4.1) is nonlinear because its upper unit 

is unconfined and because piecewise equations describe some boundary condition flows 

(evapotranspiration, and seepage between aquifer and drains, rivers, and other aquifers or 

external sources). A piecewise linear equation consists of multiple linear segments and is 

not continuously differentiable.   Each of these segments uses a different conditionally-

applicable equation.  

Because RMMs use linear convolution equations to approximate SVs even for 

nonlinear systems, computing nonlinear system SV values with acceptable accuracy 

involves using cycling (also termed successive optimization) (Peralta with Kalwij 2012). 

Cycling begins by applying linear surrogate simulators to compute an optimal solution 

for a nonlinear system. Then, a suitable simulator (usually using Picard iteration) 

computes the nonlinear system response to the optimal solution.  These two steps repeat 

until neither optimal solution nor system response changes. In other words, cycling 

simultaneously converges to DV values that are optimal for a particular optimization 

problem and prevents the resulting system variables from violating specified management 

problem constraints and bounds. 

Such convergence to an optimal solution is referred to as DV-convergence, which 

is achieved when the change in individual DVs between two consecutive cycles is 
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negligible. This cycling method has been applied to a wide range of S-O studies 

involving nonlinear aquifer systems and the reported optimal strategies have accurately 

satisfied SV constraints (Takahashi and Peralta 1995; Peralta et al. 2011).   

Most S-O models link a single simulation model with an optimization algorithm. 

Some S-O modeling cases benefit from using more than one simulation model. Other 

purely simulation modeling situations require using multiple simulators or running many 

simulations.   

4.1.4 Existing Multi-Modeling Practices   

The ‘multi-modeling’ notion applies to various procedures in numerous fields. 

Terms such as multi-model simulation, framework, or approach appear in bioinformatics, 

business, construction, cybernetics, hydrology, meteorology, and robotics. Identified 

literature in those fields uses ‘multi-modeling’ to refer to: linking models together 

(Fishwick et al. 1994; Izaguire et al. 2004; Berard et al. 2007; Scherer and Schapke 2011; 

Faure et al. 2012), using multiple simulation models to predict a particular response and 

comparing predictions (Ajami et al. 2006; Eyring et al. 2007; Slater et al. 2007; Guber et 

al. 2009; Miao et al. 2013; Yakirevich et al. 2013; Zhu et al. 2013), calibrating models 

(Halford 2006; Poeter and Hill 2007; Haimes 2012), and increasing reliability via the use 

of Monte Carlo analysis (Gorelick 1990; Mishra et al. 2009; Enzenhoefer et al. 2012; 

Rajabi and Ataie-Ashtiani 2014; Sepúlveda and Doherty 2014). 

Previous multi-models that include both simulation and optimization models 

(simulators and optimizers) perform decomposition and hierarchical modeling 

(partitioning a large problem into multiple smaller problems and solving in a particular 
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order), or increase strategy reliability (simultaneously using multiple equally likely 

realizations that differ in employed parameter sets).  

When addressing very large and complex systems, modelers often decompose the 

problem into smaller components, and then determine a solution for these components in 

a specific hierarchy. Decomposition and hierarchical modeling has a role both in normal 

simulation modeling and in S-O modeling (Ranjha et al. 1990; Peralta with Kalwij 2012).  

Renard et al. (2011) used decomposition to identify sources of predictive uncertainty in 

hydrologic modeling and increase the reliability of their predictions.   Das Gupta et al. 

(1996) report using a hierarchical approach with multilevel decomposition to solve an 

economic objective for Bangkok’s multi-aquifer system. De Paly et al. (2013) present a 

dynamic stack-ordering procedure that combines heuristic global optimization and multi-

realization simulations to reduce computational costs of reliability optimization problems 

by exploiting a subset of model realizations when computing the objective function.  

The earliest multi-model method for increasing the reliability of an optimal 

strategy is multiple realization optimization.  This entails solving an optimization 

problem simultaneously for multiple realizations having equal statistical probability of 

existence (Wagner and Gorelick 1989; Aly and Peralta 1999).  More recently, the 

patented Robustness Enhancing Optimizer S-O technique maximizes the robustness of a 

computed optimal strategy without degrading the value of the primary economic or 

volumetric objective function (Kalwij and Peralta 2006). 

  MCMO is a new, previously unreported, application that differs from the above 

in simultaneously optimizing for multiple realizations based upon different conceptual 

models of the physical system.   



 142 

   

4.1.5 Study Area: Cache Valley, Utah 

and Idaho   

Underlying the intermountain Cache Valley (Figure 4.1) is a multi-layer basin-fill 

aquifer system hydraulically connected to surface waters and discharging to rivers, 

drains, and springs. Residents have long used groundwater for irrigation and domestic 

uses (Peterson 1946), and it is now the major source for municipalities.   

Concern about aquifer dewatering has led to calibrating groundwater flow models 

to conduct predictive simulations, and then to S-O modeling. Kariya et al. (1994) 

calibrated MODFLOW for the Cache Valley aquifer system. Their quasi-three-

dimensional (quasi-3D) flow model is referred to as the US Geological Survey (USGS) 

simulation model herein and is used as the simulator within one of the presented 

MCMO’s sub-models. The USGS model discretizes the 1,709 km
2
 (660 square miles) 

aquifer area into 82 rows, 39 columns and 6 layers. The model represents aquifer/surface-

water seepage using drain, river and general head (GHB) boundary conditions, and uses 

feet and seconds as units of length and time, respectively. It is the most widely accepted 

numerical Cache Valley groundwater flow model.  

Myers (2003) and Lachmar et al. (2004) evaluated the USGS model, and the 

underlying conceptual model. Disagreeing on some points, Myers and Lachmar prepared 

a different conceptual model and calibrated a different MODFLOW implementation. 

Referred to as the MM model, their fully 3D flow model has the same numbers of rows 

and columns as the USGS model but has 11 numerical layers, two describing confining 

strata. MM uses drain and GHB boundary conditions to represent aquifer/surface-water 
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seepage. Units are feet and days.  They used their model to evaluate the model response 

to 83,184 m
3
/day (34 cfs) increase in pumping.  

Currently, different stakeholders support the two different simulation models. The 

demand for water is increasing with population. Groundwater is the major source of 

municipal and domestic water. The Utah portion of Cache Valley (Cache County) 

contains 18 municipalities (Figure 4.1). Population has increased between years 2000 and 

2010 in all but one of those municipalities. 

Utah water law requires that areas having potential groundwater depletion 

problems develop perennial (or safe) yield management plans. A perennial-yield plan 

includes the volume of groundwater annually extractable without causing undesirable 

consequences from year to year. Applying MCMO to Cache Valley complex river-

aquifer system fills the void created from lack of consensus on a single simulation model 

to employ within a traditional S-O model.  MCMO can provide a compromise yield 

strategy that satisfies comparable constraints in multiple simulation models 

simultaneously.  

This manuscript proceeds as follows. The Materials and Methods section details 

MCMO application, including development of sub-models, optimization model 

formulations for different optimization problems (scenarios), optimization problem 

refinements, and selection of a compromise strategy. Results and Discussion presents and 

analyzes the findings of this reconnaissance study. The Conclusions section highlights the 

main case study findings and MCMO’s generic applicability for cases and situations not 

tested here. Acronyms and terms are defined in Appendix E.  
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4.2 Materials and Methods 

4.2.1 Overview 

Stakeholder disagreement concerning whether the USGS or the MM MODFLOW 

implementation is a better representation of reality causes public uncertainty. An optimal 

perennial-yield strategy produced using the MM model as simulator differs from an 

optimal strategy (for comparable optimization problem) reported using the USGS model 

as simulator. Using the proposed multi-conceptual model optimization (MCMO) allows 

decision makers to reach a compromise optimal strategy without having to agree on the 

validity of either model. The MCMO approach smoothes the sharp consequences of 

differences in stakeholders’ opinions concerning conceptual and simulation models. 

For situations in which stakeholders cannot agree on which simulator is 

appropriate, Figure 4.2 shows the generic nature of MCMO and the logic train to follow 

in order to reach and provide an acceptable compromise strategy. Step 1 requires 

ensuring some comparability between MCMO simulation sub-models, so that posed sub-

model optimization problems (Step 2) are reasonably similar. After solving the 

optimization problems (Step 3) and selecting a compromise strategy from created 

tradeoff curves (Step 4), the compromise strategy is evaluated (Step 5). If the candidate 

compromise strategy is reasonably acceptable, it is considered a valid compromise 

strategy and the process halts (Step 7a). If the strategy is unacceptable, critical areas and 

parameters needing further investigation are identified (Step 7b), and field data are 

collected (Step 8). After revising the sub-models with new input data (Step 9), the 

process repeats and Step 7a is accomplished.    
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Figure 4.2 Using MCMO to reach a compromise strategy 

Here, MCMO uses response matrix method (RMM) to solve a single optimization 

problem automatically created from multi-simulation models (sub-models). Assuming 

‘SM’ expresses the total number of sub-models, and ‘sm’ is the index number of an 

individual sub-model, Figure 4.3 shows the general automated steps MCMO undergoes 

to address SM sub-models before being able to report a compromise strategy. After 

posing the optimization problem for each sub-model individually, the automated steps 

include:  using sub-model simulators, perform background (BG) simulations and unit-

stimuli simulations; calculating ICs; populating convolution equations; organizing and 

solving the overall optimization problem that simultaneously considers all sub-model 

optimization problems; testing the predictive accuracy of the convolution equations by 
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simulating the optimal strategy of each sub-model using its respective numerical 

simulation model; and confirming strategy acceptability.  

To recapitulate, MCMO requires that flow simulators of all sub-models utilize 

analogous background simulations and apply equivalent pumping rates in the same 

geographic locations. It also requires that all sub-model optimizers handle equivalent 

optimization problems in terms of objective functions, variables, bounds, and constraints. 

For Cache Valley, employed constraints are on heads at pumping locations, flowing drain 

cells, and at hydraulically connected river cells, and on seepage rates from groups of 

drain cells, river cells and GHB cells. 

The below section details the process of modifying the MM model to make it 

suitable for developing a unified MCMO optimal strategy, the MCMO process, and the 

general optimization problem addressed. 

4.2.2 NDM Simulation Model 

Creation and Calibration 

This MCMO application requires solving equivalent optimization problems for 

both sub-models.  This section discusses actions needed to prepare a new simulation 

model (NDM), based upon the MM model, that is sufficiently comparable to the USGS 

model for MCMO.  The USGS and NDM sub-models of this MCMO application differ in 

boundary conditions and vertical discretization (number of numerical layers used to 

model the aquifer strata). Ideally, carefully posed optimization problems for comparable 

simulation models are equivalent.   
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Figure 4.3 MCMO general steps 

4.2.2.1 Creating Layer Correspondence 

Creating layer correspondence between the NDM and USGS model layers is 

crucial for applying comparable hydraulic stimuli and constraints in both sub-models.  

For equilibrium optimization, spatial discretization correspondence is sufficient--no 

temporal correspondence is necessary. The USGS, MM, and NDM horizontal 

discretizations are identical. Vertical (model layer) correspondence is required to extract 

groundwater appropriately.   

To determine corresponding strata pumping in the USGS and MM simulation 

models, input elevations of the bottom of unconfined Layer 1 are analyzed. Figure 4.4 

shows that both models use uniform but different depths of each lower model layer 
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beneath the ground surface (Das 2002; Myers 2003). Table 4.1 shows the correspondence 

of the USGS, MM, and NDM layers based on Figure 4.4.  

 
Figure 4.4 USGS and NDM model layer correspondence 

 

 

Table 4.1 USGS and NDM model layer correspondence 

NDM layer Analogous USGS layer 

1 1 

2, 3 2 

4, 5 3 

6 4 

7, 8 5 

9, 10, 11 6 

 

  Note that the MM model simulates full 3D flow and computes head in semi-

confining layers 2 and 4. The USGS sub-model simulates quasi-3D flow and does not 

compute head in those layers. It uses a ‘vertical leakance’ term to represent the semi-

confining layer vertical conductivity. 


